TY - JOUR A1 - Abon, Catherine Cristobal A1 - Kneis, David A1 - Crisologo, Irene A1 - Bronstert, Axel A1 - David, Carlos Primo Constantino A1 - Heistermann, Maik T1 - Evaluating the potential of radar-based rainfall estimates for streamflow and flood simulations in the Philippines JF - GEOMATICS NATURAL HAZARDS & RISK N2 - This case study evaluates the suitability of radar-based quantitative precipitation estimates (QPEs) for the simulation of streamflow in the Marikina River Basin (MRB), the Philippines. Hourly radar-based QPEs were produced from reflectivity that had been observed by an S-band radar located about 90 km from the MRB. Radar data processing and precipitation estimation were carried out using the open source library wradlib. To assess the added value of the radar-based QPE, we used spatially interpolated rain gauge observations (gauge-only (GO) product) as a benchmark. Rain gauge observations were also used to quantify rainfall estimation errors at the point scale. At the point scale, the radar-based QPE outperformed the GO product in 2012, while for 2013, the performance was similar. For both periods, estimation errors substantially increased from daily to the hourly accumulation intervals. Despite this fact, both rainfall estimation methods allowed for a good representation of observed streamflow when used to force a hydrological simulation model of the MRB. Furthermore, the results of the hydrological simulation were consistent with rainfall verification at the point scale: the radar-based QPE performed better than the GO product in 2012, and equivalently in 2013. Altogether, we could demonstrate that, in terms of streamflow simulation, the radar-based QPE can perform as good as or even better than the GO product - even for a basin such as the MRB which has a comparatively dense rain gauge network. This suggests good prospects for using radar-based QPE to simulate and forecast streamflow in other parts of the Philippines where rain gauge networks are not as dense. Y1 - 2016 U6 - https://doi.org/10.1080/19475705.2015.1058862 SN - 1947-5705 SN - 1947-5713 VL - 7 SP - 1390 EP - 1405 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - RPRT A1 - Agarwal, Ankit A1 - Boessenkool, Berry A1 - Fischer, Madlen A1 - Hahn, Irene A1 - Köhn, Lisei A1 - Laudan, Jonas A1 - Moran, Thomas A1 - Öztürk, Ugur A1 - Riemer, Adrian A1 - Rözer, Viktor A1 - Sieg, Tobias A1 - Vogel, Kristin A1 - Wendi, Dadiyorto A1 - Bronstert, Axel A1 - Thieken, Annegret T1 - Die Sturzflut in Braunsbach, Mai 2016 T1 - The flash flood of Braunsbach, May 2006 BT - eine Bestandsaufnahme und Ereignisbeschreibung BT - a hydrological survey and event analysis N2 - Im Graduiertenkolleg NatRiskChange der Universität Potsdam und anderen Forschungseinrichtungen werden beobachtete sowie zukünftig mögliche Veränderungen von Naturgefahren untersucht. Teil des strukturierten Doktorandenprogramms sind sogenannte Task-Force-Einsätze, bei denen die Promovierende zeitlich begrenzt ein aktuelles Ereignis auswerten. Im Zuge dieser Aktivität wurde die Sturzflut vom 29.05.2016 in Braunsbach (Baden-Württemberg) untersucht. In diesem Bericht werden erste Auswertungen zur Einordnung der Niederschläge, zu den hydrologischen und geomorphologischen Prozessen im Einzugsgebiet des Orlacher Bachs sowie zu den verursachten Schäden beleuchtet. Die Region war Zentrum extremer Regenfälle in der Größenordnung von 100 mm innerhalb von 2 Stunden. Das 6 km² kleine Einzugsgebiet hat eine sehr schnelle Reaktionszeit, zumal bei vorgesättigtem Boden. Im steilen Bachtal haben mehrere kleinere und größere Hangrutschungen über 8000 m³ Geröll, Schutt und Schwemmholz in das Gewässer eingetragen und möglicherweise kurzzeitige Aufstauungen und Durchbrüche verursacht. Neben den großen Wassermengen mit einer Abflussspitze in einer Größenordnung von 100 m³/s hat gerade die Geschiebefracht zu großen Schäden an den Gebäuden entlang des Bachlaufs in Braunsbach geführt. N2 - The DFG graduate school “Natural Hazards and Risks in a Changing World” (NatRiskChange), which is located at the University of Potsdam and its partner institutions, studies previous as well as ongoing and potential future changes in the risk posed by natural hazards. The education program includes so-called task force activities, where the PhD students conduct a rapid event assessment directly after the occurrence of a hazardous natural event. Within this context the flash flood that hit the village Braunsbach (Baden-Württemberg, Germany) at May 29th, 2016 was investigated. This report summarizes first results describing the rainfall amount and intensities as well as hydrological and geomorphological processes in the corresponding catchment area of the Orlacher Bach. Further, the damages caused in Braunsbach are investigated. Rainfall intensity measures documented extreme precipitation in the area of Braunsbach with a cumulative amount of about 100 mm within 2 hours. The small catchment area, with a size of 6 km², has a small response time, especially under pre-saturated soil conditions. Several landslides, that occurred at the steep slopes of the river valley, transported more than 8000 m³ of gravel, debris and organic material into the water runoff. They may have caused temporal blockades, that collapsed after a certain amount of water accumulated. In addition to the high discharge, with peak values in the order of 100 m³/s, the high sediment content of the flash flood is mainly responsible for the large damages caused to the buildings in Braunsbach. KW - Sturzflut KW - Naturgefahren KW - Extremniederschlag KW - Schadensabschätzung KW - Hangrutschungen KW - flash flood KW - natural hazards KW - extreme precipitation KW - damage assessment KW - landslides Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394881 ER - TY - JOUR A1 - Blume, Theresa A1 - Bauer, Andreas A1 - Bronstert, Axel T1 - Experimental techniques for the Investigation of Runoff Processes in a Small Catchment in the Chilean Andes Y1 - 2004 SN - 3-937758-18-6 ER - TY - GEN A1 - Blume, Theresa A1 - Zehe, Erwin A1 - Bronstert, Axel T1 - Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes N2 - Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and binary indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeterscale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a datascarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 125 KW - Repellent sandy soil KW - Poorly gauged catchment KW - Volcanic ash soils KW - Water repellency KW - Preferential flow Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44924 ER - TY - JOUR A1 - Blumenstein, Oswald A1 - Bronstert, Axel A1 - Günter, A. A1 - Katzenmeier, D. A1 - Friedrich, Sabine A1 - Geldmacher, Karl A1 - Bork, Rudolf A1 - Röpke, Björn A1 - Schaphoff, Sibyll A1 - Schnur, Tilo A1 - Woithe, Franka A1 - Dalchow, Claus A1 - Faust, Berno A1 - Itzerott, Sibylle A1 - Kaden, Klaus A1 - Knösche, Rüdiger T1 - Umweltforschung für das Land Brandenburg BT - Projekt Schutzgüter Wasser, Boden, Luft JF - Brandenburgische Umwelt-Berichte : BUB ; Schriftenreihe der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam N2 - BLUMENSTEIN, O.: Investigation of Environmental Quality and Social Structures in a Mining Area in the North West Province of South Africa ; BRONSTERT, A.; GÜNTNER, A.: A large-scale hydrological model for the semi-arid environment of north-eastern Brazil ; BRONSTERT, A. et al.: Hochwasserproblematik und der Zusammenhang mit Landnutzungs- und Klimaänderungen ; FRIEDRICH, S.: Vergleichende Untersuchungen zur Wasserqualität des anfallenden Regenwassers an den 14 Regenwassereinläufen der Stadt Potsdam ; GELDMACHER, K. et al.: Bodenzerstörung im Palouse, Washington, USA ; ITZEROTT, S.; KADEN, K.: Modellierung der flächenhaften Verdunstung im Gebiet der Unteren Havel ; KNÖSCHE, R.: Das remobilisierbare Nährstoffpotential in Augewässersedimenten einer Tieflandflußaue Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-3845 SN - 1434-2375 SN - 1611-9339 VL - 8 SP - 136 EP - 173 ER - TY - JOUR A1 - Breuer, Lutz A1 - Bormann, Helge A1 - Bronstert, Axel A1 - Croke, Barry F. W. A1 - Frede, Hans-Georg A1 - Gräff, Thomas A1 - Hubrechts, Lode A1 - Kite, Geoffrey A1 - Lanini, Jordan A1 - Leavesley, George A1 - Lettenmaier, Dennis P. A1 - Lindstroem, Goeran A1 - Seibert, Jan A1 - Sivapalan, Mayuran A1 - Viney, Neil R. A1 - Willems, Patrick T1 - Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) III : scenario analysis N2 - An ensemble of 10 hydrological models was applied to the same set of land use change scenarios. There was general agreement about the direction of changes in the mean annual discharge and 90% discharge percentile predicted by the ensemble members, although a considerable range in the magnitude of predictions for the scenarios and catchments under consideration was obvious. Differences in the magnitude of the increase were attributed to the different mean annual actual evapotranspiration rates for each land use type. The ensemble of model runs was further analyzed with deterministic and probabilistic ensemble methods. The deterministic ensemble method based on a trimmed mean resulted in a single somewhat more reliable scenario prediction. The probabilistic reliability ensemble averaging (REA) method allowed a quantification of the model structure uncertainty in the scenario predictions. It was concluded that the use of a model ensemble has greatly increased our confidence in the reliability of the model predictions. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/03091708 U6 - https://doi.org/10.1016/j.advwatres.2008.06.009 SN - 0309-1708 ER - TY - JOUR A1 - Breuer, Lutz A1 - Willems, Patrick A1 - Bormann, Helge A1 - Bronstert, Axel A1 - Croke, Barry A1 - Frede, Hans Georg A1 - Gräff, Thomas A1 - Hubrechts, Lode A1 - Kite, Geoffrey A1 - Lanini, Jordan A1 - Leavesley, George A1 - Lettenmaier, Dennis P. A1 - Lindstroem, Goeran A1 - Seibert, Jan A1 - Sivapalan, Mayuran A1 - Viney, Neil R. T1 - Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) : I: model intercomparison with current land use N2 - This paper introduces the project on 'Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM)' that aims at investigating the envelope of predictions on changes in hydrological fluxes due to land use change. As part of a series of four papers, this paper outlines the motivation and setup of LUCHEM, and presents a model intercomparison for the present-day simulation results. Such an intercomparison provides a valuable basis to investigate the effects of different model structures on model predictions and paves the ground for the analysis of the performance of multi-model ensembles and the reliability of the scenario predictions in companion papers. in this study, we applied a set of 10 lumped, semi-lumped and fully distributed hydrological models that have been previously used in land use change studies to the low mountainous Dill catchment. Germany. Substantial differences in model performance were observed with Nash-Sutcliffe efficiencies ranging from 0.53 to 0.92. Differences in model performance were attributed to (1) model input data, (2) model calibration and (3) the physical basis of the models. The models were applied with two sets of input data: an original and a homogenized data set. This homogenization of precipitation, temperature and leaf area index was performed to reduce the variation between the models. Homogenization improved the comparability of model simulations and resulted in a reduced average bias, although some variation in model data input remained. The effect of the physical differences between models on the long-term water balance was mainly attributed to differences in how models represent evapotranspiration. Semi-lumped and lumped conceptual models slightly outperformed the fully distributed and physically based models. This was attributed to the automatic model calibration typically used for this type of models. Overall, however, we conclude that there was no superior model if several measures of model performance are considered and that all models are suitable to participate in further multi-model ensemble set-ups and land use change scenario investigations. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/03091708 U6 - https://doi.org/10.1016/j.advwatres.2008.10.003 SN - 0309-1708 ER - TY - JOUR A1 - Bronstert, Axel T1 - Rainfall-runoff modelling for assessing impacts of climate and land-use change Y1 - 2004 ER - TY - JOUR A1 - Bronstert, Axel T1 - Probleme, Grenzen und Herausforderungen der hydrologischen Modellierung: Wasserhaushalt und Abfluss Y1 - 2004 ER - TY - JOUR A1 - Bronstert, Axel T1 - Floods and climate change : interactions and impacts Y1 - 2003 SN - 0272-4332 ER - TY - CHAP A1 - Bronstert, Axel T1 - Interdisziplinäres Zentrum für Musterdynamik und angewandte Fernerkundung (IMAF) an der Universität Potsdam : Gegenwart und Zukunft N2 - Stand des IMAF zu Beginn des Jahres 2006 Zum 1. April 2005 wurde per Beschluss des Rektorats der Universität Potsdam das Interdisziplinäre Zentrum für Musterdynamik und Angewandte Fernerkundung (IMAF) an der Universität Potsdam eingerichtet. Diesem Beschluss gingen knapp zwei Jahre konzeptionelle, organisatorische und administrative Vorarbeiten voraus. Inzwischen ist das IMAF also offiziell gegründet, der Vorstand wurde „bestellt“ (Prof. M. Mutti. Prof. E. Zehe, Prof. A. Bronstert), der Geschäftsführer bzw. wissenschaftliche Koordinator Dr. M. Kühling arbeitet in dieser Funktion seit Sommer 2005 und seit kurzem ist auch die 1. Version der Homepage des IMAF (http://www.uni-potsdam.de/imaf/) frei geschaltet. Auch die Infrastruktur des IMAF ist in der Entstehungsphase: Büroräume sind versprochen (wenn auch noch nicht bezugsfertig) im Haus 13 auf dem Campus Golm der Universität Potsdam und der 1. erfolgreiche Drittmittelantrag erbrachte 8 leistungsfähige Tischrechner und einen Server für das IMAF aus EU-Mitteln. Wichtiger als die administrativen und organisatorischen Arbeiten sind aber die inhaltlichen Forstschritte. Hier ist die große Resonanz, die die Gründung des IMAF sowohl innerhalb als auch außerhalb der Universität gefunden hat, besonders erfreulich. Über 30 Angehörige des Zentrums sind inzwischen zu verzeichnen und es gibt bereits eine Reihe von wissenschaftlichen Projektinitiativen und Ideen für dieses Zentrum. Neben den wissenschaftlichen Arbeiten am IMAF ist ein zweites Hauptziel für dieses Zentrum die Entwicklung und der Ausbau eines strukturierten Ausbildungsangebotes für Musterdynamik und angewandte Fernerkundung. Dies sollen gleichermaßen Masterstudenten als auch Doktoranden der Universität Potsdam und der mit ihr assoziierten außeruniversitären Institute nutzen. Zudem werden Kurse und Weiterbildungsveranstaltungen mit nationalen und internationalen Experten angestrebt. Neben diesen positiven Entwicklungen gibt es auch (noch ??) über einige Mängel zu berichten: Das Sekretariat ist nach wie vor unbesetzt, die Finanzausstattung des Zentrums ist völlig ungenügend und die im Konzept für das Zentrum beantragte Wissenschaftlerstelle für Softwareanwendung ist nicht in Sicht. Für einen Erfolg des Zentrums ist es unbedingt notwendig, dass sich diese Situation deutlich verbessert!! Forschungsschwerpunkte des IMAF Räumliche Muster und deren Struktur in der Umwelt Räumliche Muster sind in vielen naturwissenschaftlichen Disziplinen (Hydrologie, Ökologie, Geologie, Biologie, Chemie, Physik) von zentraler Bedeutung. Z.B. bestimmen die räumlichen (und zeitlichen) Muster von Bodeneigenschaften und Vegetation in ihrem Zusammenspiel mit den Mustern von Niederschlag und Strahlungsinput maßgeblich den Wasser- und Stoffhaushalt auf unterschiedlichsten Skalen und führen über Rückkopplung wiederum zu Veränderungen in Klima, Vegetation und Ökosystemen. Vom kleinräumigen Transport von Schadstoffen und von der Hochwasserentstehung bis zur Frage nach den regionalen und globalen Veränderungen von Klima, Vegetation und Landnutzung seien hier nur einige Problemkreise genannt, in denen Muster und Musterdynamik eine zentrale Stellung einnehmen. Darüber hinaus liefert die Betrachtung der zeitlichen Veränderung von räumlichen Mustern, in Ergänzung zur klassischen Erfassung dynamischer Prozesse in Form von Messungen lokaler zeitlicher Änderungen, eine völlig neue Perspektive auf Dynamik und eröffnet damit völlig neue wissenschaftliche Möglichkeiten. Aktuelle und sehr drängende Fragen innerhalb dieses Forschungsschwerpunktes sind unter anderem: • Analyse der generelle Raumstruktur von Geodaten (Variabilität, Struktur, Konnektivität); • Thematische Verbindungen verschiedener Datenebenen und Möglichkeiten für deren Assimilation; • Möglichkeiten und Grenzen des Skalenübergangs zwischen verschiedenen räumlichen Auflösungen und Informationsquellen; • Ableitung der zeitlichen Dynamik bzw. Entwicklung von großen flächenhaften Datenfeldern. Angewandte Fernerkundung Wie keine andere Technik bietet die Fernerkundung in jeglicher Form (unter anderem Satelliten, flugzeuggetragene Sensoren, Wetterradar und auch geophysikalische Methoden) umfangreiche Möglichkeiten, räumliche Muster und deren zeitliche Veränderungen zu erfassen. Allen Methoden der Fernerkundung gemein ist, dass sie nur indirekte Ergebnisse liefern. Das heißt, es besteht nur ein mittelbarer Zusammenhang zwischen dem beobachteten Signal, meist der Reflektivität oder Emissivität elektromagnetischer Strahlung in verschiedenen Spektralbereichen (optisch oder Radar), und der eigentlich interessierenden Größe, wie dem Feuchtezustand der Vegetation, der Bodenfeuchte oder Bodenrauhigkeit, der Niederschlagsintensität, dem Zustand der Schneedecke oder der Ausdehnung eines Oberflächenfilms auf Gewässern. Ein Satellitenbild enthält beispielsweise immer die spektrale Signatur des räumlichen Musters mehrerer der oben genannten Einflussgrößen, was die Extraktion oder Diskriminierung der eigentlich interessierenden Größe erschwert. Dieser „vermischte“ Charakter der Fernerkundungsdaten bietet aber auch immense Chancen. So lassen sich durch geeignete Interpretationsverfahren aus jedem mit hohem finanziellem und technischem Aufwand erstellten Satellitenbild zahlreiche und im Detail völlig unterschiedliche Fragestellungen bearbeiten. Die Extraktion der gewünschten Information aus dem Fernerkundungssignal führt mathematisch gesehen meist auf die Lösung so genannter inverser, schlecht gestellter Probleme. Somit beinhaltet die interdisziplinäre Nutzung von Fernerkundung auch ein hohes methodisches Synergiepotential. Durch die heutigen technischen Möglichkeiten zur Archivierung auch sehr umfangreicher raumbezogener Informationen ist die Bearbeitung zu jedem beliebigen Zeitpunkt nach der Aufnahme möglich – zum Beispiel bis entsprechend lange Zeitreihen und/oder geeignete Interpretationsverfahren zur Verfügung stehen. Tatsächlich dürfte der weitaus größte Teil der raumbezogenen Informationen, die in den bisher erhobenen Fernerkundungsdaten stecken, nur in Ansätzen ausgewertet sein. Einer bereits sehr hoch entwickelten technischen Dimension der Fernerkundung steht ein gewisses Defizit im Umfang ihrer Anwendung in den verschiedenen naturwissenschaftlichen Disziplinen gegenüber. Aktuelle und sehr drängende Fragen innerhalb dieses Forschungsschwerpunktes sind unter anderem: • Nutzung der räumlichen und inhaltlichen Breite von Fernerkundungsinformationen; • Verbindung mit automatisierten, u.a. geophysikalischen Methoden des „ground-truthings“; • Identifizierung der Grenzen bzgl. Repräsentanz der Daten (spektral, raum-zeitliche Auflösung); • Verbindung unterschiedlicher Methoden der Fernerkundung und der Geophysik. Dieser Beitrag illustriert die o.g. Fragestellungen anhand einiger Darstellungen aus verschiedenen wissenschaftlichen Disziplinen und erläutert 2 Beispiele zu beabsichtigten Forschungsprojekten: • Erfassung und Bedeutung von Boden-Oberflächeneigenschaften auf die Abflussbildung von Landschaften; • Phänomene des Stofftransportes in homogenen vs. heterogenen Böden. Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7021 N1 - Dokument 1: Foliensatz | Dokument 2: Abstract | Dokumente 3 und 4: Animation Interdisziplinäres Zentrum für Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006 ER - TY - JOUR A1 - Bronstert, Axel T1 - The role of infiltration conditions for storm runoff generation at the hillslope and small catchment scale Y1 - 2001 ER - TY - JOUR A1 - Bronstert, Axel T1 - The possible impacts of environmental changes on flood formation : relevant processes and model requirements Y1 - 2000 ER - TY - JOUR A1 - Bronstert, Axel T1 - Abflussbildung in der Landschaft JF - Hydrologie Y1 - 2016 SN - 978-3-8252-4513-9 SP - 143 EP - 166 PB - Haupt Verlag CY - Bern ER - TY - JOUR A1 - Bronstert, Axel A1 - Agarwal, Ankit A1 - Boessenkool, Berry A1 - Crisologo, Irene A1 - Fischer, Madlen A1 - Heistermann, Maik A1 - Koehn-Reich, Lisei A1 - Andres Lopez-Tarazon, Jose A1 - Moran, Thomas A1 - Ozturk, Ugur A1 - Reinhardt-Imjela, Christian A1 - Wendi, Dadiyorto T1 - Forensic hydro-meteorological analysis of an extreme flash flood BT - the 2016-05-29 event in Braunsbach, SW Germany JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - The flash-flood in Braunsbach in the north-eastern part of Baden-Wuerttemberg/Germany was a particularly strong and concise event which took place during the floods in southern Germany at the end of May/early June 2016. This article presents a detailed analysis of the hydro-meteorological forcing and the hydrological consequences of this event. A specific approach, the "forensic hydrological analysis" was followed in order to include and combine retrospectively a variety of data from different disciplines. Such an approach investigates the origins, mechanisms and course of such natural events if possible in a "near real time" mode, in order to follow the most recent traces of the event. The results show that it was a very rare rainfall event with extreme intensities which, in combination with catchment properties, led to extreme runoff plus severe geomorphological hazards, i.e. great debris flows, which together resulted in immense damage in this small rural town Braunsbach. It was definitely a record-breaking event and greatly exceeded existing design guidelines for extreme flood discharge for this region, i.e. by a factor of about 10. Being such a rare or even unique event, it is not reliably feasible to put it into a crisp probabilistic context. However, one can conclude that a return period clearly above 100 years can be assigned for all event components: rainfall, peak discharge and sediment transport. Due to the complex and interacting processes, no single flood cause or reason for the very high damage can be identified, since only the interplay and the cascading characteristics of those led to such an event. The roles of different human activities on the origin and/or intensification of such an extreme event are finally discussed. (C) 2018 Elsevier B.V. All rights reserved. KW - Flash flood analysis KW - Forensic disaster analysis KW - Radar rainfall data KW - Extreme discharge data KW - Extreme event Y1 - 2018 U6 - https://doi.org/10.1016/j.scitotenv.2018.02.241 SN - 0048-9697 SN - 1879-1026 VL - 630 SP - 977 EP - 991 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bronstert, Axel A1 - Bardossy, Andras T1 - Uncertainty of runoff modelling at the hillslope scale due to temporal variations of rainfall intensity Y1 - 2003 ER - TY - JOUR A1 - Bronstert, Axel A1 - Bürger, Gerhard A1 - Pfister, Angela T1 - Vorhersage und Projektion von Sturzfluten - Vorwort JF - Hydrologie und Wasserbewirtschaftung : HyWa = Hydrology and water resources management, Germany / Hrsg.: Fachverwaltungen des Bundes und der Länder T2 - Forecasting and projection of flash flood Y1 - 2021 SN - 1439-1783 SN - 2749-859X VL - 65 IS - 6 SP - 260 EP - 261 PB - Bundesanst. für Gewässerkunde, BfG CY - Koblenz ER - TY - BOOK A1 - Bronstert, Axel A1 - Carrera, Jesus A1 - Kabat, Pavel A1 - Lütkemeier, Sabine T1 - Coupled models for the hydrological cycle : integrating atmosphere, biosphere and pedosphere Y1 - 2005 SN - 3-540-22371-1 U6 - https://doi.org/10.1007/b138919 PB - Springer-Verlag Berlin Heidelberg CY - Berlin, Heidelberg ER - TY - JOUR A1 - Bronstert, Axel A1 - Creutzfeldt, Benjamin A1 - Gräff, Thomas A1 - Hajnsek, Irena A1 - Heistermann, Maik A1 - Itzerott, Sibylle A1 - Jagdhuber, Thomas A1 - Kneis, David A1 - Lueck, Erika A1 - Reusser, Dominik A1 - Zehe, Erwin T1 - Potentials and constraints of different types of soil moisture observations for flood simulations in headwater catchments JF - Natural hazards : journal of the International Society for the Prevention and Mitigation of Natural Hazards N2 - Flood generation in mountainous headwater catchments is governed by rainfall intensities, by the spatial distribution of rainfall and by the state of the catchment prior to the rainfall, e. g. by the spatial pattern of the soil moisture, groundwater conditions and possibly snow. The work presented here explores the limits and potentials of measuring soil moisture with different methods and in different scales and their potential use for flood simulation. These measurements were obtained in 2007 and 2008 within a comprehensive multi-scale experiment in the Weisseritz headwater catchment in the Ore-Mountains, Germany. The following technologies have been applied jointly thermogravimetric method, frequency domain reflectometry (FDR) sensors, spatial time domain reflectometry (STDR) cluster, ground-penetrating radar (GPR), airborne polarimetric synthetic aperture radar (polarimetric SAR) and advanced synthetic aperture radar (ASAR) based on the satellite Envisat. We present exemplary soil measurement results, with spatial scales ranging from point scale, via hillslope and field scale, to the catchment scale. Only the spatial TDR cluster was able to record continuous data. The other methods are limited to the date of over-flights (airplane and satellite) or measurement campaigns on the ground. For possible use in flood simulation, the observation of soil moisture at multiple scales has to be combined with suitable hydrological modelling, using the hydrological model WaSiM-ETH. Therefore, several simulation experiments have been conducted in order to test both the usability of the recorded soil moisture data and the suitability of a distributed hydrological model to make use of this information. The measurement results show that airborne-based and satellite-based systems in particular provide information on the near-surface spatial distribution. However, there are still a variety of limitations, such as the need for parallel ground measurements (Envisat ASAR), uncertainties in polarimetric decomposition techniques (polarimetric SAR), very limited information from remote sensing methods about vegetated surfaces and the non-availability of continuous measurements. The model experiments showed the importance of soil moisture as an initial condition for physically based flood modelling. However, the observed moisture data reflect the surface or near-surface soil moisture only. Hence, only saturated overland flow might be related to these data. Other flood generation processes influenced by catchment wetness in the subsurface such as subsurface storm flow or quick groundwater drainage cannot be assessed by these data. One has to acknowledge that, in spite of innovative measuring techniques on all spatial scales, soil moisture data for entire vegetated catchments are still today not operationally available. Therefore, observations of soil moisture should primarily be used to improve the quality of continuous, distributed hydrological catchment models that simulate the spatial distribution of moisture internally. Thus, when and where soil moisture data are available, they should be compared with their simulated equivalents in order to improve the parameter estimates and possibly the structure of the hydrological model. KW - Soil moisture KW - Remote sensing KW - Hydrological modelling KW - Flood forecasting KW - Soil moisture measurement comparison Y1 - 2012 U6 - https://doi.org/10.1007/s11069-011-9874-9 SN - 0921-030X SN - 1573-0840 VL - 60 IS - 3 SP - 879 EP - 914 PB - Springer CY - New York ER - TY - CHAP A1 - Bronstert, Axel A1 - Crisologo, Irene A1 - Heistermann, Maik A1 - Öztürk, Ugur A1 - Vogel, Kristin A1 - Wendi, Dadiyorto T1 - Flash-floods: more often, more severe, more damaging? BT - An analysis of hydro-geo-environmental conditions and anthropogenic impacts T2 - Climate change, hazards and adaptation options: handling the impacts of a changing climate N2 - In recent years, urban and rural flash floods in Europe and abroad have gained considerable attention because of their sudden occurrence, severe material damages and even danger to life of inhabitants. This contribution addresses questions about possibly changing environmental conditions which might have altered the occurrence frequencies of such events and their consequences. We analyze the following major fields of environmental changes. Altered high intensity rain storm conditions, as a consequence of regionalwarming; Possibly altered runoff generation conditions in response to high intensity rainfall events; Possibly altered runoff concentration conditions in response to the usage and management of the landscape, such as agricultural, forest practices or rural roads; Effects of engineering measures in the catchment, such as retention basins, check dams, culverts, or river and geomorphological engineering measures. We take the flash-flood in Braunsbach, SW-Germany, as an example, where a particularly concise flash flood event occurred at the end of May 2016. This extreme cascading natural event led to immense damage in this particular village. The event is retrospectively analyzed with regard to meteorology, hydrology, geomorphology and damage to obtain a quantitative assessment of the processes and their development. The results show that it was a very rare rainfall event with extreme intensities, which in combination with catchment properties and altered environmental conditions led to extreme runoff, extreme debris flow and immense damages. Due to the complex and interacting processes, no single flood cause can be identified, since only the interplay of those led to such an event. We have shown that environmental changes are important, but-at least for this case study-even natural weather and hydrologic conditions would still have resulted in an extreme flash flood event. KW - Flash flood KW - Climate change KW - Extreme rainfall KW - Anthropogenic impacts Y1 - 2020 SN - 978-3-030-37425-9 SN - 978-3-030-37424-2 U6 - https://doi.org/10.1007/978-3-030-37425-9_12 SN - 1610-2010 SP - 225 EP - 244 PB - Springer CY - Cham ER - TY - JOUR A1 - Bronstert, Axel A1 - de Araujo, Jose-Carlos A1 - Batalla Villanueva, Ramon J. A1 - Costa, Alexandre Cunha A1 - Delgado, José Miguel Martins A1 - Francke, Till A1 - Förster, Saskia A1 - Guentner, Andreas A1 - Lopez-Tarazon, José Andrés A1 - Mamede, George Leite A1 - Medeiros, Pedro Henrique Augusto A1 - Mueller, Eva A1 - Vericat, Damia T1 - Process-based modelling of erosion, sediment transport and reservoir siltation in mesoscale semi-arid catchments JF - Journal of soils and sediments : protection, risk assessment and remediation N2 - To support scientifically sound water management in dryland environments a modelling system has been developed for the quantitative assessment of water and sediment fluxes in catchments, transport in the river system, and retention in reservoirs. The spatial scale of interest is the mesoscale because this is the scale most relevant for management of water and land resources. This modelling system comprises process-oriented hydrological components tailored for dryland characteristics coupled with components comprising hillslope erosion, sediment transport and reservoir deposition processes. The spatial discretization is hierarchically designed according to a multi-scale concept to account for particular relevant process scales. The non-linear and partly intermittent run-off generation and sediment dynamics are dealt with by accounting for connectivity phenomena at the intersections of landscape compartments. The modelling system has been developed by means of data from nested research catchments in NE-Spain and in NE-Brazil. In the semi-arid NE of Brazil sediment retention along the topography is the main process for sediment retention at all scales, i.e. the sediment delivery is transport limited. This kind of deposition retains roughly 50 to 60 % of eroded sediment, maintaining a similar deposition proportion in all spatial scales investigated. On the other hand, the sediment retained in reservoirs is clearly related to the scale, increasing with catchment area. With increasing area, there are more reservoirs, increasing the possibility of deposition. Furthermore, the area increase also promotes an increase in flow volume, favouring the construction of larger reservoirs, which generally overflow less frequently and retain higher sediment fractions. The second example comprises a highly dynamic Mediterranean catchment in NE-Spain with nested sub-catchments and reveals the full dynamics of hydrological, erosion and deposition features. The run-off modelling performed well with only some overestimation during low-flow periods due to the neglect of water losses along the river. The simulated peaks in sediment flux are reproduced well, while low-flow sediment transport is less well captured, due to the disregard of sediment remobilization in the riverbed during low flow. This combined observation and modelling study deepened the understanding of hydro-sedimentological systems characterized by flashy run-off generation and by erosion and sediment transport pulses through the different landscape compartments. The connectivity between the different landscape compartments plays a very relevant role, regarding both the total mass of water and sediment transport and the transport time through the catchment. KW - Connectivity KW - Deposition KW - Erosion KW - Modelling KW - Sediment transfer KW - Semi-arid Y1 - 2014 U6 - https://doi.org/10.1007/s11368-014-0994-1 SN - 1439-0108 SN - 1614-7480 VL - 14 IS - 12 SP - 2001 EP - 2018 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Bronstert, Axel A1 - Engel, H. T1 - Veränderung der Abflüsse JF - Warnsignal Klima - genug Wasser für alle? : wissenschaftliche Fakten Y1 - 2005 SN - 978-3-9809668-0-1 SP - 175 EP - 181 PB - Wissenschaftliche Auswertungen CY - Hamburg ER - TY - JOUR A1 - Bronstert, Axel A1 - Fritsch, Uta A1 - Katzenmaier, Daniel A1 - Bismuth, Christine T1 - Quantification of the influence of the land-surface and river training on flood discharge of the Rhine Basin Y1 - 2000 ER - TY - JOUR A1 - Bronstert, Axel A1 - Fritsch, Uta A1 - Leonhardt, H. A1 - Niehoff, Daniel T1 - Quantifizierung des Einflusses von Landnutzungs- und Klimaänderungen auf die Hochwasserentstehung am Beispiel ausgewählter Flussgebiete Y1 - 2001 ER - TY - JOUR A1 - Bronstert, Axel A1 - Güntner, Andreas T1 - A large-scale hydrological model for the semi-arid environment of north-eastern Brazil Y1 - 2000 ER - TY - BOOK A1 - Bronstert, Axel A1 - Jürgens, M. T1 - Modellsystem Hillflow : physikalisch begründete und flächendetalierte Modellierung der Abflußbildung und der Bodenwasserdynamik von ebenen Standorten, Hängen und Kleineinzugsgebieten ; Modelldokumentation und Benutzerhandbuch, Version 1.0 Y1 - 1994 PB - Inst. für Hydrologie und Wasserwirtschaft, Universität Karlsruhe CY - Karlsruhe ER - TY - JOUR A1 - Bronstert, Axel A1 - Katzenmaier, Daniel A1 - Fritsch, Uta T1 - Hochwasserproblematik und der Zusammenhang mit Landnutzungs- und Klimaänderungen Y1 - 2000 ER - TY - JOUR A1 - Bronstert, Axel A1 - Kneis, David A1 - Bogena, Heye R. T1 - Interactions and feedbacks in hydrological change : relevance and possibilities of modelling N2 - The hydrological cycle is a dynamic system by its nature, but sometimes accelerated through anthropogenic activity. A "hydrological change" (i.e. a water cycle that is significantly changing over a longer period of time) can be very different in character, depending on the specific natural conditions and the underlying spatial and temporal scales. Such changes may affect the availability and quality of water as essential pre-requisites for human development and ecosystem stability. Hydrological extremes, such as floods and droughts, may also be affected, what is also vitally important, because of their profound economic and societal impacts. Anthropogenically induced hydrological change can be attributed to three main external causes: first, the Earth's climate is changing significantly and thus directly affecting the terrestrial hydro-systems via the exchange of energy and heat. The second major issue is the land cover and its management that has been modified fundamentally by conversion of land for agriculture, forestry, and other purposes such as industrialisation and urbanisation. Finally, water resources are being used more than ever for human development, especially for agriculture, industrial activities, and navigation. If the regional terrestrial hydrological cycle is changing and counter-measures are desirable, it is from a scientific perspective mandatory to understand the extent and nature of such changes, and, especially, to identify their possible anthropogenic origin. There are, however, fundamental gaps in our knowledge, in particular about the role of feedbacks between individual processes and compartments of the hydrological cycle or the relevance of the interactions with other sub-systems of our planet, such as the atmosphere or the vegetation. This paper mentions several examples of hydrological change and discusses their identification, interaction processes, and feedback mechanisms, along with modelling issues. The possibilities and limitations of modelling are demonstrated by means of two studies: one from the river-lake system on the Middle-Havel River and one from the catchment of the Wahnbach Reservoir. The applied model systems comprise a series of consecutively coupled individual models (so-called one-way-coupling). Model systems that are able reflect feedback effects (two-way- coupling) are still in the development stage. It became clear that the applied model systems were able to reproduce the observed dynamics of the hydrological cycle and of selected matter fluxes. However, one has to be aware that the simulated time periods and scenarios represent rather moderately transient conditions, what is the justification why the one-way-coupling seems to be applicable. Furthermore, it was shown that the modelling uncertainty is considerably large. Nevertheless, this uncertainty can be distinguished from effects of changed internal systems dynamics or from changed boundary conditions, what is a basis for the usability of such model systems for prognostic purposes. Y1 - 2009 SN - 1439-1783 ER - TY - JOUR A1 - Bronstert, Axel A1 - Kneis, David A1 - Bogena, Heye R. T1 - Interaktionen und Rückkopplungen beim hydrologischen Wandel : Relevanz und Möglichkeiten der Modellierung Y1 - 2009 SN - 1439-1783 ER - TY - JOUR A1 - Bronstert, Axel A1 - Krol, Marten S. A1 - Jaeger, Annekathrin T1 - WAVES : water availability, vulnerability of ecosystems and society in northeast brazil ; an overview of the interdisciplinary project and integrated modelling Y1 - 2000 ER - TY - JOUR A1 - Bronstert, Axel A1 - Krol, Marten S. A1 - Jaeger, Annekathrin A1 - Güntner, Andreas T1 - Integrated modelling of climate, water, soil, agricultural and socio-economic processes : a general introduction to the methodology and some exemplary results from the semi-arid Northeast of Brazil Y1 - 2002 ER - TY - JOUR A1 - Bronstert, Axel A1 - Krol, Marten S. A1 - Jaeger, Annekathrin A1 - Güntner, Andreas A1 - Hauschild, M. A1 - Döll, P. T1 - Integrated modelling of water availability an management in the semi-arid Notheast of Brazil Y1 - 2000 ER - TY - JOUR A1 - Bronstert, Axel A1 - Kundzewicz, Zbigniew W. A1 - Menzel, Lucas T1 - Achievements and future needs towards improved flood protection in the Oder river basin : results of the EU- expert meeting on the Oder flood in Summer '97 Y1 - 2000 SN - 0-7923-6451-1, 0-7923-6452-X ER - TY - JOUR A1 - Bronstert, Axel A1 - Köhler, Birgit T1 - Simulation der Einflüsse anthropogener Klimaänderungen auf die Hochwasserentstehung : eine Fallstudie in einem kleinen ländlichen Einzugsgebiet im Ostharz Y1 - 2000 ER - TY - JOUR A1 - Bronstert, Axel A1 - Lahmer, Werner T1 - Bewirtschaftungsmöglichkeiten im Einzugsgebiet der Havel Y1 - 2000 ER - TY - JOUR A1 - Bronstert, Axel A1 - Lange, Jens T1 - Hydrologie von Trockenregionen JF - Hydrologie Y1 - SN - 978-3-8252-4513-9 SP - 299 EP - 312 PB - Haupt Verlag CY - Bern ER - TY - JOUR A1 - Bronstert, Axel A1 - Menzel, Lucas T1 - Advances in Flood Research Y1 - 2002 ER - TY - JOUR A1 - Bronstert, Axel A1 - Menzel, Lucas A1 - Middelkoop, H. A1 - de Roo, A. P. A1 - Van Beek, E. T1 - River basin research and management : integrated modelling and investigation of land-use impacts on the hydrological cycle Y1 - 2001 ER - TY - JOUR A1 - Bronstert, Axel A1 - Niehoff, Daniel A1 - Bürger, Gerd T1 - Effects of climate and land-use change on storm runoff generation : present knowledge and modelling capabilities Y1 - 2002 ER - TY - BOOK A1 - Bronstert, Axel A1 - Seiert, S. A1 - Oberholzer, Gustav T1 - Maßnahmen der Flurbereinigung und ihre Wirkung auf das Abflußverhalten ländlicher Gebiete : gemeinsamer Bericht des Instituts für Hydrologie und Wasserwirtschaft, Universität Karlsruhe, und des Instituts für Liegenschaftswesen, Planung und Bodenordnung, Universität der Bundeswehr, Neubiberg bei München T3 - Flurneuordnung und Landentwicklung Baden Württemberg Y1 - 1993 VL - 3 PB - LfU CY - Karlsruhe ER - TY - BOOK A1 - Bronstert, Axel A1 - Thieken, Annegret A1 - Merz, Bruno A1 - Rode, Michael A1 - Menzel, Lucas T1 - Wasser- und Stofftransport in heterogenen Einzugsgebieten : Beiträge zum Tag der Hydrologie 2004, 22./ 23. März 2004 in Potsdam ; Bd. 1 Vorträge Y1 - 2004 SN - 3-937758-18-6 VL - 5 PB - ATV-DVWK CY - Hennef (Sieg) ER - TY - BOOK A1 - Bronstert, Axel A1 - Thieken, Annegret A1 - Merz, Bruno A1 - Rode, Michael A1 - Menzel, Lucas T1 - Wasser- und Stofftransport in heterogenen Einzugsgebieten : Beiträge zum Tag der Hydrologie 2004, 22./ 23. März 2004 in Potsdam ; Bd. 2 Poster Y1 - 2004 SN - 3-937758-18-6 PB - ATV-DVWK CY - Hennef ER - TY - JOUR A1 - Brosinsky, Arlena A1 - Förster, Saskia A1 - Segl, Karl A1 - Lopez-Tarazon, José Andrés A1 - Pique, Gemma A1 - Bronstert, Axel T1 - Spectral fingerprinting: characterizing suspended sediment sources by the use of VNIR-SWIR spectral information JF - Journal of soils and sediments : protection, risk assessment and remediation N2 - Knowledge of sediment sources is a prerequisite for sustainable management practices and may furthermore improve our understanding of water and sediment fluxes. Investigations have shown that a number of characteristic soil properties can be used as "fingerprints" to trace back the sources of river sediments. Spectral properties have recently been successfully used as such characteristics in fingerprinting studies. Despite being less labour-intensive than geochemical analyses, for example, spectroscopy allows measurements of small amounts of sediment material (> 60 mg), thus enabling inexpensive analyses even of intra-event variability. The focus of this study is on the examination of spectral properties of fluvial sediment samples to detect changes in source contributions, both between and within individual flood events. Sediment samples from the following three different origins were collected in the Isabena catchment (445 km(2)) in the central Spanish Pyrenees: (1) soil samples from the main potential source areas, (2) stored fine sediment from the channel bed once each season in 2011 and (3) suspended sediment samples during four flood events in autumn 2011 and spring 2012 at the catchment outlet as well as at several subcatchment outlets. All samples were dried and measured for spectral properties in the laboratory using an ASD spectroradiometer. Colour parameters and physically based features (e.g. organic carbon, iron oxide and clay content) were calculated from the spectra. Principal component analyses (PCA) were applied to all three types of samples to determine natural clustering of samples, and a mixing model was applied to determine source contributions. We found that fine sediment stored in the river bed seems to be mainly influenced by grain size and seasonal variability, while sampling location-and thus the effect of individual tributaries or subcatchments-seem to be of minor importance. Suspended sediment sources were found to vary between, as well as within, flood events; although badlands were always the major source. Forests and grasslands contributed little (< 10 %), and other sources (not further determinable) contributed up to 40 %. The analyses further suggested that sediment sources differ among the subcatchments and that subcatchments comprising relatively large proportions of badlands contributed most to the four flood events analyzed. Spectral fingerprints provide a rapid and cost-efficient alternative to conventional fingerprint properties. However, a combination of spectral and conventional fingerprint properties could potentially permit discrimination of a larger number of source types. KW - Isabena river KW - Mixing models KW - Northeast Spain KW - Sediment fingerprinting KW - Spectroscopy KW - Suspended sediment Y1 - 2014 U6 - https://doi.org/10.1007/s11368-014-0927-z SN - 1439-0108 SN - 1614-7480 VL - 14 IS - 12 SP - 1965 EP - 1981 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Bárdossy, Andras A1 - Bronstert, Axel A1 - Buiteveld, Hendrik A1 - Disse, Markus A1 - Fritsch, Uta A1 - Katzenmaier, Daniel A1 - Lammersen, Rita T1 - Influence of the land surface and river training on flood conditions in the Rhine basin Y1 - 2000 ER - TY - JOUR A1 - Bürger, Gerd A1 - Heistermann, Maik A1 - Bronstert, Axel T1 - Towards subdaily rainfall disaggregation via Clausius-Clapeyron JF - Journal of hydrometeorology N2 - Two lines of research are combined in this study: first, the development of tools for the temporal disaggregation of precipitation, and second, some newer results on the exponential scaling of heavy short-term precipitation with temperature, roughly following the Clausius-Clapeyron (CC) relation. Having no extra temperature dependence, the traditional disaggregation schemes are shown to lack the crucial CC-type temperature dependence. The authors introduce a proof-of-concept adjustment of an existing disaggregation tool, the multiplicative cascade model of Olsson, and show that, in principal, it is possible to include temperature dependence in the disaggregation step, resulting in a fairly realistic temperature dependence of the CC type. They conclude by outlining the main calibration steps necessary to develop a full-fledged CC disaggregation scheme and discuss possible applications. Y1 - 2014 U6 - https://doi.org/10.1175/JHM-D-13-0161.1 SN - 1525-755X SN - 1525-7541 VL - 15 IS - 3 SP - 1303 EP - 1311 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Bürger, Gerd A1 - Pfister, A. A1 - Bronstert, Axel T1 - Temperature-Driven Rise in Extreme Sub-Hourly Rainfall JF - Journal of climate N2 - Estimates of present and future extreme sub-hourly rainfall are derived from a daily spatial followed by a sub-daily temporal downscaling, the latter of which incorporates a novel, and crucial, temperature sensitivity. Specifically, daily global climate fields are spatially downscaled to local temperature T and precipitation P, which are then disaggregated to a temporal resolution of 10 min using a multiplicative random cascade model. The scheme is calibrated and validated with a group of 21 station records of 10-min resolution in Germany. The cascade model is used in the classical (denoted as MC) and in the new T-sensitive (MC+) version, which respects local Clausius-Clapeyron (CC) effects such as CC scaling. Extreme P is positively biased in both MC versions. Observed T sensitivity is absent in MC but well reproduced by MC+. Long-term positive trends in extreme sub-hourly P are generally more pronounced and more significant in MC+ than in MC. In units of 10-min rainfall, observed centennial trends in annual exceedance counts (EC) of P > 5 mm are +29% and in 3-yr return levels (RL) +27%. For the RCP4.5-simulated future, higher extremes are projected in both versions MC and MC+: per century, EC increases by 30% for MC and by 83% for MC+; the RL rises by 14% for MC and by 33% for MC+. Because the projected daily P trends are negligible, the sub-daily signal is mainly driven by local temperature. KW - Extreme events KW - Rainfall KW - Climate change KW - Statistical techniques KW - Time series KW - Stochastic models Y1 - 2019 U6 - https://doi.org/10.1175/JCLI-D-19-0136.1 SN - 0894-8755 SN - 1520-0442 VL - 32 IS - 22 SP - 7597 EP - 7609 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Bürger, Gerd A1 - Pfister, Angela A1 - Bronstert, Axel T1 - Zunehmende Starkregenintensitäten als Folge der Klimaerwärmung T1 - Increasing intensity of heavy rainfall caused by global warming BT - Datenanalyse und Zukunftsprojektion BT - data analysis and future projections JF - Hydrologie und Wasserbewirtschaftung : HyWa = Hydrology and water resources management, Germany / Hrsg.: Fachverwaltungen des Bundes und der Länder N2 - Extreme rainfall events of short duration in the range of hours and below are increasingly coming into focus due to the resulting damage from flash floods and also due to their possible intensification by anthropogenic climate change. The current study investigates possible trends in heavy rainfall intensities for stations from Swiss and Austrian alpine regions as well as for the Emscher-Lippe area in North Rhine-Westphalia on the basis of partly very long (> 50 years) and temporally highly resolved time series (<= 15 minutes). It becomes clear that there is an increase in extreme rainfall intensities, which can be well explained by the warming of the regional climate: the analyses of long-term trends in exceedance counts and return levels show considerable uncertainties, but are in the order of 30 % increase per century. In addition, based on an "average" climate simulation for the 21st century, this paper describes a projection for extreme precipitation intensities at very high temporal resolution for a number of stations in the Emscher-Lippe region. A coupled spatial and temporal "downscaling" is applied, the key innovation of which is the consideration of the dependence of local rainfall intensity on air temperature. This procedure involves two steps: First, large-scale climate fields at daily resolution are statistically linked by regression to station temperature and precipitation values (spatial downscaling). In the second step, these station values are disaggregated to a temporal resolution of 10 minutes using a so-called multiplicative stochastic cascade model (MC) (temporal downscaling). The novel, temperature-sensitive variant additionally considers air temperature as an explanatory variable for precipitation intensities. Thus, the higher atmospheric moisture content expected with warming, which results from the Clausius-Clapeyron (CC) relationship, is included in the temporal downscaling.
For the statistical evaluation of the extreme short-term precipitation, the upper quantiles (99.9 %), exceedance counts (P > 5mm), and 3-yr return levels of the <= 15-min duration step has been used. Only by adding temperature is the observed temperature observed of the extreme quantiles ("CC scaling") well reproduced. When comparing observed data and present-day simulations of the model cascade, the temperature-sensitive procedure shows consistent results. Compared to trends in recent decades, similar or even larger increases in extreme intensities are projected for the future. This is remarkable in that these appear to be driven primarily by local temperature, as the projected trends in daily precipitation values are negligible for this region. N2 - Extreme Regenereignisse von kurzer Dauer im Bereich von Stunden und darunter rücken aufgrund der dadurch bedingten Schäden durch Sturzfluten und auch wegen ihrer möglichen Intensivierungen durch den anthropogenen Klimawandel immer stärker in den Fokus. Die vorliegende Studie untersucht auf Basis von teilweise sehr langen (> 50 Jahre) und zeitlich hochaufgelösten Zeitreihen (≤ 15 Minuten) mögliche Trends in Starkregenintensitäten für Stationen aus schweizerischen und österreichischen Alpenregionen sowie für das Emscher-Lippe-Gebiet in Nordrhein-Westfalen. Es wird deutlich, dass es eine Zunahme der extremen Niederschlagsintensitäten gibt, welche gut durch die Erwärmung des regionalen Klimas erklärt werden kann: Die Analysen langfristiger Trends der Überschreitungssummen und Wiederkehrniveaus zeigen zwar erhebliche Unsicherheiten, lassen jedoch eine Zunahme in einer Größenordnung von 30 % pro Jahrhundert erkennen. Zudem wird in diesem Beitrag, basierend auf einer "mittleren" Klimasimulation für das 21. Jahrhundert, für ausgewählte Stationen der Emscher-Lippe-Region eine Projektion für extreme Niederschlagsintensitäten in sehr hoher zeitlicher Auflösung beschrieben. Dabei wird ein gekoppeltes räumliches und zeitliches "Downscaling" angewendet, dessen entscheidende Neuerung die Berücksichtigung der Abhängigkeit der lokalen Regenintensität von der Lufttemperatur ist. Dieses Verfahren beinhaltet zwei Schritte: Zuerst werden großräumige Klimafelder in täglicher Auflösung durch Regression mit den Temperatur- und Niederschlagswerten der Stationen statistisch verbunden (räumliches Downscaling). Im zweiten Schritt werden dann diese Stationswerte mithilfe eines sogenannten multiplikativen stochastischen Kaskadenmodells (MC) auf eine zeitliche Auflösung von 10 Minuten disaggregiert (zeitliches Downscaling). Die neuartige, temperatursensitive Variante berücksichtigt zusätzlich die Lufttemperatur als erklärende Variable für die Niederschlagsintensitäten. Dadurch wird der mit einer Erwärmung zu erwartende höhere atmosphärische Feuchtegehalt, welcher sich aus der Clausius-Clapeyron-Beziehung (CC) ergibt, mit in das zeitliche Downscaling einbezogen. Für die statistische Auswertung der extremen kurzfristigen Niederschläge wurden die oberen Quantile (99,9 %), Überschreitungssummen (ÜS, P > 5 mm) und 3-jährliche Wiederkehrniveaus (WN) einer Dauerstufe von ≤ 15-Minuten betrachtet. Diese Auswahl erlaubt die gleichzeitige Analyse sowohl von Extremwertstatistiken als auch von deren langfristigen Trends; leichte Abweichungen von dieser Wahl beeinflussen die Hauptergebnisse nur unwesentlich. Nur durch die Hinzunahme der Temperatur wird die beobachtete Temperaturabhängigkeit der extremen Quantile (CC-Scaling) gut wiedergegeben. Bei Vergleich von Beobachtungsdaten und Gegenwartssimulationen der Modellkaskade zeigt das temperatursensitive Verfahren konsistente Ergebnisse. Im Vergleich zu den Entwicklungen der letzten Jahrzehnte werden für die Zukunft ähnliche oder sogar noch stärkere Anstiege der extremen Niederschlagsintensitäten projiziert. Dies ist insofern bemerkenswert, als diese anscheinend hauptsächlich durch die örtliche Temperatur bestimmt werden, denn die projizierten Trends der Niederschlags-Tageswerte sind für diese Region vernachlässigbar. KW - heavy rainfall KW - short duration KW - global warming KW - Clausius-Clapeyron KW - equation KW - precipitation intensity KW - multiplicative cascade model KW - Strakregen KW - kurzfristige Dauerstufe KW - Klimawandel KW - Clausius-Clapeyron-Gleichung KW - Niederschlagsintensitäten KW - Multiplikatives Kaskadenmodel Y1 - 2021 U6 - https://doi.org/10.5675/HyWa_2021.6_1 SN - 1439-1783 SN - 2749-859X VL - 65 IS - 6 SP - 262 EP - 271 PB - Bundesanst. für Gewässerkunde CY - Koblenz ER - TY - JOUR A1 - Conradt, Tobias A1 - Wechsung, F. A1 - Bronstert, Axel T1 - Three perceptions of the evapotranspiration landscape comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances JF - Hydrology and earth system sciences : HESS N2 - A problem encountered by many distributed hydrological modelling studies is high simulation errors at interior gauges when the model is only globally calibrated at the outlet. We simulated river runoff in the Elbe River basin in central Europe (148 268 km(2)) with the semi-distributed eco-hydrological model SWIM (Soil and Water Integrated Model). While global parameter optimisation led to Nash-Sutcliffe efficiencies of 0.9 at the main outlet gauge, comparisons with measured runoff series at interior points revealed large deviations. Therefore, we compared three different strategies for deriving sub-basin evapotranspiration: (1) modelled by SWIM without any spatial calibration, (2) derived from remotely sensed surface temperatures, and (3) calculated from long-term precipitation and discharge data. The results show certain consistencies between the modelled and the remote sensing based evapotranspiration rates, but there seems to be no correlation between remote sensing and water balance based estimations. Subsequent analyses for single sub-basins identify amongst others input weather data and systematic error amplification in inter-gauge discharge calculations as sources of uncertainty. The results encourage careful utilisation of different data sources for enhancements in distributed hydrological modelling. Y1 - 2013 U6 - https://doi.org/10.5194/hess-17-2947-2013 SN - 1027-5606 VL - 17 IS - 7 SP - 2947 EP - 2966 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Costa, A. C. A1 - Bronstert, Axel A1 - de Araujo, Jose Carlos T1 - A channel transmission losses model for different dryland rivers JF - Hydrology and earth system sciences : HESS N2 - Channel transmission losses in drylands take place normally in extensive alluvial channels or streambeds underlain by fractured rocks. They can play an important role in streamflow rates, groundwater recharge, freshwater supply and channel-associated ecosystems. We aim to develop a process-oriented, semi-distributed channel transmission losses model, using process formulations which are suitable for data-scarce dryland environments and applicable to both hydraulically disconnected losing streams and hydraulically connected losing(/gaining) streams. This approach should be able to cover a large variation in climate and hydro-geologic controls, which are typically found in dryland regions of the Earth. Our model was first evaluated for a losing/gaining, hydraulically connected 30 km reach of the Middle Jaguaribe River (MJR), Ceara, Brazil, which drains a catchment area of 20 000 km(2). Secondly, we applied it to a small losing, hydraulically disconnected 1.5 km channel reach in the Walnut Gulch Experimental Watershed (WGEW), Arizona, USA. The model was able to predict reliably the streamflow volume and peak for both case studies without using any parameter calibration procedure. We have shown that the evaluation of the hypotheses on the dominant hydrological processes was fundamental for reducing structural model uncertainties and improving the streamflow prediction. For instance, in the case of the large river reach (MJR), it was shown that both lateral stream-aquifer water fluxes and groundwater flow in the underlying alluvium parallel to the river course are necessary to predict streamflow volume and channel transmission losses, the former process being more relevant than the latter. Regarding model uncertainty, it was shown that the approaches, which were applied for the unsaturated zone processes (highly nonlinear with elaborate numerical solutions), are much more sensitive to parameter variability than those approaches which were used for the saturated zone (mathematically simple water budgeting in aquifer columns, including backwater effects). In case of the MJR-application, we have seen that structural uncertainties due to the limited knowledge of the subsurface saturated system interactions (i.e. groundwater coupling with channel water; possible groundwater flow parallel to the river) were more relevant than those related to the subsurface parameter variability. In case of the WEGW application we have seen that the non-linearity involved in the unsaturated flow processes in disconnected dryland river systems (controlled by the unsaturated zone) generally contain far more model uncertainties than do connected systems controlled by the saturated flow. Therefore, the degree of aridity of a dryland river may be an indicator of potential model uncertainty and subsequent attainable predictability of the system. Y1 - 2012 U6 - https://doi.org/10.5194/hess-16-1111-2012 SN - 1027-5606 VL - 16 IS - 4 SP - 1111 EP - 1135 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Costa, Alexandre Cunha A1 - Bronstert, Axel A1 - Kneis, David T1 - Probabilistic flood forecasting for a mountainous headwater catchment using a nonparametric stochastic dynamic approach JF - Hydrological sciences journal = Journal des sciences hydrologiques N2 - Hydrological models are commonly used to perform real-time runoff forecasting for flood warning. Their application requires catchment characteristics and precipitation series that are not always available. An alternative approach is nonparametric modelling based only on runoff series. However, the following questions arise: Can nonparametric models show reliable forecasting? Can they perform as reliably as hydrological models? We performed probabilistic forecasting one, two and three hours ahead for a runoff series, with the aim of ascribing a probability density function to predicted discharge using time series analysis based on stochastic dynamics theory. The derived dynamic terms were compared to a hydrological model, LARSIM. Our procedure was able to forecast within 95% confidence interval 1-, 2- and 3-h ahead discharge probability functions with about 1.40 m(3)/s of range and relative errors (%) in the range [-30; 30]. The LARSIM model and the best nonparametric approaches gave similar results, but the range of relative errors was larger for the nonparametric approaches. KW - streamflow probabilistic forecasting KW - time series analysis KW - stochastic dynamical systems KW - parametric and nonparametric comparison Y1 - 2012 U6 - https://doi.org/10.1080/02626667.2011.637043 SN - 0262-6667 VL - 57 IS - 1 SP - 10 EP - 25 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Costa, Alexandre Cunha A1 - Förster, Saskia A1 - de Araujo, Jose Carlos A1 - Bronstert, Axel T1 - Analysis of channel transmission losses in a dryland river reach in north-eastern Brazil using streamflow series, groundwater level series and multi-temporal satellite data JF - Hydrological processes N2 - Scarcity of hydrological data, especially streamflow discharge and groundwater level series, restricts the understanding of channel transmission losses (TL) in drylands. Furthermore, the lack of information on spatial river dynamics encompasses high uncertainty on TL analysis in large rivers. The objective of this study was to combine the information from streamflow and groundwater level series with multi-temporal satellite data to derive a hydrological concept of TL for a reach of the Middle Jaguaribe River (MJR) in semi-arid north-eastern Brazil. Based on this analysis, we proposed strategies for its modelling and simulation. TL take place in an alluvium, where river and groundwater can be considered to be hydraulically connected. Most losses certainly infiltrated only through streambed and levees and not through the flood plains, as could be shown by satellite image analysis. TL events whose input river flows were smaller than a threshold did not reach the outlet of the MJR. TL events whose input flows were higher than this threshold reached the outlet losing on average 30% of their input. During the dry seasons (DS) and at the beginning of rainy seasons (DS/BRS), no river flow is expected for pre-events, and events have vertical infiltration into the alluvium. At the middle and the end of the rainy seasons (MRS/ERS), river flow sustained by base flow occurs before/after events, and lateral infiltration into the alluvium plays a major role. Thus, the MJR shifts from being a losing river at DS/BRS to become a losing/gaining (mostly losing) river at MRS/ERS. A model of this system has to include the coupling of river and groundwater flow processes linked by a leakage approach. KW - channel transmission losses KW - multi-temporal RapidEye satellite data KW - semi-arid hydrology KW - north-eastern Brazil KW - dryland rivers KW - riveraquifer interaction Y1 - 2013 U6 - https://doi.org/10.1002/hyp.9243 SN - 1099-1085 VL - 27 IS - 7 SP - 1046 EP - 1060 PB - Wiley-Blackwell CY - Hoboken ER - TY - INPR A1 - de Araujo, Jose Carlos A1 - Batalla Villanueva, Ramon J. A1 - Bronstert, Axel T1 - Special issue: analysis and modelling of sediment transfer in Mediterranean river basins T2 - Journal of soils and sediments : protection, risk assessment and remediation Y1 - 2014 U6 - https://doi.org/10.1007/s11368-014-1000-7 SN - 1439-0108 SN - 1614-7480 VL - 14 IS - 12 SP - 1905 EP - 1908 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - de Araujo, Jose Carlos A1 - Bronstert, Axel T1 - A method to assess hydrological drought in semi-arid environments and its application to the Jaguaribe River basin, Brazil JF - Water International N2 - This manuscript proposes a method to assess hydrological drought in semi-arid environments under high impoundment rate and applies it to the semi-arid Jaguaribe River basin in Brazil. It analyzes droughts (1) in the largest reservoir systems; (2) in the Upper Basin, considering 4744 reservoirs, 800 wells and almost 18,000 cisterns; and (3) in reservoirs of different sizes during multiyear droughts. Results show that the water demand is constrained in the basin; hydrological and meteorological droughts are often out of phase; there is a negative correlation between storage level and drought severity; and the small systems cannot cope with long-term droughts. KW - Reservoirs KW - Brazil KW - multiyear drought KW - water management KW - impoundment rate KW - water demand Y1 - 2016 U6 - https://doi.org/10.1080/02508060.2015.1113077 SN - 0250-8060 SN - 1941-1707 VL - 41 SP - 213 EP - 230 PB - Wiley-Blackwell CY - Abingdon ER - TY - JOUR A1 - De Araujo, Josè Carlos A1 - Güntner, Andreas A1 - Bronstert, Axel T1 - Loss of reservoir volume by sediment deposition and its impact on water availability in semiarid Brazil N2 - A methodology is presented to assess the impact of reservoir silting oil water availability for semiarid environments, applied to seven representative watersheds in the state of Ceara, Brazil. Water yield is computed using stochastic modelling for several reliability levels and water yield reduction is quantified for the focus areas. The yield-volume elasticity concept, which indicates the relative yield reduction in terms of relative storage capacity of the reservoirs, is presented and applied. Results chow that storage capacity was reduced by 0.2% year(-1) due to silting, that the risk of water shortage almost doubled in less than 50 years for the most critical reservoir, and that reduction of storage capacity had three times more impact oil yield reduction than the increase in evaporation. Average 90% reliable yield-volume elasticity was 0.8, which means that the global water yield (Q(90)) in Ceara is expected to diminish yearly by 388 L s(-1) due to reservoir silting Y1 - 2006 UR - http://www.atypon-link.com/IAHS/loi/hysj U6 - https://doi.org/10.1623/hysj.51.1.157 SN - 0262-6667 ER - TY - JOUR A1 - Didovets, Iulii A1 - Krysanova, Valentina A1 - Bürger, Gerd A1 - Snizhko, Sergiy A1 - Balabukh, Vira A1 - Bronstert, Axel T1 - Climate change impact on regional floods in the Carpathian region JF - Journal of hydrology : Regional studies N2 - Study region: Tisza and Prut catchments, originating on the slopes of the Carpathian mountains. Study focus: The study reported here investigates (i) climate change impacts on flood risk in the region, and (ii) uncertainty related to hydrological modelling, downscaling techniques and climate projections. The climate projections used in the study were derived from five GCMs, downscaled either dynamically with RCMs or with the statistical downscaling model XDS. The resulting climate change scenarios were applied to drive the eco-hydrological model SWIM, which was calibrated and validated for the catchments in advance using observed climate and hydrological data. The changes in the 30-year flood hazards and 98 and 95 percentiles of discharge were evaluated for the far future period (2071-2100) in comparison with the reference period (1981-2010). New hydrological insights for the region: The majority of model outputs under RCP 4.5 show a small to strong increase of the 30-year flood level in the Tisza ranging from 4.5% to 62%, and moderate increase in the Prut ranging from 11% to 22%. The impact results under RCP 8.5 are more uncertain with changes in both directions due to high uncertainties in GCM-RCM climate projections, downscaling methods and the low density of available climate stations. KW - Climate change impact KW - Floods KW - Hydrological modelling KW - SWIM KW - Tisza KW - Prut KW - Carpathians KW - Ukraine Y1 - 2019 U6 - https://doi.org/10.1016/j.ejrh.2019.01.002 SN - 2214-5818 VL - 22 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Didovets, Iulii A1 - Lobanova, Anastasia A1 - Bronstert, Axel A1 - Snizhko, Sergiy A1 - Maule, Cathrine Fox A1 - Krysanova, Valentina T1 - Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling JF - Water N2 - The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, UpperWestern Bug, and Samara) characteristic for different geographical zones. The catchment scale watershed model—Soil and Water Integrated Model (SWIM)—was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model) coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways) 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring. KW - Ukraine KW - climate change impact KW - river discharge KW - Samara KW - Teteriv KW - Western Bug KW - runoff KW - SWIM KW - IMPRESSIONS Y1 - 2017 U6 - https://doi.org/10.3390/w9030204 SN - 2073-4441 VL - 9 IS - 3 PB - MDPI CY - Basel ER - TY - GEN A1 - Didovets, Iulii A1 - Lobanova, Anastasia A1 - Bronstert, Axel A1 - Snizhko, Sergiy A1 - Maule, Cathrine Fox A1 - Krysanova, Valentina T1 - Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling N2 - The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, UpperWestern Bug, and Samara) characteristic for different geographical zones. The catchment scale watershed model—Soil and Water Integrated Model (SWIM)—was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model) coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways) 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 323 KW - Ukraine KW - climate change impact KW - river discharge KW - Samara KW - Teteriv KW - Western Bug KW - runoff KW - SWIM KW - IMPRESSIONS Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394956 ER - TY - JOUR A1 - Fernandez-Palomino, Carlos Antonio A1 - Hattermann, Fred F. A1 - Krysanova, Valentina A1 - Vega-Jacome, Fiorella A1 - Bronstert, Axel T1 - Towards a more consistent eco-hydrological modelling through multi-objective calibration BT - a case study in the Andean Vilcanota River basin, Perú JF - Hydrological sciences journal = Journal des sciences hydrologiques N2 - Most hydrological studies rely on a model calibrated using discharge alone. However, judging the model reliability based on such calibration is problematic, as it does not guarantee the correct representation of internal hydrological processes. This study aims (a) to develop a comprehensive multi-objective calibration framework using remote sensing vegetation data and hydrological signatures (flow duration curve - FDC, and baseflow index) in addition to discharge, and (b) to apply this framework for calibration of the Soil and Water Assessment Tool (SWAT) in a typical Andean catchment. Overall, our calibration approach outperformed traditional discharge-based and FDC signature-based calibration strategies in terms of vegetation, streamflow, and flow partitioning simulation. New hydrological insights for the region are the following: baseflow is the main component of the streamflow sustaining the long dry-season flow, and pasture areas offer higher water yield and baseflow than other land-cover types. The proposed approach could be used in other data-scarce regions with complex topography. KW - Andes KW - eco-hydrology KW - SWAT KW - hydrological signatures KW - remote sensing KW - equifinality Y1 - 2020 U6 - https://doi.org/10.1080/02626667.2020.1846740 SN - 0262-6667 SN - 2150-3435 VL - 66 IS - 1 SP - 59 EP - 74 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - GEN A1 - Fernandez-Palomino, Carlos Antonio A1 - Hattermann, Fred F. A1 - Krysanova, Valentina A1 - Vega-Jacome, Fiorella A1 - Bronstert, Axel T1 - Towards a more consistent eco-hydrological modelling through multi-objective calibration BT - a case study in the Andean Vilcanota River basin, Perú T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Most hydrological studies rely on a model calibrated using discharge alone. However, judging the model reliability based on such calibration is problematic, as it does not guarantee the correct representation of internal hydrological processes. This study aims (a) to develop a comprehensive multi-objective calibration framework using remote sensing vegetation data and hydrological signatures (flow duration curve - FDC, and baseflow index) in addition to discharge, and (b) to apply this framework for calibration of the Soil and Water Assessment Tool (SWAT) in a typical Andean catchment. Overall, our calibration approach outperformed traditional discharge-based and FDC signature-based calibration strategies in terms of vegetation, streamflow, and flow partitioning simulation. New hydrological insights for the region are the following: baseflow is the main component of the streamflow sustaining the long dry-season flow, and pasture areas offer higher water yield and baseflow than other land-cover types. The proposed approach could be used in other data-scarce regions with complex topography. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1377 KW - Andes KW - eco-hydrology KW - SWAT KW - hydrological signatures KW - remote sensing KW - equifinality Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-568766 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Francke, Till A1 - Baroni, Gabriele A1 - Brosinsky, Arlena A1 - Foerster, Saskia A1 - Lopez-Tarazon, José Andrés A1 - Sommerer, Erik A1 - Bronstert, Axel T1 - What Did Really Improve Our Mesoscale Hydrological Model? BT - a Multidimensional Analysis Based on Real Observations JF - Water resources research N2 - Modelers can improve a model by addressing the causes for the model errors (data errors and structural errors). This leads to implementing model enhancements (MEs), for example, meteorological data based on more monitoring stations, improved calibration data, and/or modifications in process formulations. However, deciding on which MEs to implement remains a matter of expert knowledge. After implementing multiple MEs, any improvement in model performance is not easily attributed, especially when considering different objectives or aspects of this improvement (e.g., better dynamics vs. reduced bias). We present an approach for comparing the effect of multiple MEs based on real observations and considering multiple objectives (MMEMO). A stepwise selection approach and structured plots help to address the multidimensionality of the problem. Tailored analyses allow a differentiated view on the effect of MEs and their interactions. MMEMO is applied to a case study employing the mesoscale hydro-sedimentological model WASA-SED for the Mediterranean-mountainous Isabena catchment, northeast Spain. The investigated seven MEs show diverse effects: some MEs (e.g., rainfall data) cause improvements for most objectives, while other MEs (e.g., land use data) only affect a few objectives or even decrease model performance. Interaction of MEs was observed for roughly half of the MEs, confirming the need to address them in the analysis. Calibration and increasing the temporal resolution showed by far stronger impact than any of the other MEs. The proposed framework can be adopted in other studies to analyze the effect of MEs and, thus, facilitate the identification and implementation of the most promising MEs for comparable cases. KW - modeling KW - sensitivity analyses KW - model enhancement KW - sediment Y1 - 2018 U6 - https://doi.org/10.1029/2018WR022813 SN - 0043-1397 SN - 1944-7973 VL - 54 IS - 11 SP - 8594 EP - 8612 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Francke, Till A1 - Förster, Saskia A1 - Brosinsky, Arlena A1 - Sommerer, Erik A1 - Lopez-Tarazon, Jose Andres A1 - Güntner, Andreas A1 - Batalla Villanueva, Ramon J. A1 - Bronstert, Axel T1 - Water and sediment fluxes in Mediterranean mountainous regions BT - comprehensive dataset for hydro-sedimentological analyses and modelling in a mesoscale catchment (River Isábena, NE Spain) T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - A comprehensive hydro-sedimentological dataset for the Isábena catchment, northeastern (NE) Spain, for the period 2010–2018 is presented to analyse water and sediment fluxes in a Mediterranean mesoscale catchment. The dataset includes rainfall data from 12 rain gauges distributed within the study area complemented by meteorological data of 12 official meteo-stations. It comprises discharge data derived from water stage measurements as well as suspended sediment concentrations (SSCs) at six gauging stations of the River Isábena and its sub-catchments. Soil spectroscopic data from 351 suspended sediment samples and 152 soil samples were collected to characterize sediment source regions and sediment properties via fingerprinting analyses. The Isábena catchment (445 km 2 ) is located in the southern central Pyrenees ranging from 450 m to 2720 m a.s.l.; together with a pronounced topography, this leads to distinct temperature and precipitation gradients. The River Isábena shows marked discharge variations and high sediment yields causing severe siltation problems in the downstream Barasona Reservoir. The main sediment source is badland areas located on Eocene marls that are well connected to the river network. The dataset features a comprehensive set of variables in a high spatial and temporal resolution suitable for the advanced process understanding of water and sediment fluxes, their origin and connectivity and sediment budgeting and for the evaluation and further development of hydro-sedimentological models in Mediterranean mesoscale mountainous catchments. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 547 KW - source siscrimination KW - transport KW - pyrenees KW - connectivity KW - sischarge KW - runoff KW - yield Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419150 SN - 1866-8372 IS - 547 ER - TY - JOUR A1 - Francke, Till A1 - Förster, Saskia A1 - Brosinsky, Arlena A1 - Sommerer, Erik A1 - Lopez-Tarazonl, Jose Andres A1 - Güntner, Andreas A1 - Batalla, Ramon J. A1 - Bronstert, Axel T1 - Water and sediment fluxes in Mediterranean mountainous regions BT - comprehensive dataset for hydro-sedimentological analyses and modelling in a mesoscale catchment (River Isabena, NE Spain) JF - Earth System Science Data N2 - A comprehensive hydro-sedimentological dataset for the Isabena catchment, northeastern (NE) Spain, for the period 2010-2018 is presented to analyse water and sediment fluxes in a Mediterranean mesoscale catchment. The dataset includes rainfall data from 12 rain gauges distributed within the study area complemented by meteorological data of 12 official meteo-stations. It comprises discharge data derived from water stage measurements as well as suspended sediment concentrations (SSCs) at six gauging stations of the River Isabena and its sub-catchments. Soil spectroscopic data from 351 suspended sediment samples and 152 soil samples were collected to characterize sediment source regions and sediment properties via fingerprinting analyses. The Isabena catchment (445 km(2)) is located in the southern central Pyrenees ranging from 450 m to 2720 m a.s.l.; together with a pronounced topography, this leads to distinct temperature and precipitation gradients. The River Isabena shows marked discharge variations and high sediment yields causing severe siltation problems in the downstream Barasona Reservoir. The main sediment source is badland areas located on Eocene marls that are well connected to the river network. The dataset features a comprehensive set of variables in a high spatial and temporal resolution suitable for the advanced process understanding of water and sediment fluxes, their origin and connectivity and sediment budgeting and for the evaluation and further development of hydro-sedimentological models in Mediterranean mesoscale mountainous catchments. Y1 - 2018 U6 - https://doi.org/10.5194/essd-10-1063-2018 SN - 1866-3508 SN - 1866-3516 VL - 10 IS - 2 SP - 1063 EP - 1075 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Fritsch, Uta A1 - Katzenmaier, Daniel A1 - Bronstert, Axel T1 - Land-use and land-cover scenarios for flood risk analysis and river basin management Y1 - 2000 ER - TY - JOUR A1 - Gräff, Thomas A1 - Zehe, Erwin A1 - Reusser, Dominik A1 - Lueck, Erika A1 - Schroeder, Boris A1 - Wenk, Gerald A1 - John, Hermann A1 - Bronstert, Axel T1 - Process identification through rejection of model structures in a mid-mountainous rural catchment : observations of rainfall-runoff response, geophysical conditions and model inter-comparison N2 - The intention of the presented study is to gain a better understanding of the mechanisms that caused the bimodal rainfall-runoff responses which occurred up to the mid-1970s regularly in the Schafertal catchment and vanished after the onset of mining activities. Understanding, this process is a first step to understanding the ongoing hydrological change in this area. It is hypothesized that either subsurface stormflow, or fast displacement of groundwater, could cause the second delayed peak. A top-down analysis of rainfall-runoff data, field observations as well as process modelling are combined within a rejectionistic framework. A statistical analysis is used to test whether different predictors. which characterize the forcing. near surface water content and deeper subsurface store, allow the prediction of the type of rainfall-runoff response. Regression analysis is used with generalized linear models Lis they can deal with non-Gaussian error distributions Lis well its a non-stationary variance. The analysis reveals that the dominant predictors are the pre-event discharge (proxy of state of the groundwater store) and the precipitation amount, In the field campaign, the subsurface at a representative hillslope was investigated by means of electrical resistivity tomography in order to identify possible strata as flow paths for subsurface stormflow. A low resistivity in approximately 4 in depth-either due to a less permeable layer or the groundwater surface-was detected. The former Could serve as a flow path for subsurface stormflow. Finally, the physical-based hydrological model CATFLOW and the groundwater model FEFLOW are compared with respect to their ability to reproduce the bimodal runoff responses. The groundwater model is able to reproduce the observations, although it uses only an abstract representation of the hillslopes. Process model analysis as well Lis statistical analysis strongly suggest that fast displacement of groundwater is the dominant process underlying the bimodal runoff reactions. Y1 - 2009 UR - http://www3.interscience.wiley.com/journal/4125/home U6 - https://doi.org/10.1002/Hyp.7171 SN - 0885-6087 ER - TY - JOUR A1 - Gräff, Thomas A1 - Zehe, Erwin A1 - Schlaeger, Stefan A1 - Morgner, Markus A1 - Bauer, Andreas A1 - Becker, Rolf A1 - Creutzfeldt, Benjamin A1 - Bronstert, Axel T1 - A quality assessment of Spatial TDR soil moisture measurements in homogenous and heterogeneous media with laboratory experiments N2 - Investigation of transient soil moisture profiles yields valuable information of near- surface processes. A recently developed reconstruction algorithm based on the telegraph equation allows the inverse estimation of soil moisture profiles along coated, three rod TDR probes. Laboratory experiments were carried out to prove the results of the inversion and to understand the influence of probe rod deformation and solid objects close to the probe in heterogeneous media. Differences in rod geometry can lead to serious misinterpretations in the soil moisture profile, but have small influence on the average soil moisture along the probe. Solids in the integration volume have almost no effect on average soil moisture, but result in locally slightly decreased moisture values. Inverted profiles obtained in a loamy soil with a clay content of about 16% were in good agreement with independent measurements. Y1 - 2010 UR - http://www.copernicus.org/EGU/hess/hess.html U6 - https://doi.org/10.5194/hess-14-1007-2010 SN - 1027-5606 ER - TY - JOUR A1 - Gräff, Thomas A1 - Zehe, Erwin A1 - Schläger, Stefan A1 - Morgner, Markus A1 - Bauer, Andreas A1 - Becker, Rolf A1 - Creutzfeldt, Benjamin A1 - Bronstert, Axel T1 - A quality assessment of spatial TDR soil moisture measurements in homogenous and heterogeneous media with laboratory experiments N2 - Investigation of transient soil moisture profiles yields valuable information of near- surface processes. A recently developed reconstruction algorithm based on the telegraph equation allows the inverse estimation of soil moisture profiles along coated, three rod TDR probes. Laboratory experiments were carried out to prove the results of the inversion and to understand the influence of probe rod deformation and solid objects close to the probe in heterogonous media. Differences in rod geometry can lead to serious misinterpretations in the soil moisture profile but have small influence on the average soil moisture along the probe. Solids in the integration volume have almost no effect on average soil moisture but result in locally slightly decreased moisture values. Inverted profiles obtained in a loamy soil with a clay content of about 16% were in good agreement with independent measurements. Y1 - 2010 UR - http://www.hydrol-earth-syst-sci-discuss.net/volumes_and_issues.html U6 - https://doi.org/10.5194/hessd-7-269-2010 SN - 1812-2108 ER - TY - JOUR A1 - Günter, A. A1 - Bronstert, Axel T1 - Large-scale hydrological modelling of a semi-arid environment : model development, validation and application Y1 - 2003 ER - TY - JOUR A1 - Güntner, Andreas A1 - Bronstert, Axel T1 - Representation of landscape variability and lateral redistribution processes for large-scale hydrological modelling in semi-arid areas N2 - The spatial variability of landscape features such as topography, soils and vegetation defines the spatial pattern of hydrological state variables like soil moisture. Spatial variability thereby controls the functional behaviour of the landscape in terms of its runoff response. A consequence of spatial variability is that exchange processes between landscape patches can occur at various spatial scales ranging from the plot to the basin scale. In semi-arid areas, the lateral redistribution of surface runoff between adjacent landscape patches is an important process. For applications to large river basins of 10(4)-10(5) km(2) in size, a multi-scale landscape discretization scheme is presented in this paper. The landscape is sub-divided into modelling units within a hierarchy of spatial scale levels. By delineating areas characterized by a typical toposequence, organised and random variability of landscape characteristics is captured in the model. Using runoff-runon relationships with transition frequencies based on areal fractions of modelling units, lateral surface and subsurface water fluxes between modelling units at the hillslope scale are represented. Thus, the new approach allows for a manageable description of interactions between fine-scale landscape features for inclusion in coarse-scale models. Model applications for the State of Ceara (148,000 km(2)) in the north- east of Brazil demonstrate the importance of taking into account landscape variability and interactions between landscape patches in a semi-arid environment. Using mean landscape characteristics leads to a considerable underestimation of infiltration-excess surface runoff and total simulated runoff. Re-infiltration of surface runoff and lateral redistribution processes between landscape patches cause a reduction of runoff volumes at the basin scale and contribute to the amplification of variations in runoff volumes relative to variations in rainfall volumes for semi-arid areas. (C) 2004 Elsevier B.V. All rights reserved Y1 - 2004 SN - 0022-1694 ER - TY - JOUR A1 - Güntner, Andreas A1 - Bronstert, Axel T1 - Process-based modelling of large-scale water availability in a semi-arid environment : process representation and scaling issues Y1 - 2002 ER - TY - JOUR A1 - Güntner, Andreas A1 - Bronstert, Axel T1 - Modelling the effects of climate change on water availability in the semi-arid of North-East Brazil Y1 - 2001 ER - TY - JOUR A1 - Güntner, Andreas A1 - Bronstert, Axel T1 - WAVES - Water availability, vulnerability of ecosystems and society in the northeast of Brazil : sub-project large-scale hydrological modelling Y1 - 2001 ER - TY - JOUR A1 - Güntner, Andreas A1 - Krol, Marten S. A1 - de Arajo, José Carlos A1 - Bronstert, Axel T1 - Simple water balance modelling of surface reservoir systems in a large data-scarce semiarid region N2 - Water resources in dryland areas are often provided by numerous surface reservoirs. As a basis for securing future water supply, the dynamics of reservoir systems need to be simulated for large river basins, accounting for environmental change and an increasing water demand. For the State of Ceara in semiarid Northeast Brazil, with several thousands of reservoirs, a simple deterministic water balance model is presented. Within a cascade-type approach, the reservoirs are grouped into six classes according to storage capacity, rules for flow routing between reservoirs of different size are defined, and water withdrawal and return flow due to human water use is accounted for. While large uncertainties in model applications exist, particularly in terms of reservoir operation rules, model validation against observed reservoir storage volumes shows that the approach is a reasonable simplification to assess surface water availability in large river basins. The results demonstrate the large impact of reservoir storage on downstream flow and stress the need for a coupled simulation of runoff generation, network redistribution and water use Y1 - 2004 SN - 0262-6667 ER - TY - JOUR A1 - Hattermann, Fred Fokko A1 - Krysanova, Valentina A1 - Habeck, Anja A1 - Bronstert, Axel T1 - Integrating wetlands and riparian zones in river basin modelling JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Wetlands, and in particular riparian wetlands, represent an interface between the catchment area and the aquatic environment. They control the exchange of water and related chemical fluxes from the upper catchment area to surface waters like streams and lakes. Their influence on water and nutrient balances has been investigated mainly at the patch scale. In this study an attempt was made (a) to integrate riparian zones and wetlands into eco-hydrological river basin modelling, and (b) to quantify the impacts of riparian wetland processes on water and nutrient fluxes in a meso-scale catchment located in the northeastern German lowland. The investigation was performed by analysing hydro-chemical field data and applying the eco-hydrological model SWIM (Soil and Water Integrated Model), which was extended to reproduce the relevant water and nutrient flows and retention processes at the catchment scale in general, and in riparian zones and wetlands in particular. The main extensions introduced in the model were: (1) implementation of daily groundwater table dynamics at the hydrotope level, (2) implementation of water and nutrient uptake by plants from groundwater in riparian zones and wetlands, and (3) assessment of nutrient retention in groundwater and interflow. The simulation results indicate that wetlands, though they represent relatively small parts of the total catchment area, may have a significant impact on the overall water and nutrient balances of the catchment. The uncertainty of the simulation results is considerably high, with the main sources of uncertainty being the model parameters representing the geo-hydrology and the input data for land use management. (c) 2006 Elsevier B.V. All rights reserved. KW - riparian zones KW - wetlands KW - water quality KW - groundwater dynamics KW - nutrient retention KW - integrated river basin modelling Y1 - 2006 U6 - https://doi.org/10.1016/j.ecolmodel.2005.06.012 SN - 0304-3800 VL - 199 IS - 4 SP - 379 EP - 392 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Heine, Iris A1 - Francke, Till A1 - Rogass, Christian A1 - Medeiros, Pedro Henrique Augusto A1 - Bronstert, Axel A1 - Förster, Saskia T1 - Monitoring seasonal changes in the water surface areas of reservoirs using TerraSAR-X time series data in semiarid northeastern Brazil JF - IEEE journal of selected topics in applied earth observations and remote sensing N2 - The 933 km(2) Bengue catchment in northeastern Brazil is characterized by distinct rainy and dry seasons. Precipitation is stored in variously sized reservoirs, which is essential for the local population. In this study, we used TerraSAR-X SM(HH) data for an one-year monitoring of seasonal changes in the reservoir areas from July 2011 to July 2012. The monitoring was based on acquisitions in the ascending pass direction, complemented by occasional descending-pass images. To detect water surface areas, a histogram analysis followed by a global threshold classification was performed, and the results were validated using in situ GPS data. Distinguishing between small reservoirs and similar looking dark areas was difficult. Therefore, we tested several approaches for identifying misclassified areas. An analysis of the surface area dynamics of the reservoirs indicated high spatial and temporal heterogeneities and a large decrease in the total water surface area of the reservoirs in the catchment by approximately 30% within one year. KW - Image classification KW - monitoring KW - radar imaging KW - remote sensing KW - synthetic aperture radar (SAR) Y1 - 2014 U6 - https://doi.org/10.1109/JSTARS.2014.2323819 SN - 1939-1404 SN - 2151-1535 VL - 7 IS - 8 SP - 3190 EP - 3199 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Heistermann, Maik A1 - Crisologo, Irene A1 - Abon, Catherine Cristobal A1 - Racoma, B. A. A1 - Jacobi, S. A1 - Servando, N. T. A1 - David, C. P. C. A1 - Bronstert, Axel T1 - Using the new Philippine radar network to reconstruct the Habagat of August 2012 monsoon event around Metropolitan Manila JF - Natural hazards and earth system sciences N2 - From 6 to 9 August 2012, intense rainfall hit the northern Philippines, causing massive floods in Metropolitan Manila and nearby regions. Local rain gauges recorded almost 1000mm within this period. However, the recently installed Philippine network of weather radars suggests that Metropolitan Manila might have escaped a potentially bigger flood just by a whisker, since the centre of mass of accumulated rainfall was located over Manila Bay. A shift of this centre by no more than 20 km could have resulted in a flood disaster far worse than what occurred during Typhoon Ketsana in September 2009. Y1 - 2013 U6 - https://doi.org/10.5194/nhess-13-653-2013 SN - 1561-8633 VL - 13 IS - 3 SP - 653 EP - 657 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Heistermann, Maik A1 - Francke, Till A1 - Georgi, Christof A1 - Bronstert, Axel T1 - Increasing life expectancy of water resources literature JF - Water resources research N2 - In a study from 2008, Lariviere and colleagues showed, for the field of natural sciences and engineering, that the median age of cited references is increasing over time. This result was considered counterintuitive: with the advent of electronic search engines, online journal issues and open access publications, one could have expected that cited literature is becoming younger. That study has motivated us to take a closer look at the changes in the age distribution of references that have been cited in water resources journals since 1965. Not only could we confirm the findings of Lariviere and colleagues. We were also able to show that the aging is mainly happening in the oldest 10-25% of an average reference list. This is consistent with our analysis of top-cited papers in the field of water resources. Rankings based on total citations since 1965 consistently show the dominance of old literature, including text books and research papers in equal shares. For most top-cited old-timers, citations are still growing exponentially. There is strong evidence that most citations are attracted by publications that introduced methods which meanwhile belong to the standard toolset of researchers and practitioners in the field of water resources. Although we think that this trend should not be overinterpreted as a sign of stagnancy, there might be cause for concern regarding how authors select their references. We question the increasing citation of textbook knowledge as it holds the risk that reference lists become overcrowded, and that the readability of papers deteriorates. Y1 - 2014 U6 - https://doi.org/10.1002/2014WR015674 SN - 0043-1397 SN - 1944-7973 VL - 50 IS - 6 SP - 5019 EP - 5028 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Huang, Shaochun A1 - Hattermann, Fred Fokko A1 - Krysanova, Valentina A1 - Bronstert, Axel T1 - Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model JF - Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change N2 - A general increase in precipitation has been observed in Germany in the last century, and potential changes in flood generation and intensity are now at the focus of interest. The aim of the paper is twofold: a) to project the future flood conditions in Germany accounting for various river regimes (from pluvial to nival-pluvial regimes) and under different climate scenarios (the high, A2, low, B1, and medium, A1B, emission scenarios) and b) to investigate sources of uncertainty generated by climate input data and regional climate models. Data of two dynamical Regional Climate Models (RCMs), REMO (REgional Model) and CCLM (Cosmo-Climate Local Model), and one statistical-empirical RCM, Wettreg (Wetterlagenbasierte Regionalisierungsmethode: weather-type based regionalization method), were applied to drive the eco-hydrological model SWIM (Soil and Water Integrated Model), which was previously validated for 15 gauges in Germany. At most of the gauges, the 95 and 99 percentiles of the simulated discharge using SWIM with observed climate data had a good agreement with the observed discharge for 1961-2000 (deviation within +/- 10 %). However, the simulated discharge had a bias when using RCM climate as input for the same period. Generalized Extreme Value (GEV) distributions were fitted to the annual maximum series of river runoff for each realization for the control and scenario periods, and the changes in flood generation over the whole simulation time were analyzed. The 50-year flood values estimated for two scenario periods (2021-2060, 2061-2100) were compared to the ones derived from the control period using the same climate models. The results driven by the statistical-empirical model show a declining trend in the flood level for most rivers, and under all climate scenarios. The simulations driven by dynamical models give various change directions depending on region, scenario and time period. The uncertainty in estimating high flows and, in particular, extreme floods remains high, due to differences in regional climate models, emission scenarios and multi-realizations generated by RCMs. Y1 - 2013 U6 - https://doi.org/10.1007/s10584-012-0586-2 SN - 0165-0009 SN - 1573-1480 VL - 116 IS - 3-4 SP - 631 EP - 663 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Iroume, Andres A1 - Carey, Patricio A1 - Bronstert, Axel A1 - Huber, Anton A1 - Palacios, Hardin T1 - GIS application of USLE and MUSLE to estimate erosion and suspended sediment load in experimental catchments, Valdivia, Chile JF - Revista técnica de la Facultad de Ingenieria N2 - This paper presents the results of a research aimed to quantify suspended sediment transport in three experimental catchments in southern Chile, to compare measured suspended sediment load with estimated erosion using the Universal Soil Loss Equation (USLE) applied in a GIS environment and to validate de Modified Universal Soil Loss Equation (MUSLE) used to estimate suspended sediment loads from forest catchments. The catchments are Los Pinos (94.2 ha), Los Ulmos 1 (12.6 ha) and Los Ulmos 2 (17.7 ha). Soil losses estimated with USLE for the three catchments are higher than those measured in runoff experimental lots under bare soil conditions, which could indicate an overestimation of the LS calculated in GIS and the fact that the USLE model does not compute sediment deposit and storage within the catchment. A statistical significant relation was found between measured and estimated (MUSLE) suspended sediment load, which would indicate that this model could be applied to estimate suspended sediment load from small catchments in southern Chile. KW - suspended sediments KW - USLE KW - MUSLE KW - experimental catchments Y1 - 2011 SN - 0254-0770 VL - 34 IS - 2 SP - 119 EP - 128 PB - Facultad de Ingenieria Universidad del Zulia CY - Maracaibo ER - TY - JOUR A1 - Jagdhuber, Thomas A1 - Hajnsek, Irena A1 - Bronstert, Axel A1 - Papathanassiou, Konstantinos Panagiotis T1 - Soil moisture estimation under low vegetation cover using a multi-angular polarimetric decomposition JF - IEEE transactions on geoscience and remote sensing N2 - The estimation of volumetric soil moisture under low agricultural vegetation from fully polarimetric synthetic aperture radar (SAR) data at L-band using a multi-angular polarimetric decomposition is investigated. Radar polarimetry provides the framework to decompose the backscattered signal into different canonical scattering mechanisms referring to scattering contributions from the underlying soil and the vegetation cover. Multiangular observation diversity further increases the information space for soil moisture inversion enabling higher inversion rates and a stable inversion performance. The developed approach was applied on the multi-angular L-band data set acquired by German Aerospace Center's ESAR sensor as part of the OPAQUE campaign in 2008. The obtained results are compared against ground measurements collected by the OPAQUE team over a variety of vegetated agricultural fields. The validation of the estimated against ground measured soil moisture results in an root mean square error level of 6-8 vol.% including all test fields with a variety of crop types. KW - Multi-angular model-based decomposition KW - polarimetric SAR KW - soil moisture Y1 - 2013 U6 - https://doi.org/10.1109/TGRS.2012.2209433 SN - 0196-2892 VL - 51 IS - 4 SP - 2201 EP - 2215 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Katzenmaier, Daniel A1 - Fritsch, Uta A1 - Bronstert, Axel T1 - Quantifizierung des Einflusses von Landnutzung und dezentraler Versickerung auf die Hochwasserentstehung Y1 - 2001 SN - 3-503-06021-9 ER - TY - JOUR A1 - Katzenmaier, Daniel A1 - Fritsch, Uta A1 - Bronstert, Axel T1 - Influences of land-use and land-cover changes on storm-runoff generation Y1 - 2000 ER - TY - GEN A1 - Kneis, David A1 - Abon, Catherine Cristobal A1 - Bronstert, Axel A1 - Heistermann, Maik T1 - Verification of short-term runoff forecasts for a small Philippine basin (Marikina) T2 - Hydrological sciences journal = Journal des sciences hydrologiques N2 - Storm runoff from the Marikina River Basin frequently causes flood events in the Philippine capital region Metro Manila. This paper presents and evaluates a system to predict short-term runoff from the upper part of that basin (380km(2)). It was designed as a possible component of an operational warning system yet to be installed. For the purpose of forecast verification, hindcasts of streamflow were generated for a period of 15 months with a time-continuous, conceptual hydrological model. The latter was fed with real-time observations of rainfall. Both ground observations and weather radar data were tested as rainfall forcings. The radar-based precipitation estimates clearly outperformed the raingauge-based estimates in the hydrological verification. Nevertheless, the quality of the deterministic short-term runoff forecasts was found to be limited. For the radar-based predictions, the reduction of variance for lead times of 1, 2 and 3hours was 0.61, 0.62 and 0.54, respectively, with reference to a no-forecast scenario, i.e. persistence. The probability of detection for major increases in streamflow was typically less than 0.5. Given the significance of flood events in the Marikina Basin, more effort needs to be put into the reduction of forecast errors and the quantification of remaining uncertainties. Y1 - 2016 U6 - https://doi.org/10.1080/02626667.2016.1183773 SN - 0262-6667 SN - 2150-3435 VL - 62 SP - 205 EP - 216 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Kneis, David A1 - Buerger, Gerd A1 - Bronstert, Axel T1 - Evaluation of medium-range runoff forecasts for a 50 km(2) watershed JF - Journal of hydrology N2 - We generated medium-range forecasts of runoff for a 50 km(2) headwater catchment upstream of a reservoir using numerical weather predictions (NWPs) of the past as input to an operational hydrological model. NWP data originating from different sources were tested. For a period of 8.5 years, we computed daily forecasts with a lead time of +120 h based on an empirically downscaled version of the ECMWF's ensemble prediction system. For the last 3.5 years of the test period, we also tried the deterministic COSMO-EU forecast disseminated by the German Weather Service for lead times of up to +72 h. Common measures of skill indicate superiority of the ensemble runoff forecast over single-value forecasts for longer lead times. However, regardless of which NWP data were being used, the probability of event detection (POD) was found to be generally lower than 50%. In many cases, values in the range of 20-30% were obtained. At the same time, the false alarms ratio (FAR) was often found to be considerably high. The observed uncertainties in the hydrological forecasts were shown to originate from both the insufficient quality of precipitation forecasts as well as deficiencies in hydrological modeling and quantitative precipitation estimation. With respect to the anticipatory control of reservoirs in the studied catchment, the value of the tested runoff forecasts appears to be limited. This is due to the unfavorably low POD/FAR ratio in conjunction with a high cost-loss ratio. However, our results indicate that, in many cases, major runoff events related to snow melt can be successfully predicted as early as 4-5 days in advance. KW - Runoff forecast KW - Small catchments KW - Forecast verification KW - Reservoir control Y1 - 2012 U6 - https://doi.org/10.1016/j.jhydrol.2011.11.005 SN - 0022-1694 VL - 414 IS - 2 SP - 341 EP - 353 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kneis, David A1 - Förster, Saskia A1 - Bronstert, Axel T1 - Simulation of water quality in a flood detention area using models of different spatial discretization N2 - Detention areas provide a means to lower peak discharges in rivers by temporarily storing excess water. In the case of extreme flood events, the storage effect reduces the risk of dike failures or extensive inundations for downstream reaches and near the site of abstraction. Due to the large amount of organic matter contained in the river water and the inundation of terrestrial vegetation in the detention area, a deterioration of water quality may occur. In particular, decay processes can cause a severe depletion of dissolved oxygen (DO) in the temporary water body. In this paper, we studied the potential of a water quality model to simulate the DO dynamics in a large but shallow detention area to be built at the Elbe River (Germany). Our focus was on examining the impact of spatial discretization on the model's performance and usability. Therefore, we used a zero-dimensional (OD) and a two-dimensional (2D) modeling approach in parallel. The two approaches solely differ in their spatial discretization, while conversion processes, parameters, and boundary conditions were kept identical. The dynamics of DO simulated by the two models are similar in the initial flooding period but diverge when the system starts to drain. The deviation can be attributed to the different spatial discretization of the two models, leading to different estimates of flow velocities and water depths. Only the 2D model can account for the impact of spatial variability on the evolution of state variables. However, its application requires high efforts for pre- and post-processing and significantly longer computation times. The 2D model is, therefore, not suitable for investigating various flood scenarios or for analyzing the impact of parameter uncertainty. For practical applications, we recommend to firstly set up a fast-running model of reduced spatial discretization, e.g. a OD model. Using this tool, the reliability of the simulation results should be checked by analyzing the parameter uncertainty of the water quality model. A particular focus may be on those parameters that are spatially variable and, therefore, believed to be better represented in a 2D approach. The benefit from the application of the more costly 2D model should be assessed, based on the analyses carried out with the OD model. A 2D model appears to be preferable only if the simulated detention area has a complex topography, flow velocities are highly variable in space, and the parameters of the water quality model are well known. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/03043800 U6 - https://doi.org/10.1016/j.ecolmodel.2009.04.006 SN - 0304-3800 ER - TY - JOUR A1 - Kneis, David A1 - Knösche, Rüdiger A1 - Bronstert, Axel T1 - Ist eine Auswaschung von Nährstoffen aus Flussgewässersedimenten eine realistische Option zur Trophiesenkung? Y1 - 2004 SN - 3-937758-18-6 ER - TY - JOUR A1 - Kneis, David A1 - Knösche, Rüdiger A1 - Bronstert, Axel T1 - Ist ein Netto-Nährstoffexport aus Flussgewässersedimenten eine realistische Option zur Trophiesenkung? Y1 - 2004 SN - 3-937758-18-6 ER - TY - GEN A1 - Kormann, C. A1 - Francke, Till A1 - Renner, M. A1 - Bronstert, Axel T1 - Attribution of high resolution streamflow trends in Western Austria BT - an approach based on climate and discharge station data N2 - The results of streamflow trend studies are often characterized by mostly insignificant trends and inexplicable spatial patterns. In our study region, Western Austria, this applies especially for trends of annually averaged runoff. However, analysing the altitudinal aspect, we found that there is a trend gradient from higher-altitude to lower-altitude stations, i.e. a pattern of mostly positive annual trends at higher stations and negative ones at lower stations. At midaltitudes, the trends are mostly insignificant. Here we hypothesize that the streamflow trends are caused by the following two main processes: on the one hand, melting glaciers produce excess runoff at higher-altitude watersheds. On the other hand, rising temperatures potentially alter hydrological conditions in terms of less snowfall, higher infiltration, enhanced evapotranspiration, etc., which in turn results in decreasing streamflow trends at lower-altitude watersheds. However, these patterns are masked at mid-altitudes because the resulting positive and negative trends balance each other. To support these hypotheses, we attempted to attribute the detected trends to specific causes. For this purpose, we analysed trends of filtered daily streamflow data, as the causes for these changes might be restricted to a smaller temporal scale than the annual one. This allowed for the explicit determination of the exact days of year (DOYs) when certain streamflow trends emerge, which were then linked with the corresponding DOYs of the trends and characteristic dates of other observed variables, e.g. the average DOY when temperature crosses the freezing point in spring. Based on these analyses, an empirical statistical model was derived that was able to simulate daily streamflow trends sufficiently well. Analyses of subdaily streamflow changes provided additional insights. Finally, the present study supports many modelling approaches in the literature which found out that the main drivers of alpine streamflow changes are increased glacial melt, earlier snowmelt and lower snow accumulation in wintertime. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 260 KW - time-series KW - alpine KW - snow KW - variability KW - switzerland KW - impacts KW - regimes KW - temperature KW - seasonality KW - catchments Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-96560 SP - 1225 EP - 1245 ER - TY - JOUR A1 - Kormann, C. A1 - Francke, Till A1 - Renner, M. A1 - Bronstert, Axel T1 - Attribution of high resolution streamflow trends in Western Austria BT - an approach based on climate and discharge station data JF - Hydrology and earth system sciences N2 - The results of streamflow trend studies are often characterized by mostly insignificant trends and inexplicable spatial patterns. In our study region, Western Austria, this applies especially for trends of annually averaged runoff. However, analysing the altitudinal aspect, we found that there is a trend gradient from higher-altitude to lower-altitude stations, i.e. a pattern of mostly positive annual trends at higher stations and negative ones at lower stations. At midaltitudes, the trends are mostly insignificant. Here we hypothesize that the streamflow trends are caused by the following two main processes: on the one hand, melting glaciers produce excess runoff at higher-altitude watersheds. On the other hand, rising temperatures potentially alter hydrological conditions in terms of less snowfall, higher infiltration, enhanced evapotranspiration, etc., which in turn results in decreasing streamflow trends at lower-altitude watersheds. However, these patterns are masked at mid-altitudes because the resulting positive and negative trends balance each other. To support these hypotheses, we attempted to attribute the detected trends to specific causes. For this purpose, we analysed trends of filtered daily streamflow data, as the causes for these changes might be restricted to a smaller temporal scale than the annual one. This allowed for the explicit determination of the exact days of year (DOYs) when certain streamflow trends emerge, which were then linked with the corresponding DOYs of the trends and characteristic dates of other observed variables, e.g. the average DOY when temperature crosses the freezing point in spring. Based on these analyses, an empirical statistical model was derived that was able to simulate daily streamflow trends sufficiently well. Analyses of subdaily streamflow changes provided additional insights. Finally, the present study supports many modelling approaches in the literature which found out that the main drivers of alpine streamflow changes are increased glacial melt, earlier snowmelt and lower snow accumulation in wintertime. KW - alpine KW - catchments KW - impacts KW - regimes KW - seasonality KW - snow KW - switzerland KW - temperature KW - time-series KW - variability Y1 - 2015 U6 - https://doi.org/10.5194/hess-19-1225-2015 SN - 1607-7938 SN - 1027-5606 VL - 19 SP - 1225 EP - 1245 PB - EGU CY - Katlenburg-Lindau ER - TY - GEN A1 - Kormann, Christoph A1 - Bronstert, Axel A1 - Francke, Till A1 - Recknagel, Thomas A1 - Gräff, Thomas T1 - Model-Based attribution of high-resolution streamflow trends in two alpine basins of Western Austria N2 - Several trend studies have shown that hydrological conditions are changing considerably in the Alpine region. However, the reasons for these changes are only partially understood and trend analyses alone are not able to shed much light. Hydrological modelling is one possible way to identify the trend drivers, i.e., to attribute the detected streamflow trends, given that the model captures all important processes causing the trends. We modelled the hydrological conditions for two alpine catchments in western Austria (a large, mostly lower-altitude catchment with wide valley plains and a nested high-altitude, glaciated headwater catchment) with the distributed, physically-oriented WaSiM-ETH model, which includes a dynamical glacier module. The model was calibrated in a transient mode, i.e., not only on several standard goodness measures and glacier extents, but also in such a way that the simulated streamflow trends fit with the observed ones during the investigation period 1980 to 2007. With this approach, it was possible to separate streamflow components, identify the trends of flow components, and study their relation to trends in atmospheric variables. In addition to trends in annual averages, highly resolved trends for each Julian day were derived, since they proved powerful in an earlier, data-based attribution study. We were able to show that annual and highly resolved trends can be modelled sufficiently well. The results provide a holistic, year-round picture of the drivers of alpine streamflow changes: Higher-altitude catchments are strongly affected by earlier firn melt and snowmelt in spring and increased ice melt throughout the ablation season. Changes in lower-altitude areas are mostly caused by earlier and lower snowmelt volumes. All highly resolved trends in streamflow and its components show an explicit similarity to the local temperature trends. Finally, results indicate that evapotranspiration has been increasing in the lower altitudes during the study period. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 364 KW - trend attribution KW - trend detection KW - climate change KW - trend drivers KW - hydrological modelling KW - alpine catchments KW - streamflow KW - hydroclimatology Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400641 ER - TY - JOUR A1 - Kormann, Christoph A1 - Francke, Till A1 - Bronstert, Axel T1 - Detection of regional climate change effects on alpine hydrology by daily resolution trend analysis in Tyrol, Austria JF - Journal of water and climate change N2 - Owing to average temperature increases of at least twice the global mean, climate change is expected to have strong impacts on local hydrology and climatology in the Alps. Nevertheless, trend analyses of hydro-climatic station data rarely reveal clear patterns concerning climate change signals except in temperature observations. However, trend research has thus far mostly been based on analysing trends of averaged data such as yearly, seasonal or monthly averages and has therefore often not been able to detect the finer temporal dynamics. For this reason, we derived 30-day moving average trends, providing a daily resolution of the timing and magnitude of trends within the seasons. Results are validated by including different time periods. We studied daily observations of mean temperature, liquid and solid precipitation, snow height and runoff in the relatively dry central Alpine region in Tyrol, Austria. Our results indicate that the vast majority of changes are observed throughout spring to early summer, most likely triggered by the strong temperature increase during this season. Temperature, streamflow and snow trends have clearly amplified during recent decades. The overall results are consistent over the entire investigation area and different time periods. KW - Alps KW - hydroclimatology KW - Mann-Kendall test KW - streamflow KW - trend detection Y1 - 2015 U6 - https://doi.org/10.2166/wcc.2014.099 SN - 2040-2244 VL - 6 IS - 1 SP - 124 EP - 143 PB - IWA Publ. CY - London ER - TY - JOUR A1 - Kormann, Christoph A1 - Francke, Till A1 - Renner, M. A1 - Bronstert, Axel T1 - Attribution of high resolution streamflow trends in Western Austria - an approach based on climate and discharge station data JF - Hydrology and earth system sciences : HESS N2 - The results of streamflow trend studies are often characterized by mostly insignificant trends and inexplicable spatial patterns. In our study region, Western Austria, this applies especially for trends of annually averaged runoff. However, analysing the altitudinal aspect, we found that there is a trend gradient from higher-altitude to lower-altitude stations, i.e. a pattern of mostly positive annual trends at higher stations and negative ones at lower stations. At mid-altitudes, the trends are mostly insignificant. Here we hypothesize that the streamflow trends are caused by the following two main processes: on the one hand, melting glaciers produce excess runoff at higher-altitude watersheds. On the other hand, rising temperatures potentially alter hydrological conditions in terms of less snowfall, higher infiltration, enhanced evapotranspiration, etc., which in turn results in decreasing streamflow trends at lower-altitude watersheds. However, these patterns are masked at mid-altitudes because the resulting positive and negative trends balance each other. To support these hypotheses, we attempted to attribute the detected trends to specific causes. For this purpose, we analysed trends of filtered daily streamflow data, as the causes for these changes might be restricted to a smaller temporal scale than the annual one. This allowed for the explicit determination of the exact days of year (DOYs) when certain streamflow trends emerge, which were then linked with the corresponding DOYs of the trends and characteristic dates of other observed variables, e.g. the average DOY when temperature crosses the freezing point in spring. Based on these analyses, an empirical statistical model was derived that was able to simulate daily streamflow trends sufficiently well. Analyses of subdaily streamflow changes provided additional insights. Finally, the present study supports many modelling approaches in the literature which found out that the main drivers of alpine streamflow changes are increased glacial melt, earlier snowmelt and lower snow accumulation in wintertime. Y1 - 2015 U6 - https://doi.org/10.5194/hess-19-1225-2015 SN - 1027-5606 SN - 1607-7938 VL - 19 IS - 3 SP - 1225 EP - 1245 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Krause, Stefan A1 - Bauer, Andreas A1 - Morgner, Markus A1 - Bronstert, Axel T1 - Wasserhaushaltsmodellierung als Beitrag zur Erstellung eines nachhaltigen Flusseinzugsgebietsmanagements an der Unteren Havel Y1 - 2004 SN - 3-937758-18-6 ER - TY - JOUR A1 - Krause, Stefan A1 - Bronstert, Axel T1 - Approximation of Groundwater - Surface Water - Interactions in a Mesoscale Lowland River Catchment Y1 - 2004 ER - TY - JOUR A1 - Krause, Stefan A1 - Bronstert, Axel T1 - Wasserhaushaltssimulationen unter Einbeziehung von Grundwasser - Oberflächenwasser - Kopplung zur Optimierung szenarienbasierter Handlungsoptionen für ein nachhaltiges Flussgebietsmanagement an der Unteren Havel Y1 - 2004 SN - 3-89958-072-9 ER - TY - JOUR A1 - Krol, Maarten A1 - Jaeger, Annekathrin A1 - Bronstert, Axel A1 - Güntner, Andreas T1 - Integrated modelling of climate, water, soil, agricultural and socio-economic processes: A general introduction of the methodology and some exemplary results from the semi-arid north-east of Brazil JF - Journal of hydrology N2 - Many semi-arid regions are characterised by water scarcity and vulnerability of natural resources, pronounced climatic variability and social stress. Integrated studies including climatotogy, hydrology, and socio-econornic studies are required both for analysing the dynamic natural conditions and to assess possible strategies to make semi-arid regions Less vulnerable to the present and changing climate. The model introduced here dynamically describes the retationships between climate forcing, water availability, agriculture and selected societal processes. The model has been tailored to simulate the rather complex situation in the semi-and north-eastern Brazil in a quantitative manner including the sensitivity to external forcing, such as climate change. The selected results presented show the general functioning of the integrated model, with a primary focus on climate change impacts. It becomes evident that due to Large differences in regional climate scenarios, it is still impossible to give quantitative values for the most probable development, e.g., to assign probabilities to the simulated results. However, it becomes clear that water is a very crucial factor, and that an efficient and ecologically sound water management is a key question for the further development of that semi-arid region. The simulation results show that, independent of the differences in climate change scenarios, rain-fed farming is more vulnerable to drought impacts compared to irrigated farming. However, the capacity of irrigation and other water infrastructure systems to enhance resilience in respect to climatic fluctuations is significantly constrained given a significant negative precipitation trend. (c) 2005 Elsevier B.V. All rights reserved. KW - integrated modelling KW - integrated river basin management KW - water resources management KW - semi-arid hydrology KW - climate change Y1 - 2006 U6 - https://doi.org/10.1016/j.jhydrol.2005.12.021 SN - 0022-1694 VL - 328 IS - 3-4 SP - 417 EP - 431 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Krol, Marten S. A1 - Jaeger, Annekathrin A1 - Bronstert, Axel T1 - Integrated modelling of climate change impacts in northeastern brazil Y1 - 2003 ER - TY - JOUR A1 - Krol, Marten S. A1 - Jaeger, Annekathrin A1 - Bronstert, Axel A1 - Krywkow, J. T1 - The Semi-arid Integrated Model (SIM), a regional integrated model assessing water availability, vulnerability of ecosystems and society in NE-Brazil Y1 - 2001 ER - TY - JOUR A1 - Kumar, Satish A1 - Guntu, Ravi Kumar A1 - Agarwal, Ankit A1 - Villuri, Vasant Govind Kumar A1 - Pasupuleti, Srinivas A1 - Kaushal, Deo Raj A1 - Gosian, Ashwin Kumar A1 - Bronstert, Axel T1 - Multi-objective optimization for stormwater management by green-roofs and infiltration trenches to reduce urban flooding in central Delhi JF - Journal of hydrology N2 - Urban surface runoff management via best management practices (BMP) and low impact development (LID) has earned significant recognition owing to positive environmental and ecological impacts. However, due to the complexity of the parameters involved, the estimation of LID efficiency in attenuating the urban surface runoff at the watershed scale is challenging. A planning analysis of employing Green Roofs and Infiltration Trenches as BMPs/LIDs practices for urban surface runoff control is presented in this study. A multi-objective optimization decision-making framework is established by coupling SWMM (Storm Water Management Model) with NSGA-II models to check the performance of BMPs/LIDs concerning the cost-benefit analysis of LID at the watershed scale. Two urbanized areas belonging to Central Delhi in India were used as case studies. The results showed that the SWMM model is useful in simulating optimization problems for managing urban surface runoff. The optimum scenarios efficiently minimized the urban runoff volume while maintaining the BMPs/LIDs implementation costs and size. With BMPs/LIDs implementation, the reduction in runoff volume increases as expenses increase initially; however, there is no noticeable reduction in flood volume after a certain threshold. Contrasted with the haphazard arrangement of BMPs/LIDs, the proposed approach demonstrates 22%-24% runoff reductions for the same expenditures in watershed 1 and 23%-26% in watershed 2. The result of the study provides insights into planning and management of the urban surface runoff control with LID practices. The proposed framework assists the hydrologists in optimum selection and placements of BMPs/LIDs practices to acquire the most extreme ecological advantages with the least expenses. KW - Storm water management model KW - Genetic algorithm KW - NSGA-II KW - Best management practice KW - Low impact development KW - Cost-benefit Y1 - 2022 U6 - https://doi.org/10.1016/j.jhydrol.2022.127455 SN - 0022-1694 SN - 1879-2707 VL - 606 PB - Elsevier CY - Amsterdam ER - TY - BOOK A1 - Kundzewicz, Zbigniew W. A1 - Budhakooncharoen, Saisunee A1 - Bronstert, Axel A1 - Hoff, Holger A1 - Lettenmaier, Dennis P. A1 - Menzel, Lucas A1 - Schulze, Roland T1 - Floods and droughts : coping with variability and climate change ; thematic backround paper [for the International Conference on Freshwater 2001, Bonn, 3-7 December 2001] Y1 - 2001 UR - http://www.water-2001.de/co_doc/Floods.pdf PB - Secretariat of the International Conference on Freshwater CY - Bonn ER - TY - JOUR A1 - Kundzewicz, Zbigniew W. A1 - Budhakooncharoen, Saisunee A1 - Bronstert, Axel A1 - Hoff, Holger A1 - Lettenmaier, Dennis P. A1 - Menzel, Lucas A1 - Schulze, Roland T1 - Coping with variability and climate change : floods and droughts Y1 - 2001 ER -