TY - JOUR A1 - Buchmann, Carsten M. A1 - Schurr, Frank Martin A1 - Nathan, Ran A1 - Jeltsch, Florian T1 - Habitat loss and fragmentation affecting mammal and bird communities-The role of interspecific competition and individual space use JF - Ecological informatics : an international journal on ecoinformatics and computational ecolog N2 - Fragmentation and loss of habitat are major threats to animal communities and are therefore important to conservation. Due to the complexity of the interplay of spatial effects and community processes, our mechanistic understanding of how communities respond to such landscape changes is still poor. Modelling studies have mostly focused on elucidating the principles of community response to fragmentation and habitat loss at relatively large spatial and temporal scales relevant to metacommunity dynamics. Yet, it has been shown that also small scale processes, like foraging behaviour, space use by individuals and local resource competition are also important factors. However, most studies that consider these smaller scales are designed for single species and are characterized by high model complexity. Hence, they are not easily applicable to ecological communities of interacting individuals. To fill this gap, we apply an allometric model of individual home range formation to investigate the effects of habitat loss and fragmentation on mammal and bird communities, and, in this context, to investigate the role of interspecific competition and individual space use. Results show a similar response of both taxa to habitat loss. Community composition is shifted towards higher frequency of relatively small animals. The exponent and the 95%-quantile of the individual size distribution (ISD, described as a power law distribution) of the emerging communities show threshold behaviour with decreasing habitat area. Fragmentation per se has a similar and strong effect on mammals, but not on birds. The ISDs of bird communities were insensitive to fragmentation at the small scales considered here. These patterns can be explained by competitive release taking place in interacting animal communities, with the exception of bird's buffering response to fragmentation, presumably by adjusting the size of their home ranges. These results reflect consequences of higher mobility of birds compared to mammals of the same size and the importance of considering competitive interaction, particularly for mammal communities, in response to landscape fragmentation. Our allometric approach enables scaling up from individual physiology and foraging behaviour to terrestrial communities, and disentangling the role of individual space use and interspecific competition in controlling the response of mammal and bird communities to landscape changes. KW - Allometry KW - Body size KW - Fractal landscapes KW - Foraging movement KW - Individual-based model KW - Locomotion costs Y1 - 2013 U6 - https://doi.org/10.1016/j.ecoinf.2012.11.015 SN - 1574-9541 VL - 14 SP - 90 EP - 98 PB - Elsevier CY - Amsterdam ER -