TY - JOUR A1 - Herzschuh, Ulrike A1 - Pestryakova, Luidmila Agafyevna A1 - Savelieva, Larissa A. A1 - Heinecke, Liv A1 - Böhmer, Thomas A1 - Biskaborn, Boris K. A1 - Andreev, Andrei A1 - Ramisch, Arne A1 - Shinneman, Avery L. C. A1 - Birks, H. John B. T1 - Siberian larch forests and the ion content of thaw lakes form a geochemically functional entity JF - Nature Communications N2 - Siberian larch forests growing on shallow permafrost soils have not, until now, been considered to be controlling the abiotic and biotic characteristics of the vast number of thaw-lake ecosystems. Here we show, using four independent data sets (a modern data set from 201 lakes from the tundra to taiga, and three lake-core records), that lake-water geochemistry in Yakutia is highly correlated with vegetation. Alkalinity increases with catchment forest density. We postulate that in this arid area, higher evapotranspiration in larch forests compared with that in the tundra vegetation leads to local salt accumulation in soils. Solutes are transported to nearby thaw lakes during rain events and snow melt, but are not fully transported into rivers, because there is no continuous groundwater flow within permafrost soils. This implies that potentially large shifts in the chemical characteristics of aquatic ecosystems to known warming are absent because of the slow response of catchment forests to climate change. Y1 - 2013 U6 - https://doi.org/10.1038/ncomms3408 SN - 2041-1723 VL - 4 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Herzschuh, Ulrike A1 - Birks, H. John B. A1 - Laepple, Thomas A1 - Andreev, Andrei A1 - Melles, Martin A1 - Brigham-Grette, Julie T1 - Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia JF - Nature Communications N2 - Broad-scale climate control of vegetation is widely assumed. Vegetation-climate lags are generally thought to have lasted no more than a few centuries. Here our palaeoecological study challenges this concept over glacial–interglacial timescales. Through multivariate analyses of pollen assemblages from Lake El’gygytgyn, Russian Far East and other data we show that interglacial vegetation during the Plio-Pleistocene transition mainly reflects conditions of the preceding glacial instead of contemporary interglacial climate. Vegetation–climate disequilibrium may persist for several millennia, related to the combined effects of permafrost persistence, distant glacial refugia and fire. In contrast, no effects from the preceding interglacial on glacial vegetation are detected. We propose that disequilibrium was stronger during the Plio-Pleistocene transition than during the Mid-Pliocene Warm Period when, in addition to climate, herbivory was important. By analogy to the past, we suggest today’s widespread larch ecosystem on permafrost is not in climate equilibrium. Vegetation-based reconstructions of interglacial climates used to assess atmospheric CO2–temperature relationships may thus yield misleading simulations of past global climate sensitivity. Y1 - 2016 U6 - https://doi.org/10.1038/ncomms11967 SN - 2041-1723 VL - 7 PB - Nature Publ. Group CY - London ER -