TY - JOUR A1 - Eccard, Jana A1 - Fey, Karen A1 - Caspers, Barbara A. A1 - Ylönen, Hannu T1 - Breeding state and season affect interspecific interaction types indirect resource competition and direct interference JF - Oecologia N2 - Indirect resource competition and interference are widely occurring mechanisms of interspecific interactions. We have studied the seasonal expression of these two interaction types within a two-species, boreal small mammal system. Seasons differ by resource availability, individual breeding state and intraspecific social system. Live-trapping methods were used to monitor space use and reproduction in 14 experimental populations of bank voles Myodes glareolus in large outdoor enclosures with and without a dominant competitor, the field vole Microtus agrestis. We further compared vole behaviour using staged dyadic encounters in neutral arenas in both seasons. Survival of the non-breeding overwintering bank voles was not affected by competition. In the spring, the numbers of male bank voles, but not of females, were reduced significantly in the competition populations. Bank vole home ranges expanded with vole density in the presence of competitors, indicating food limitation. A comparison of behaviour between seasons based on an analysis of similarity revealed an avoidance of costly aggression against opponents, independent of species. Interactions were more aggressive during the summer than during the winter, and heterospecific encounters were more aggressive than conspecific encounters. Based on these results, we suggest that interaction types and their respective mechanisms are not either-or categories and may change over the seasons. During the winter, energy constraints and thermoregulatory needs decrease direct aggression, but food constraints increase indirect resource competition. Direct interference appears in the summer, probably triggered by each individual's reproductive and hormonal state and the defence of offspring against conspecific and heterospecific intruders. Both interaction forms overlap in the spring, possibly contributing to spring declines in the numbers of subordinate species. KW - Rodents KW - Aggression KW - Seasonality KW - Space use KW - Winter biology Y1 - 2011 U6 - https://doi.org/10.1007/s00442-011-2008-y SN - 0029-8549 SN - 1432-1939 VL - 167 IS - 3 SP - 623 EP - 633 PB - Springer CY - New York ER - TY - GEN A1 - Eccard, Jana A1 - Fey, Karen A1 - Caspers, Barbara A. A1 - Ylönen, Hannu T1 - Breeding state and season affect interspecific interaction types BT - indirect resource competition and direct interference T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Indirect resource competition and interference are widely occurring mechanisms of interspecific interactions. We have studied the seasonal expression of these two interaction types within a two-species, boreal small mammal system. Seasons differ by resource availability, individual breeding state and intraspecific social system. Live-trapping methods were used to monitor space use and reproduction in 14 experimental populations of bank voles Myodes glareolus in large outdoor enclosures with and without a dominant competitor, the field vole Microtus agrestis. We further compared vole behaviour using staged dyadic encounters in neutral arenas in both seasons. Survival of the non-breeding overwintering bank voles was not affected by competition. In the spring, the numbers of male bank voles, but not of females, were reduced significantly in the competition populations. Bank vole home ranges expanded with vole density in the presence of competitors, indicating food limitation. A comparison of behaviour between seasons based on an analysis of similarity revealed an avoidance of costly aggression against opponents, independent of species. Interactions were more aggressive during the summer than during the winter, and heterospecific encounters were more aggressive than conspecific encounters. Based on these results, we suggest that interaction types and their respective mechanisms are not either–or categories and may change over the seasons. During the winter, energy constraints and thermoregulatory needs decrease direct aggression, but food constraints increase indirect resource competition. Direct interference appears in the summer, probably triggered by each individual’s reproductive and hormonal state and the defence of offspring against conspecific and heterospecific intruders. Both interaction forms overlap in the spring, possibly contributing to spring declines in the numbers of subordinate species. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 729 KW - rodents KW - aggression KW - seasonality KW - space use KW - winter biology Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429398 SN - 1866-8372 IS - 729 SP - 623 EP - 633 ER - TY - JOUR A1 - Schneeberger, Karin A1 - Schulze, Michael A1 - Scheffler, Ingo A1 - Caspers, Barbara A. T1 - Evidence of female preference for odor of distant over local males in a bat with female dispersal JF - Behavioral ecology : the official journal of the International Society for Behavioral Ecology N2 - Geographic variation of sexually selected male traits is common in animals. Female choice also varies geographically and several studies found female preference for local males, which is assumed to lead to local adaptation and, therefore, increases fitness. As females are the nondispersing sex in most mammalian taxa, this preference for local males might be explained by the learning of male characteristics. Studies on the preference of females in female-dispersing species are lacking so far. To find out whether such females would also show preferences for local males, we conducted a study on greater sac-winged bats (Saccopteryx bilineata), a species where females disperse and males stay in their natal colony. Male greater sac-winged bats possess a wing pouch that is filled with odoriferous secretion and fanned toward females during courtship display. In a combination of chemical analysis and behavioral preference tests, we analyzed whether the composition of wing sac secretion varies between two geographically distinct populations (300 km), and whether females show a preference for local or distant male scent. Using gas chromatography, we found significant differences in the composition of the wing sac odors between the two geographically distinct populations. In addition, the behavioral preference experiments revealed that females of both populations preferred the scent of geographically distant males over local males. The wing sac odor might thus be used to guarantee optimal outbreeding when dispersing to a new colony. This is-to our knowledge-the first study on odor preference of females of a species with female-biased dispersal. KW - bats KW - dispersal KW - female preference KW - male philopatry KW - odor KW - olfaction Y1 - 2021 U6 - https://doi.org/10.1093/beheco/arab003 SN - 1045-2249 SN - 1465-7279 VL - 32 IS - 4 SP - 657 EP - 661 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Tebbe, Jonas A1 - Ottensmann, Meinolf A1 - Havenstein, Katja A1 - Efstratiou, Artemis A1 - Lenz, Tobias L. A1 - Caspers, Barbara A. A1 - Forcada, Jaume A1 - Tiedemann, Ralph A1 - Hoffman, Joseph T1 - Intronic primers reveal unexpectedly high major histocompatibility complex diversity in Antarctic fur seals JF - Scientific reports N2 - The major histocompatibility complex (MHC) is a group of genes comprising one of the most important components of the vertebrate immune system. Consequently, there has been much interest in characterising MHC variation and its relationship with fitness in a variety of species. Due to the exceptional polymorphism of MHC genes, careful PCR primer design is crucial for capturing all of the allelic variation present in a given species. We therefore developed intronic primers to amplify the full-length 267 bp protein-coding sequence of the MHC class II DQB exon 2 in the Antarctic fur seal. We then characterised patterns of MHC variation among mother-offspring pairs from two breeding colonies and detected 19 alleles among 771 clone sequences from 56 individuals. The distribution of alleles within and among individuals was consistent with a single-copy, classical DQB locus showing Mendelian inheritance. Amino acid similarity at the MHC was significantly associated with genome-wide relatedness, but no relationship was found between MHC heterozygosity and genome-wide heterozygosity. Finally, allelic diversity was several times higher than reported by a previous study based on partial exon sequences. This difference appears to be related to allele-specific amplification bias, implying that primer design can strongly impact the inference of MHC diversity. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-21658-7 SN - 2045-2322 VL - 12 IS - 1 PB - Nature Publishing Group CY - London ER -