TY - JOUR A1 - Marggraf, Lara Christin A1 - Lindecke, Oliver A1 - Voigt, Christian C. A1 - Pētersons, Gunārs A1 - Voigt-Heucke, Silke Luise T1 - Nathusius’ bats, Pipistrellus nathusii, bypass mating opportunities of their own species, but respond to foraging heterospecifics on migratory transit flights JF - Frontiers in Ecology and Evolution N2 - In late summer, migratory bats of the temperate zone face the challenge of accomplishing two energy-demanding tasks almost at the same time: migration and mating. Both require information and involve search efforts, such as localizing prey or finding potential mates. In non-migrating bat species, playback studies showed that listening to vocalizations of other bats, both con-and heterospecifics, may help a recipient bat to find foraging patches and mating sites. However, we are still unaware of the degree to which migrating bats depend on con-or heterospecific vocalizations for identifying potential feeding or mating opportunities during nightly transit flights. Here, we investigated the vocal responses of Nathusius’ pipistrelle bats, Pipistrellus nathusii, to simulated feeding and courtship aggregations at a coastal migration corridor. We presented migrating bats either feeding buzzes or courtship calls of their own or a heterospecific migratory species, the common noctule, Nyctalus noctula. We expected that during migratory transit flights, simulated feeding opportunities would be particularly attractive to bats, as well as simulated mating opportunities which may indicate suitable roosts for a stopover. However, we found that when compared to the natural silence of both pre-and post-playback phases, bats called indifferently during the playback of conspecific feeding sounds, whereas P. nathusii echolocation call activity increased during simulated feeding of N. noctula. In contrast, the call activity of P. nathusii decreased during the playback of conspecific courtship calls, while no response could be detected when heterospecific call types were broadcasted. Our results suggest that while on migratory transits, P. nathusii circumnavigate conspecific mating aggregations, possibly to save time or to reduce the risks associated with social interactions where aggression due to territoriality might be expected. This avoidance behavior could be a result of optimization strategies by P. nathusii when performing long-distance migratory flights, and it could also explain the lack of a response to simulated conspecific feeding. However, the observed increase of activity in response to simulated feeding of N. noctula, suggests that P. nathusii individuals may be eavesdropping on other aerial hawking insectivorous species during migration, especially if these occupy a slightly different foraging niche. KW - playback KW - phonotaxis KW - bats KW - acoustic communication KW - animal migration KW - eavesdropping KW - echolocation KW - Pipistrellus nathusii Y1 - 2023 U6 - https://doi.org/10.3389/fevo.2022.908560 SN - 2296-701X SP - 1 EP - 10 PB - Frontiers CY - Lausanne, Schweiz ER - TY - GEN A1 - Marggraf, Lara Christin A1 - Lindecke, Oliver A1 - Voigt, Christian C. A1 - Pētersons, Gunārs A1 - Voigt-Heucke, Silke Luise T1 - Nathusius’ bats, Pipistrellus nathusii, bypass mating opportunities of their own species, but respond to foraging heterospecifics on migratory transit flights T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In late summer, migratory bats of the temperate zone face the challenge of accomplishing two energy-demanding tasks almost at the same time: migration and mating. Both require information and involve search efforts, such as localizing prey or finding potential mates. In non-migrating bat species, playback studies showed that listening to vocalizations of other bats, both con-and heterospecifics, may help a recipient bat to find foraging patches and mating sites. However, we are still unaware of the degree to which migrating bats depend on con-or heterospecific vocalizations for identifying potential feeding or mating opportunities during nightly transit flights. Here, we investigated the vocal responses of Nathusius’ pipistrelle bats, Pipistrellus nathusii, to simulated feeding and courtship aggregations at a coastal migration corridor. We presented migrating bats either feeding buzzes or courtship calls of their own or a heterospecific migratory species, the common noctule, Nyctalus noctula. We expected that during migratory transit flights, simulated feeding opportunities would be particularly attractive to bats, as well as simulated mating opportunities which may indicate suitable roosts for a stopover. However, we found that when compared to the natural silence of both pre-and post-playback phases, bats called indifferently during the playback of conspecific feeding sounds, whereas P. nathusii echolocation call activity increased during simulated feeding of N. noctula. In contrast, the call activity of P. nathusii decreased during the playback of conspecific courtship calls, while no response could be detected when heterospecific call types were broadcasted. Our results suggest that while on migratory transits, P. nathusii circumnavigate conspecific mating aggregations, possibly to save time or to reduce the risks associated with social interactions where aggression due to territoriality might be expected. This avoidance behavior could be a result of optimization strategies by P. nathusii when performing long-distance migratory flights, and it could also explain the lack of a response to simulated conspecific feeding. However, the observed increase of activity in response to simulated feeding of N. noctula, suggests that P. nathusii individuals may be eavesdropping on other aerial hawking insectivorous species during migration, especially if these occupy a slightly different foraging niche. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1306 KW - playback KW - phonotaxis KW - bats KW - acoustic communication KW - animal migration KW - eavesdropping KW - echolocation KW - Pipistrellus nathusii Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-579574 SN - 1866-8372 IS - 1306 ER - TY - JOUR A1 - Fiorini, Vanina D. A1 - Domínguez, Marisol A1 - Reboreda, Juan C. A1 - Swaddle, John P. T1 - A recent invasive population of the European starling sturnus vulgaris has lower genetic diversity and higher fluctuating asymmetry than primary invasive and native populations JF - Biological invasions : unique international journal uniting scientists in the broad field of biological invasions N2 - Fluctuating asymmetries (FA) are small stress-induced random deviations from perfect symmetry that arise during the development of bilaterally symmetrical traits. One of the factors that can reduce developmental stability of the individuals and cause FA at a population level is the loss of genetic variation. Populations of founding colonists frequently have lower genetic variation than their ancestral populations that could be reflected in a higher level of FA. The European starling (Sturnus vulgaris) is native to Eurasia and was introduced successfully in the USA in 1890 and Argentina in 1983. In this study, we documented the genetic diversity and FA of starlings from England (ancestral population), USA (primary introduction) and Argentina (secondary introduction). We predicted the Argentinean starlings would have the highest level of FA and lowest genetic diversity of the three populations. We captured wild adult European starlings in England, USA, and Argentina, measured their mtDNA diversity and allowed them to molt under standardized conditions to evaluate their FA of primary feathers. For genetic analyses, we extracted DNA from blood samples of individuals from Argentina and USA and from feather samples from individuals from England and sequenced the mitochondrial control region. Starlings in Argentina showed the highest composite FA and exhibited the lowest haplotype and nucleotide diversity. The USA population showed a level of FA and genetic diversity similar to the native population. Therefore, the level of asymmetry and genetic diversity found among these populations was consistent with our predictions based on their invasion history. KW - Exotic bird species KW - Fluctuating asymmetry KW - Genetic variability KW - Sturnus KW - vulgaris Y1 - 2022 U6 - https://doi.org/10.1007/s10530-021-02653-x SN - 1387-3547 SN - 1573-1464 VL - 24 IS - 2 SP - 437 EP - 448 PB - Springer CY - Dordrecht ER - TY - GEN A1 - Eccard, Jana A1 - Herde, Antje A1 - Schuster, Andrea C. A1 - Liesenjohann, Thilo A1 - Knopp, Tatjana A1 - Heckel, Gerald A1 - Dammhahn, Melanie T1 - Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive “fast” types at one end of the spectrum to less fecund, long-lived, shy, plastic “slow” types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95% and 50% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1258 KW - animal personality KW - automated radio telemetry KW - behavioral type KW - fitness KW - home range KW - Microtus arvalis KW - parentage KW - reproductive success Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-558866 SN - 1866-8372 SP - 1 EP - 15 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Eccard, Jana A1 - Herde, Antje A1 - Schuster, Andrea C. A1 - Liesenjohann, Thilo A1 - Knopp, Tatjana A1 - Heckel, Gerald A1 - Dammhahn, Melanie T1 - Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations JF - Ecology And Evolution N2 - Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive “fast” types at one end of the spectrum to less fecund, long-lived, shy, plastic “slow” types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95% and 50% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life. KW - animal personality KW - automated radio telemetry KW - behavioral type KW - fitness KW - home range KW - Microtus arvalis KW - parentage KW - reproductive success Y1 - 2022 U6 - https://doi.org/10.1002/ece3.8521 SN - 2045-7758 SP - 1 EP - 15 PB - John Wiley & Sons, Inc. CY - Vereinigte Staaten ER - TY - JOUR A1 - Cordeiro, Andre M. A1 - Andrade, Luis A1 - Monteiro, Catarina C. A1 - Leitao, Guilherme A1 - Wigge, Philip Anthony A1 - Saibo, Nelson J. M. T1 - Phytochrome-interacting factors BT - a promising tool to improve crop productivity JF - Journal of experimental botany N2 - Review exploring the regulation of PHYTOCHROME-INTERACTING FACTORS by light, their role in abiotic stress tolerance and plant architecture, and their influence on crop productivity. Light is a key determinant for plant growth, development, and ultimately yield. Phytochromes, red/far-red photoreceptors, play an important role in plant architecture, stress tolerance, and productivity. In the model plant Arabidopsis, it has been shown that PHYTOCHROME-INTERACTING FACTORS (PIFs; bHLH transcription factors) act as central hubs in the integration of external stimuli to regulate plant development. Recent studies have unveiled the importance of PIFs in crops. They are involved in the modulation of plant architecture and productivity through the regulation of cell division and elongation in response to different environmental cues. These studies show that different PIFs have overlapping but also distinct functions in the regulation of plant growth. Therefore, understanding the molecular mechanisms by which PIFs regulate plant development is crucial to improve crop productivity under both optimal and adverse environmental conditions. In this review, we discuss current knowledge of PIFs acting as integrators of light and other signals in different crops, with particular focus on the role of PIFs in responding to different environmental conditions and how this can be used to improve crop productivity. KW - Cold KW - drought KW - grain size KW - heat KW - light signaling KW - phytochrome KW - PIF KW - plant architecture KW - plant breeding KW - plant yield KW - salinity Y1 - 2022 U6 - https://doi.org/10.1093/jxb/erac142 SN - 0022-0957 SN - 1460-2431 VL - 73 IS - 12 SP - 3881 EP - 3897 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Voigt, Christian C. A1 - Kaiser, Klara A1 - Look, Samantha A1 - Scharnweber, Inga Kristin A1 - Scholz, Carolin T1 - Wind turbines without curtailment produce large numbers of bat fatalities throughout their lifetime BT - a call against ignorance and neglect JF - Global ecology and conservation N2 - Bats are protected by national and international legislation in European countries, yet many species, particularly migratory aerial insectivores, collide with wind turbines which counteracts conservation efforts. Within the European Union it is legally required to curtail the operation of wind turbines at periods of high bat activity, yet this is not practiced at old wind turbines. Based on data from the national carcass repository in Germany and from our own carcass searches at a wind park with three turbines west of Berlin, we evaluated the magnitude of bat casualties at old, potentially poor-sited wind turbines operating without curtailment. We report 88 documented bat carcasses collected by various searchers over the 20-year operation period of this wind park from 2001 to 2021. Common noctule bats (Nyctalus noctula) and common pipistrelles (Pipistrellus pipistrellus) were most often found dead at these turbines. Our search campaign in August and September 2021 yielded a total of 18 carcasses. We estimated that at least 209 bats were likely killed during our field survey, yielding more than 70 casualties/wind turbine or 39 casualties/ MW in two months. Since our campaign covered only part of the migration season, we consider this value as an underestimate. The 20-year period of the wind park emphasises the substantial impact old turbines may have on bat individuals and populations when operating without curtailments. We call for reconsidering the operation procedures of old wind turbines to stop the continuous loss of bats in Germany and other countries where turbine curtailments are even less practiced than in Germany. KW - green-green dilemma KW - wind energy bat conflict KW - wildlife casualties Y1 - 2022 U6 - https://doi.org/10.1016/j.gecco.2022.e02149 SN - 2351-9894 VL - 37 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Strong, Catherine R. C. A1 - Scherz, Mark D. A1 - Caldwell, Michael Wayne T1 - Deconstructing the Gestalt BT - new concepts and tests of homology, as exemplified by a re-conceptualization of "microstomy" in squamates JF - The anatomical record : AR ; advances in integrative anatomy and evolutionary biology ; an official publication of the American Association of Anatomists, AAA N2 - Snakes-a subset of lizards-have traditionally been divided into two major groups based on feeding mechanics: "macrostomy," involving the ingestion of proportionally large prey items; and "microstomy," the lack of this ability. "Microstomy"-considered present in scolecophidian and early-diverging alethinophidian snakes-is generally viewed as a symplesiomorphy shared with non-snake lizards. However, this perspective of "microstomy" as plesiomorphic and morphologically homogenous fails to recognize the complexity of this condition and its evolution across "microstomatan" squamates. To challenge this problematic paradigm, we formalize a new framework for conceptualizing and testing the homology of overall character complexes, or "morphotypes," which underlies our re-assessment of "microstomy." Using micro-computed tomography (micro-CT) scans, we analyze the morphology of the jaws and suspensorium across purported "microstomatan" squamates (scolecophidians, early-diverging alethinophidians, and non-snake lizards) and demonstrate that key components of the jaw complex are not homologous at the level of primary character state identity across these taxa. Therefore, rather than treating "microstomy" as a uniform condition, we instead propose that non-snake lizards, early-diverging alethinophidians, anomalepidids, leptotyphlopids, and typhlopoids each exhibit a unique and nonhomologous jaw morphotype: "minimal-kinesis microstomy," "snout-shifting," "axle-brace maxillary raking," "mandibular raking," and "single-axle maxillary raking," respectively. The lack of synapomorphy among scolecophidians is inconsistent with the notion of scolecophidians representing an ancestral snake condition, and instead reflects a hypothesis of the independent evolution of fossoriality, miniaturization, and "microstomy" in each scolecophidian lineage. We ultimately emphasize that a rigorous approach to comparative anatomy is necessary in constructing evolutionary hypotheses that accurately reflect biological reality. KW - ancestral state reconstruction KW - functional morphology KW - homology KW - skull KW - anatomy KW - snake evolution Y1 - 2021 U6 - https://doi.org/10.1002/ar.24630 SN - 1932-8486 SN - 1932-8494 VL - 304 IS - 10 SP - 2303 EP - 2351 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Malchow, Anne-Kathleen A1 - Bocedi, Greta A1 - Palmer, Stephen C. F. A1 - Travis, Justin M. J. A1 - Zurell, Damaris T1 - RangeShiftR: an R package for individual-based simulation of spatial eco-evolutionary dynamics and speciesu0027 responses to environmental changes JF - Ecography N2 - Reliably modelling the demographic and distributional responses of a species to environmental changes can be crucial for successful conservation and management planning. Process-based models have the potential to achieve this goal, but so far they remain underused for predictions of species' distributions. Individual-based models offer the additional capability to model inter-individual variation and evolutionary dynamics and thus capture adaptive responses to environmental change. We present RangeShiftR, an R implementation of a flexible individual-based modelling platform which simulates eco-evolutionary dynamics in a spatially explicit way. The package provides flexible and fast simulations by making the software RangeShifter available for the widely used statistical programming platform R. The package features additional auxiliary functions to support model specification and analysis of results. We provide an outline of the package's functionality, describe the underlying model structure with its main components and present a short example. RangeShiftR offers substantial model complexity, especially for the demographic and dispersal processes. It comes with elaborate tutorials and comprehensive documentation to facilitate learning the software and provide help at all levels. As the core code is implemented in C++, the computations are fast. The complete source code is published under a public licence, making adaptations and contributions feasible. The RangeShiftR package facilitates the application of individual-based and mechanistic modelling to eco-evolutionary questions by operating a flexible and powerful simulation model from R. It allows effortless interoperation with existing packages to create streamlined workflows that can include data preparation, integrated model specification and results analysis. Moreover, the implementation in R strengthens the potential for coupling RangeShiftR with other models. KW - connectivity KW - conservation KW - dispersal KW - evolution KW - population dynamics KW - range dynamics Y1 - 2021 SN - 1600-0587 VL - 44 IS - 10 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - GEN A1 - Malchow, Anne-Kathleen A1 - Bocedi, Greta A1 - Palmer, Stephen C. F. A1 - Travis, Justin M. J. A1 - Zurell, Damaris T1 - RangeShiftR: an R package for individual-based simulation of spatial eco-evolutionary dynamics and speciesu0027 responses to environmental changes T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Reliably modelling the demographic and distributional responses of a species to environmental changes can be crucial for successful conservation and management planning. Process-based models have the potential to achieve this goal, but so far they remain underused for predictions of species' distributions. Individual-based models offer the additional capability to model inter-individual variation and evolutionary dynamics and thus capture adaptive responses to environmental change. We present RangeShiftR, an R implementation of a flexible individual-based modelling platform which simulates eco-evolutionary dynamics in a spatially explicit way. The package provides flexible and fast simulations by making the software RangeShifter available for the widely used statistical programming platform R. The package features additional auxiliary functions to support model specification and analysis of results. We provide an outline of the package's functionality, describe the underlying model structure with its main components and present a short example. RangeShiftR offers substantial model complexity, especially for the demographic and dispersal processes. It comes with elaborate tutorials and comprehensive documentation to facilitate learning the software and provide help at all levels. As the core code is implemented in C++, the computations are fast. The complete source code is published under a public licence, making adaptations and contributions feasible. The RangeShiftR package facilitates the application of individual-based and mechanistic modelling to eco-evolutionary questions by operating a flexible and powerful simulation model from R. It allows effortless interoperation with existing packages to create streamlined workflows that can include data preparation, integrated model specification and results analysis. Moreover, the implementation in R strengthens the potential for coupling RangeShiftR with other models. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1178 KW - connectivity KW - conservation KW - dispersal KW - evolution KW - population dynamics KW - range dynamics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-523979 SN - 1866-8372 IS - 10 ER -