TY - JOUR A1 - Bronstert, Axel A1 - Niehoff, Daniel A1 - Bürger, Gerd T1 - Effects of climate and land-use change on storm runoff generation : present knowledge and modelling capabilities Y1 - 2002 ER - TY - JOUR A1 - Menzel, Lucas A1 - Niehoff, Daniel A1 - Bürger, Gerd A1 - Bronstert, Axel T1 - Climate change impacts on river flooding : a modelling study of three meso-scale catchments Y1 - 2002 ER - TY - JOUR A1 - Didovets, Iulii A1 - Krysanova, Valentina A1 - Bürger, Gerd A1 - Snizhko, Sergiy A1 - Balabukh, Vira A1 - Bronstert, Axel T1 - Climate change impact on regional floods in the Carpathian region JF - Journal of hydrology : Regional studies N2 - Study region: Tisza and Prut catchments, originating on the slopes of the Carpathian mountains. Study focus: The study reported here investigates (i) climate change impacts on flood risk in the region, and (ii) uncertainty related to hydrological modelling, downscaling techniques and climate projections. The climate projections used in the study were derived from five GCMs, downscaled either dynamically with RCMs or with the statistical downscaling model XDS. The resulting climate change scenarios were applied to drive the eco-hydrological model SWIM, which was calibrated and validated for the catchments in advance using observed climate and hydrological data. The changes in the 30-year flood hazards and 98 and 95 percentiles of discharge were evaluated for the far future period (2071-2100) in comparison with the reference period (1981-2010). New hydrological insights for the region: The majority of model outputs under RCP 4.5 show a small to strong increase of the 30-year flood level in the Tisza ranging from 4.5% to 62%, and moderate increase in the Prut ranging from 11% to 22%. The impact results under RCP 8.5 are more uncertain with changes in both directions due to high uncertainties in GCM-RCM climate projections, downscaling methods and the low density of available climate stations. KW - Climate change impact KW - Floods KW - Hydrological modelling KW - SWIM KW - Tisza KW - Prut KW - Carpathians KW - Ukraine Y1 - 2019 U6 - https://doi.org/10.1016/j.ejrh.2019.01.002 SN - 2214-5818 VL - 22 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bürger, Gerd A1 - Pfister, A. A1 - Bronstert, Axel T1 - Temperature-Driven Rise in Extreme Sub-Hourly Rainfall JF - Journal of climate N2 - Estimates of present and future extreme sub-hourly rainfall are derived from a daily spatial followed by a sub-daily temporal downscaling, the latter of which incorporates a novel, and crucial, temperature sensitivity. Specifically, daily global climate fields are spatially downscaled to local temperature T and precipitation P, which are then disaggregated to a temporal resolution of 10 min using a multiplicative random cascade model. The scheme is calibrated and validated with a group of 21 station records of 10-min resolution in Germany. The cascade model is used in the classical (denoted as MC) and in the new T-sensitive (MC+) version, which respects local Clausius-Clapeyron (CC) effects such as CC scaling. Extreme P is positively biased in both MC versions. Observed T sensitivity is absent in MC but well reproduced by MC+. Long-term positive trends in extreme sub-hourly P are generally more pronounced and more significant in MC+ than in MC. In units of 10-min rainfall, observed centennial trends in annual exceedance counts (EC) of P > 5 mm are +29% and in 3-yr return levels (RL) +27%. For the RCP4.5-simulated future, higher extremes are projected in both versions MC and MC+: per century, EC increases by 30% for MC and by 83% for MC+; the RL rises by 14% for MC and by 33% for MC+. Because the projected daily P trends are negligible, the sub-daily signal is mainly driven by local temperature. KW - Extreme events KW - Rainfall KW - Climate change KW - Statistical techniques KW - Time series KW - Stochastic models Y1 - 2019 U6 - https://doi.org/10.1175/JCLI-D-19-0136.1 SN - 0894-8755 SN - 1520-0442 VL - 32 IS - 22 SP - 7597 EP - 7609 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Vormoor, Klaus Josef A1 - Rossler, Ole A1 - Bürger, Gerd A1 - Bronstert, Axel A1 - Weingartner, Rolf T1 - When timing matters-considering changing temporal structures in runoff response surfaces JF - Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change N2 - Scenario-neutral response surfaces illustrate the sensitivity of a simulated natural system, represented by a specific impact variable, to systematic perturbations of climatic parameters. This type of approach has recently been developed as an alternative to top-down approaches for the assessment of climate change impacts. A major limitation of this approach is the underrepresentation of changes in the temporal structure of the climate input data (i.e., the seasonal and day-to-day variability) since this is not altered by the perturbation. This paper presents a framework that aims to examine this limitation by perturbing both observed and projected climate data time series for a future period, which both serve as input into a hydrological model (the HBV model). The resulting multiple response surfaces are compared at a common domain, the standardized runoff response surface (SRRS). We apply this approach in a case study catchment in Norway to (i) analyze possible changes in mean and extreme runoff and (ii) quantify the influence of changes in the temporal structure represented by 17 different climate input sets using linear mixed-effect models. Results suggest that climate change induced increases in mean and peak flow runoff and only small changes in low flow. They further suggest that the effect of the different temporal structures of the climate input data considerably affects low flows and floods (at least 21% influence), while it is negligible for mean runoff. Y1 - 2017 U6 - https://doi.org/10.1007/s10584-017-1940-1 SN - 0165-0009 SN - 1573-1480 VL - 142 SP - 213 EP - 226 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Bürger, Gerd A1 - Heistermann, Maik A1 - Bronstert, Axel T1 - Towards subdaily rainfall disaggregation via Clausius-Clapeyron JF - Journal of hydrometeorology N2 - Two lines of research are combined in this study: first, the development of tools for the temporal disaggregation of precipitation, and second, some newer results on the exponential scaling of heavy short-term precipitation with temperature, roughly following the Clausius-Clapeyron (CC) relation. Having no extra temperature dependence, the traditional disaggregation schemes are shown to lack the crucial CC-type temperature dependence. The authors introduce a proof-of-concept adjustment of an existing disaggregation tool, the multiplicative cascade model of Olsson, and show that, in principal, it is possible to include temperature dependence in the disaggregation step, resulting in a fairly realistic temperature dependence of the CC type. They conclude by outlining the main calibration steps necessary to develop a full-fledged CC disaggregation scheme and discuss possible applications. Y1 - 2014 U6 - https://doi.org/10.1175/JHM-D-13-0161.1 SN - 1525-755X SN - 1525-7541 VL - 15 IS - 3 SP - 1303 EP - 1311 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Menzel, Lucas A1 - Bronstert, Axel A1 - Bürger, Gerd A1 - Krysanova, Valentina T1 - Environmental change scenarios and flood responses in the Elbe catchment (Germany) Y1 - 2000 ER - TY - JOUR A1 - Bürger, Gerd A1 - Pfister, Angela A1 - Bronstert, Axel T1 - Zunehmende Starkregenintensitäten als Folge der Klimaerwärmung T1 - Increasing intensity of heavy rainfall caused by global warming BT - Datenanalyse und Zukunftsprojektion BT - data analysis and future projections JF - Hydrologie und Wasserbewirtschaftung : HyWa = Hydrology and water resources management, Germany / Hrsg.: Fachverwaltungen des Bundes und der Länder N2 - Extreme rainfall events of short duration in the range of hours and below are increasingly coming into focus due to the resulting damage from flash floods and also due to their possible intensification by anthropogenic climate change. The current study investigates possible trends in heavy rainfall intensities for stations from Swiss and Austrian alpine regions as well as for the Emscher-Lippe area in North Rhine-Westphalia on the basis of partly very long (> 50 years) and temporally highly resolved time series (<= 15 minutes). It becomes clear that there is an increase in extreme rainfall intensities, which can be well explained by the warming of the regional climate: the analyses of long-term trends in exceedance counts and return levels show considerable uncertainties, but are in the order of 30 % increase per century. In addition, based on an "average" climate simulation for the 21st century, this paper describes a projection for extreme precipitation intensities at very high temporal resolution for a number of stations in the Emscher-Lippe region. A coupled spatial and temporal "downscaling" is applied, the key innovation of which is the consideration of the dependence of local rainfall intensity on air temperature. This procedure involves two steps: First, large-scale climate fields at daily resolution are statistically linked by regression to station temperature and precipitation values (spatial downscaling). In the second step, these station values are disaggregated to a temporal resolution of 10 minutes using a so-called multiplicative stochastic cascade model (MC) (temporal downscaling). The novel, temperature-sensitive variant additionally considers air temperature as an explanatory variable for precipitation intensities. Thus, the higher atmospheric moisture content expected with warming, which results from the Clausius-Clapeyron (CC) relationship, is included in the temporal downscaling.
For the statistical evaluation of the extreme short-term precipitation, the upper quantiles (99.9 %), exceedance counts (P > 5mm), and 3-yr return levels of the <= 15-min duration step has been used. Only by adding temperature is the observed temperature observed of the extreme quantiles ("CC scaling") well reproduced. When comparing observed data and present-day simulations of the model cascade, the temperature-sensitive procedure shows consistent results. Compared to trends in recent decades, similar or even larger increases in extreme intensities are projected for the future. This is remarkable in that these appear to be driven primarily by local temperature, as the projected trends in daily precipitation values are negligible for this region. N2 - Extreme Regenereignisse von kurzer Dauer im Bereich von Stunden und darunter rücken aufgrund der dadurch bedingten Schäden durch Sturzfluten und auch wegen ihrer möglichen Intensivierungen durch den anthropogenen Klimawandel immer stärker in den Fokus. Die vorliegende Studie untersucht auf Basis von teilweise sehr langen (> 50 Jahre) und zeitlich hochaufgelösten Zeitreihen (≤ 15 Minuten) mögliche Trends in Starkregenintensitäten für Stationen aus schweizerischen und österreichischen Alpenregionen sowie für das Emscher-Lippe-Gebiet in Nordrhein-Westfalen. Es wird deutlich, dass es eine Zunahme der extremen Niederschlagsintensitäten gibt, welche gut durch die Erwärmung des regionalen Klimas erklärt werden kann: Die Analysen langfristiger Trends der Überschreitungssummen und Wiederkehrniveaus zeigen zwar erhebliche Unsicherheiten, lassen jedoch eine Zunahme in einer Größenordnung von 30 % pro Jahrhundert erkennen. Zudem wird in diesem Beitrag, basierend auf einer "mittleren" Klimasimulation für das 21. Jahrhundert, für ausgewählte Stationen der Emscher-Lippe-Region eine Projektion für extreme Niederschlagsintensitäten in sehr hoher zeitlicher Auflösung beschrieben. Dabei wird ein gekoppeltes räumliches und zeitliches "Downscaling" angewendet, dessen entscheidende Neuerung die Berücksichtigung der Abhängigkeit der lokalen Regenintensität von der Lufttemperatur ist. Dieses Verfahren beinhaltet zwei Schritte: Zuerst werden großräumige Klimafelder in täglicher Auflösung durch Regression mit den Temperatur- und Niederschlagswerten der Stationen statistisch verbunden (räumliches Downscaling). Im zweiten Schritt werden dann diese Stationswerte mithilfe eines sogenannten multiplikativen stochastischen Kaskadenmodells (MC) auf eine zeitliche Auflösung von 10 Minuten disaggregiert (zeitliches Downscaling). Die neuartige, temperatursensitive Variante berücksichtigt zusätzlich die Lufttemperatur als erklärende Variable für die Niederschlagsintensitäten. Dadurch wird der mit einer Erwärmung zu erwartende höhere atmosphärische Feuchtegehalt, welcher sich aus der Clausius-Clapeyron-Beziehung (CC) ergibt, mit in das zeitliche Downscaling einbezogen. Für die statistische Auswertung der extremen kurzfristigen Niederschläge wurden die oberen Quantile (99,9 %), Überschreitungssummen (ÜS, P > 5 mm) und 3-jährliche Wiederkehrniveaus (WN) einer Dauerstufe von ≤ 15-Minuten betrachtet. Diese Auswahl erlaubt die gleichzeitige Analyse sowohl von Extremwertstatistiken als auch von deren langfristigen Trends; leichte Abweichungen von dieser Wahl beeinflussen die Hauptergebnisse nur unwesentlich. Nur durch die Hinzunahme der Temperatur wird die beobachtete Temperaturabhängigkeit der extremen Quantile (CC-Scaling) gut wiedergegeben. Bei Vergleich von Beobachtungsdaten und Gegenwartssimulationen der Modellkaskade zeigt das temperatursensitive Verfahren konsistente Ergebnisse. Im Vergleich zu den Entwicklungen der letzten Jahrzehnte werden für die Zukunft ähnliche oder sogar noch stärkere Anstiege der extremen Niederschlagsintensitäten projiziert. Dies ist insofern bemerkenswert, als diese anscheinend hauptsächlich durch die örtliche Temperatur bestimmt werden, denn die projizierten Trends der Niederschlags-Tageswerte sind für diese Region vernachlässigbar. KW - heavy rainfall KW - short duration KW - global warming KW - Clausius-Clapeyron KW - equation KW - precipitation intensity KW - multiplicative cascade model KW - Strakregen KW - kurzfristige Dauerstufe KW - Klimawandel KW - Clausius-Clapeyron-Gleichung KW - Niederschlagsintensitäten KW - Multiplikatives Kaskadenmodel Y1 - 2021 U6 - https://doi.org/10.5675/HyWa_2021.6_1 SN - 1439-1783 SN - 2749-859X VL - 65 IS - 6 SP - 262 EP - 271 PB - Bundesanst. für Gewässerkunde CY - Koblenz ER - TY - JOUR A1 - Mtilatila, Lucy Mphatso Ng'ombe A1 - Bronstert, Axel A1 - Bürger, Gerd A1 - Vormoor, Klaus Josef T1 - Meteorological and hydrological drought assessment in Lake Malawi and Shire River basins (1970-2013) JF - Hydrological sciences journal = Journal des sciences hydrologiques N2 - The study assesses the variability and trends of both meteorological and hydrological droughts from 1970 to 2013 in Lake Malawi and Shire River basins using the standardized precipitation index (SPI) and standardized precipitation and evaporation index (SPEI) for meteorological droughts and the lake level change index (LLCI) for hydrological droughts. Trends and slopes in droughts and drought drivers are estimated using Mann-Kendall test and Sen's slope, respectively. Results suggest that meteorological droughts are increasing due to a decrease in precipitation which is exacerbated by an increase in temperature (potential evapotranspiration). The hydrological system of Lake Malawi seems to have a >24-month memory towards meteorological conditions, since the 36-month SPEI can predict hydrological droughts 10 months in advance. The study has found the critical lake level that would trigger hydrological drought to be 474.1 m a.s.l. The increase in drought is a concern as this will have serious impacts on water resources and hydropower supply in Malawi. KW - Lake Malawi basin KW - Shire River basin KW - meteorological drought KW - hydrological drought KW - SPEI KW - SPI KW - trend analysis Y1 - 2020 U6 - https://doi.org/10.1080/02626667.2020.1837384 SN - 0262-6667 SN - 2150-3435 VL - 65 IS - 16 SP - 2750 EP - 2764 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - GEN A1 - Rottler, Erwin A1 - Bronstert, Axel A1 - Bürger, Gerd A1 - Rakovec, Oldrich T1 - Projected changes in Rhine River flood seasonality under global warming T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Climatic change alters the frequency and intensity of natural hazards. In order to assess potential future changes in flood seasonality in the Rhine River Basin, we analyse changes in streamflow, snowmelt, precipitation, and evapotranspiration at 1.5, 2.0 and 3.0 ◦C global warming levels. The mesoscale Hydrological Model (mHM) forced with an ensemble of climate projection scenarios (five general circulation models under three representative concentration pathways) is used to simulate the present and future climate conditions of both, pluvial and nival hydrological regimes. Our results indicate that the interplay between changes in snowmelt- and rainfall-driven runoff is crucial to understand changes in streamflow maxima in the Rhine River. Climate projections suggest that future changes in flood characteristics in the entire Rhine River are controlled by both, more intense precipitation events and diminishing snow packs. The nature of this interplay defines the type of change in runoff peaks. On the sub-basin level (the Moselle River), more intense rainfall during winter is mostly counterbalanced by reduced snowmelt contribution to the streamflow. In the High Rhine (gauge at Basel), the strongest increases in streamflow maxima show up during winter, when strong increases in liquid precipitation intensity encounter almost unchanged snowmelt-driven runoff. The analysis of snowmelt events suggests that at no point in time during the snowmelt season, a warming climate results in an increase in the risk of snowmelt-driven flooding. We do not find indications of a transient merging of pluvial and nival floods due to climate warming. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1164 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-522962 SN - 1866-8372 ER - TY - GEN A1 - Rottler, Erwin A1 - Francke, Till A1 - Bürger, Gerd A1 - Bronstert, Axel T1 - Long-term changes in central European river discharge for 1869–2016 BT - Impact of changing snow covers, reservoir constructions and an intensified hydrological cycle T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Recent climatic changes have the potential to severely alter river runoff, particularly in snow-dominated river basins. Effects of changing snow covers superimpose with changes in precipitation and anthropogenic modifications of the watershed and river network. In the attempt to identify and disentangle long-term effects of different mechanisms, we employ a set of analytical tools to extract long-term changes in river runoff at high resolution. We combine quantile sampling with moving average trend statistics and empirical mode decomposition and apply these tools to discharge data recorded along rivers with nival, pluvial and mixed flow regimes as well as temperature and precipitation data covering the time frame 1869-2016. With a focus on central Europe, we analyse the long-term impact of snow cover and precipitation changes along with their interaction with reservoir constructions. Our results show that runoff seasonality of snow-dominated rivers decreases. Runoff increases in winter and spring, while discharge decreases in summer and at the beginning of autumn. We attribute this redistribution of annual flow mainly to reservoir constructions in the Alpine ridge. During the course of the last century, large fractions of the Alpine rivers were dammed to produce hydropower. In recent decades, runoff changes induced by reservoir constructions seem to overlap with changes in snow cover. We suggest that Alpine signals propagate downstream and affect runoff far outside the Alpine area in river segments with mixed flow regimes. Furthermore, our results hint at more (intense) rain-fall in recent decades. Detected increases in high discharge can be traced back to corresponding changes in precipitation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1412 KW - empirical mode decomposition KW - atmospheric blocking KW - heavy precipitation KW - streamflow trends KW - climate-change KW - rhine basin KW - time-series KW - events KW - Switzerland KW - variability Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-517763 SN - 1866-8372 IS - 4 ER - TY - JOUR A1 - Rottler, Erwin A1 - Francke, Till A1 - Bürger, Gerd A1 - Bronstert, Axel T1 - Long-term changes in central European river discharge for 1869–2016 BT - impact of changing snow covers, reservoir constructions and an intensified hydrological cycle JF - Hydrology and Earth System Sciences N2 - Recent climatic changes have the potential to severely alter river runoff, particularly in snow-dominated river basins. Effects of changing snow covers superimpose with changes in precipitation and anthropogenic modifications of the watershed and river network. In the attempt to identify and disentangle long-term effects of different mechanisms, we employ a set of analytical tools to extract long-term changes in river runoff at high resolution. We combine quantile sampling with moving average trend statistics and empirical mode decomposition and apply these tools to discharge data recorded along rivers with nival, pluvial and mixed flow regimes as well as temperature and precipitation data covering the time frame 1869-2016. With a focus on central Europe, we analyse the long-term impact of snow cover and precipitation changes along with their interaction with reservoir constructions. Our results show that runoff seasonality of snow-dominated rivers decreases. Runoff increases in winter and spring, while discharge decreases in summer and at the beginning of autumn. We attribute this redistribution of annual flow mainly to reservoir constructions in the Alpine ridge. During the course of the last century, large fractions of the Alpine rivers were dammed to produce hydropower. In recent decades, runoff changes induced by reservoir constructions seem to overlap with changes in snow cover. We suggest that Alpine signals propagate downstream and affect runoff far outside the Alpine area in river segments with mixed flow regimes. Furthermore, our results hint at more (intense) rain-fall in recent decades. Detected increases in high discharge can be traced back to corresponding changes in precipitation. KW - empirical mode decomposition KW - atmospheric blocking KW - heavy precipitation KW - streamflow trends KW - climate-change KW - rhine basin KW - time-series KW - events KW - Switzerland KW - variability Y1 - 2020 U6 - https://doi.org/10.5194/hess-24-1721-2020 SN - 1027-5606 SN - 1607-7938 VL - 24 IS - 4 SP - 1721 EP - 1740 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Rottler, Erwin A1 - Bronstert, Axel A1 - Bürger, Gerd A1 - Rakovec, Oldrich T1 - Projected changes in Rhine River flood seasonality under global warming JF - Hydrology and earth system sciences : HESS / European Geosciences Union N2 - Climatic change alters the frequency and intensity of natural hazards. In order to assess potential future changes in flood seasonality in the Rhine River Basin, we analyse changes in streamflow, snowmelt, precipitation, and evapotranspiration at 1.5, 2.0 and 3.0 ◦C global warming levels. The mesoscale Hydrological Model (mHM) forced with an ensemble of climate projection scenarios (five general circulation models under three representative concentration pathways) is used to simulate the present and future climate conditions of both, pluvial and nival hydrological regimes. Our results indicate that the interplay between changes in snowmelt- and rainfall-driven runoff is crucial to understand changes in streamflow maxima in the Rhine River. Climate projections suggest that future changes in flood characteristics in the entire Rhine River are controlled by both, more intense precipitation events and diminishing snow packs. The nature of this interplay defines the type of change in runoff peaks. On the sub-basin level (the Moselle River), more intense rainfall during winter is mostly counterbalanced by reduced snowmelt contribution to the streamflow. In the High Rhine (gauge at Basel), the strongest increases in streamflow maxima show up during winter, when strong increases in liquid precipitation intensity encounter almost unchanged snowmelt-driven runoff. The analysis of snowmelt events suggests that at no point in time during the snowmelt season, a warming climate results in an increase in the risk of snowmelt-driven flooding. We do not find indications of a transient merging of pluvial and nival floods due to climate warming. Y1 - 2020 U6 - https://doi.org/10.5194/hess-25-2353-2021 SN - 1607-7938 SN - 1027-5606 VL - 25 IS - 5 SP - 2353 EP - 2371 PB - Copernicus Publications CY - Göttingen ER -