TY - JOUR A1 - Herzschuh, Ulrike A1 - Birks, H. John B. A1 - Mischke, Steffen A1 - Zhang, Chengjun A1 - Böhner, Jürgen T1 - A modern pollen-climate calibration set based on lake sediments from the Tibetan Plateau and its application to a Late Quaternary pollen record from the Qilian Mountains N2 - Aim: Fossil pollen spectra from lake sediments on the Tibetan Plateau have been used for qualitative climate reconstruction, but no modern pollen-climate calibration set based on lake sediments is available to infer past climate quantitatively. This study aims to develop such a dataset and apply it to fossil data. Location: The Tibetan Plateau, between 30 and 40 degrees N and 87 and 103 degrees E. Methods: We collected surface sediments from 112 lakes and analysed them palynologically. The lakes span a wide range of mean annual precipitation (P-ann; 31-1022 mm), mean annual temperature (T-ann; -6.5 to 1 degrees C), and mean July temperature (T-July; 2.6-19.7 degrees C). Redundancy analysis showed that the modern pollen spectra are characteristic of their respective vegetation types and local climate. Transfer functions for P-ann, T-ann and T-July were developed with weighted averaging partial least squares. Model performance was assessed by leave-one-out cross-validation. Results: The root mean square errors of prediction (RMSEP) were 104 mm (P-ann), 1.18 degrees C (T-ann) and 1.17 degrees C (T-July). The RMSEPs, when expressed as percentages of the gradient sampled, were 10.6% (P-ann), 15.7% (T-ann) and 11.9% (T-July). These low values indicate the good performance of our models. An application of the models to fossil pollen spectra covering the last c. 50 kyr yielded realistic results for Luanhaizi Lake in the Qilian Mountains on the north-eastern Tibetan Plateau (modern P-ann 480 mm; T-ann-1 degrees C). T-ann and P-ann values similar to present ones were reconstructed for late Marine Isotope Stage 3, with minimum values for the Last Glacial Maximum (c. 300 mm and 2 degrees C below present), and maximum values for the early Holocene (c. 70 mm and 0.5 degrees C greater than present). Main conclusions: The modern pollen-climate calibration set will potentially be useful for quantitative climate reconstructions from lake-sediment pollen spectra from the Tibetan Plateau, an area of considerable climatic and biogeographical importance. Y1 - 2010 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0305-0270 U6 - https://doi.org/10.1111/j.1365-2699.2009.02245.x SN - 0305-0270 ER - TY - JOUR A1 - Wang, Y. A1 - Herzschuh, Ulrike A1 - Shumilovskikh, L. S. A1 - Mischke, Steffen A1 - Birks, H. John B. A1 - Wischnewski, J. A1 - Böhner, Jürgen A1 - Schluetz, F. A1 - Lehmkuhl, F. A1 - Diekmann, Bernhard A1 - Wuennemann, B. A1 - Zhang, C. T1 - Open Access Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum - extending the concept of pollen source area to pollen-based climate reconstructions from large lakes JF - Climate of the past : an interactive open access journal of the European Geosciences Union N2 - Pollen records from large lakes have been used for quantitative palaeoclimate reconstruction, but the influences that lake size (as a result of species-specific variations in pollen dispersal patterns that smaller pollen grains are more easily transported to lake centre) and taphonomy have on these climatic signals have not previously been systematically investigated. We introduce the concept of pollen source area to pollen-based climate calibration using the north-eastern Tibetan Plateau as our study area. We present a pollen data set collected from large lakes in the arid to semi-arid region of central Asia. The influences that lake size and the inferred pollen source areas have on pollen compositions have been investigated through comparisons with pollen assemblages in neighbouring lakes of various sizes. Modern pollen samples collected from different parts of Lake Donggi Cona (in the north-eastern part of the Tibetan Plateau) reveal variations in pollen assemblages within this large lake, which are interpreted in terms of the species-specific dispersal and depositional patterns for different types of pollen, and in terms of fluvial input components. We have estimated the pollen source area for each lake individually and used this information to infer modern climate data with which to then develop a modern calibration data set, using both the multivariate regression tree (MRT) and weighted-averaging partial least squares (WA-PLS) approaches. Fossil pollen data from Lake Donggi Cona have been used to reconstruct the climate history of the north-eastern part of the Tibetan Plateau since the Last Glacial Maximum (LGM). The meanannual precipitation was quantitatively reconstructed using WA-PLS: extremely dry conditions are found to have dominated the LGM, with annual precipitation of around 100 mm, which is only 32% of present-day precipitation. A gradually increasing trend in moisture conditions during the Late Glacial is terminated by an abrupt reversion to a dry phase that lasts for about 1000 yr and coincides with "Heinrich event 1" in the North Atlantic region. Subsequent periods corresponding to the Bolling/Allerod interstadial, with annual precipitation (P-ann) of about 350 mm, and the Younger Dryas event (about 270 mm P-ann) are followed by moist conditions in the early Holocene, with annual precipitation of up to 400 mm. A drier trend after 9 cal. ka BP is followed by a second wet phase in the middle Holocene, lasting until 4.5 cal. ka BP. Relatively steady conditions with only slight fluctuations then dominate the late Holocene, resulting in the present climatic conditions. The climate changes since the LGM have been primarily driven by deglaciation and fluctuations in the intensity of the Asian summer monsoon that resulted from changes in the Northern Hemisphere summer solar insolation, as well as from changes in the North Atlantic climate through variations in the circulation patterns and intensity of the westerlies. Y1 - 2014 U6 - https://doi.org/10.5194/cp-10-21-2014 SN - 1814-9324 SN - 1814-9332 VL - 10 IS - 1 SP - 21 EP - 39 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Herzschuh, Ulrike A1 - Ni, Jian A1 - Birks, H. John B. A1 - Böhner, Jürgen T1 - Driving forces of mid-Holocene vegetation shifts on the upper Tibetan Plateau, with emphasis on changes in atmospheric CO2 concentrations JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Numerous pollen records across the upper Tibetan Plateau indicate that in the early part of the mid-Holocene, Kobresia-rich high-alpine meadows invaded areas formerly dominated by alpine steppe vegetation rich in Artemisia. We examine climate, land-use, and CO2 concentration changes as potential drivers for this marked vegetation change. The climatic implications of these vegetational shifts are explored by applying a newly developed pollen-based moisture-balance transfer-function to fossil pollen spectra from Koucha Lake on the north-eastern Tibetan Plateau (34.0 degrees N; 97.2 degrees E; 4540 m a.s.l.) and Xuguo Lake on the central Tibetan Plateau (31.97 degrees N; 90.3 degrees E; 4595 m a.s.l.), both located in the meadow-steppe transition zone. Reconstructed moisture-balances were markedly reduced (by similar to 150-180 mm) during the early mid-Holocene compared to the late-Holocene. These findings contradict most other records from the Indian monsoonal realm and also most non-pollen records from the Tibetan Plateau that indicate a rather wet early- and mid-Holocene. The extent and timing of anthropogenic land-use involving grazing by large herbivores on the upper Tibetan Plateau and its possible impacts on high-alpine vegetation are still mostly unknown due to the lack of relevant archaeological evidence. Arguments against a mainly anthropogenic origin of Kobresia high-alpine meadows are the discovery of the widespread expansion of obviously 'natural' Kobresia meadows on the south-eastern Tibetan Plateau during the Lateglacial period indicating the natural origin of this vegetation type and the lack of any concurrence between modern human-driven vegetation shifts and the mid-Holocene compositional changes. Vegetation types are known to respond to atmospheric CO2 concentration changes, at least on glacial-interglacial scales. This assumption is confirmed by our sensitivity study where we model Tibetan vegetation at different CO2 concentrations of 375 (present-day), 260 (early Holocene), and 650 ppm (future scenario) using the BIOME4 global vegetation model. Previous experimental studies confirm that vegetation growing on dry and high sites is particularly sensitive to CO2 changes. Here we propose that the replacement of drought-resistant alpine steppes (that are well adapted to low CO2 concentrations) by mesic Kobresia meadows can, at least, be partly interpreted as a response to the increase of CO2 concentration since 7000 years ago due to fertilization and water-saving effects. Our hypothesis is corroborated by former CO2 fertilization experiments performed on various dry grasslands and by the strong recent expansion of high-alpine meadows documented by remote sensing studies in response to recent CO2 increases. KW - Tibetan Plateau KW - Pollen KW - Holocene KW - Transfer function KW - Kobresia meadow KW - Atmospheric CO2 concentration Y1 - 2011 U6 - https://doi.org/10.1016/j.quascirev.2011.03.007 SN - 0277-3791 VL - 30 IS - 15-16 SP - 1907 EP - 1917 PB - Elsevier CY - Oxford ER -