TY - JOUR A1 - Kath, Nadja J. A1 - Boit, Alice A1 - Guill, Christian A1 - Gaedke, Ursula T1 - Accounting for activity respiration results in realistic trophic transfer efficiencies in allometric trophic network (ATN) models JF - Theoretical ecology N2 - Allometric trophic network (ATN) models offer high flexibility and scalability while minimizing the number of parameters and have been successfully applied to investigate complex food web dynamics and their influence on food web diversity and stability. However, the realism of ATN model energetics has never been assessed in detail, despite their critical influence on dynamic biomass and production patterns. Here, we compare the energetics of the currently established original ATN model, considering only biomass-dependent basal respiration, to an extended ATN model version, considering both basal and assimilation-dependent activity respiration. The latter is crucial in particular for unicellular and invertebrate organisms which dominate the metabolism of pelagic and soil food webs. Based on metabolic scaling laws, we show that the extended ATN version reflects the energy transfer through a chain of four trophic levels of unicellular and invertebrate organisms more realistically than the original ATN version. Depending on the strength of top-down control, the original ATN model yields trophic transfer efficiencies up to 71% at either the third or the fourth trophic level, which considerably exceeds any realistic values. In contrast, the extended ATN version yields realistic trophic transfer efficiencies 30% at all trophic levels, in accordance with both physiological considerations and empirical evidence from pelagic systems. Our results imply that accounting for activity respiration is essential for consistently implementing the metabolic theory of ecology in ATN models and for improving their quantitative predictions, which makes them more powerful tools for investigating the dynamics of complex natural communities. KW - Food web KW - Trophic transfer efficiency KW - Allometric trophic network model KW - Allometry KW - Energy transfer KW - Activity respiration Y1 - 2018 U6 - https://doi.org/10.1007/s12080-018-0378-z SN - 1874-1738 SN - 1874-1746 VL - 11 IS - 4 SP - 453 EP - 463 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Boit, Alice A1 - Gaedke, Ursula T1 - Benchmarking successional progress in a quantitative food web JF - PLoS one N2 - Central to ecology and ecosystem management, succession theory aims to mechanistically explain and predict the assembly and development of ecological communities. Yet processes at lower hierarchical levels, e. g. at the species and functional group level, are rarely mechanistically linked to the under-investigated system-level processes which drive changes in ecosystem properties and functioning and are comparable across ecosystems. As a model system for secondary succession, seasonal plankton succession during the growing season is readily observable and largely driven autogenically. We used a long-term dataset from large, deep Lake Constance comprising biomasses, auto-and heterotrophic production, food quality, functional diversity, and mass-balanced food webs of the energy and nutrient flows between functional guilds of plankton and partly fish. Extracting population-and system-level indices from this dataset, we tested current hypotheses about the directionality of successional progress which are rooted in ecosystem theory, the metabolic theory of ecology, quantitative food web theory, thermodynamics, and information theory. Our results indicate that successional progress in Lake Constance is quantifiable, passing through predictable stages. Mean body mass, functional diversity, predator-prey weight ratios, trophic positions, system residence times of carbon and nutrients, and the complexity of the energy flow patterns increased during succession. In contrast, both the mass-specific metabolic activity and the system export decreased, while the succession rate exhibited a bimodal pattern. The weighted connectance introduced here represents a suitable index for assessing the evenness and interconnectedness of energy flows during succession. Diverging from earlier predictions, ascendency and eco-exergy did not increase during succession. Linking aspects of functional diversity to metabolic theory and food web complexity, we reconcile previously disjoint bodies of ecological theory to form a complete picture of successional progress within a pelagic food web. This comprehensive synthesis may be used as a benchmark for quantifying successional progress in other ecosystems. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0090404 SN - 1932-6203 VL - 9 IS - 2 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Boit, Alice A1 - Martinez, Neo D. A1 - Williams, Richard J. A1 - Gaedke, Ursula T1 - Mechanistic theory and modelling of complex food-web dynamics in Lake Constance JF - Ecology letters N2 - Mechanistic understanding of consumer-resource dynamics is critical to predicting the effects of global change on ecosystem structure, function and services. Such understanding is severely limited by mechanistic models inability to reproduce the dynamics of multiple populations interacting in the field. We surpass this limitation here by extending general consumer-resource network theory to the complex dynamics of a specific ecosystem comprised by the seasonal biomass and production patterns in a pelagic food web of a large, well-studied lake. We parameterised our allometric trophic network model of 24 guilds and 107 feeding relationships using the lakes food web structure, initial spring biomasses and body-masses. Adding activity respiration, the detrital loop, minimal abiotic forcing, prey resistance and several empirically observed rates substantially increased the model's fit to the observed seasonal dynamics and the size-abundance distribution. This process illuminates a promising approach towards improving food-web theory and dynamic models of specific habitats. KW - Allometric Trophic Network model KW - community ecology KW - food web KW - multi-trophic dynamics KW - seasonal plankton succession Y1 - 2012 U6 - https://doi.org/10.1111/j.1461-0248.2012.01777.x SN - 1461-023X VL - 15 IS - 6 SP - 594 EP - 602 PB - Wiley-Blackwell CY - Hoboken ER -