TY - JOUR A1 - Bergner, Andreas G. N. A1 - Trauth, Martin H. T1 - Comparison of the hydrologic and hydrochemical evolution of Lake Naivasha (Kenya) during three highstands between 175 and 60 kyr BP N2 - Three diatomite beds exposed in the Ol Njorowa Gorge south of Lake Naivasha, Central Kenya Rift, document three major lake-level highstands between 175 and 60 kyr BP. Diatom transfer-function estimates of hydrological and hydrochemical parameters suggest that a deep and large freshwater lake existed during the highstands at 135 and 80 kyr BP. In contrast, a shallower but more expanded freshwater lake existed at 110 kyr BP. The best analog for the most extreme highstand at 135 kyr BP is the highstand during the Early Holocene humid period from 10 to 6 kyr BP. The environmental conditions as reconstructed from diatom assemblages suggest long-lasting episodes of increased humidity during the high lake periods. This contrasts to the modern situation with a relatively shallow Lake Naivasha characterized by rapid water level fluctuations within a few decades. The most likely cause for the variable hydrological conditions since 175 kyr BP is orbitally driven insolation changes on the equator and increased lateral moisture transport from the ocean. Y1 - 2004 UR - http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V6R-4DJBSX8-1- N&_cdi=5821&_user=1584062&_orig=search&_coverDate=12%2F02%2F2004&_sk=997849998&view=c&wchp=dGLbVzz- zSkzS&md5=b3fffa6b95a86827cd25fd74be3 ER - TY - THES A1 - Bergner, Andreas G. N. T1 - Lake-level fluctuations and Late Quaternary climate change in the Central Kenya Rift N2 - Diese Arbeit beschäftigt sich mit der Rekonstruktion von Klima in historischen Zeiten im tropischen Ostafrika. Nach einer Übersicht über die heutigen klimatischen Bedingungen der Tropen und den Besonderheiten des ostafrikanischen Klimas, werden die Möglichkeiten der Klimarekonstruktion anhand von Seesedimenten diskutiert. Es zeigt sich, dass die hoch gelegenen Seen des Zentralen Keniarifts, als Teil des Ostafrikanischen Grabensystems, besonders geeignete Klimaarchive darstellen, da sie sensibel auf klimatische Veränderungen reagieren. Veränderungen der Seechemie, wie sie in den Sedimenten aufgezeichnet werden, eignen sich um die natürlichen Schwankungen in der Quartären Klimageschichte Ostafrikas nachzuzeichnen. Basierend auf der guten 40Ar/39Ar- und 14C-Datierbarkeit der Seesedimente wird eine Chronologie der paläoökologischen Bedingungen anhand von Diatomeenvergesellschaftungen restauriert. Dabei zeigen sich für die Seen Nakuru, Elmenteita und Naivasha kurzfristige Transgression/ Regressions-Zyklen im Intervall von ca. 11.000 Jahren während des letzten (ca. 12.000 bis 6.000 J.v.H.) und vorletzten Interglazials (ca. 140.000 bis 60.000 J.v.H.). Zusätzlich kann ein allgemeiner, langfristiger Trend der Seeentwicklung von großen Frischwasserseen hin zu stärker salinen Gewässern innerhalb der letzen 1 Mio. Jahre festgestellt werden. Mittels Transferfunktionen und einem hydro-klimatischen Modellansatz können die restaurierten limnologischen Bedingungen als klimatische Schwankungen des Einzugsgebietes interpretiert werden. Wenngleich auch der zusätzliche Einfluss von tektonischen Veränderungen auf das Seeeinzugsgebiet und das Gewicht veränderter Grundwasserströme abgewogen werden, zeigt sich, dass allein geringfügig erhöhte Niederschlagswerte von ca. 30±10 % zu dramatischen Seespiegelanstiegen im Zentralen Keniarift führen. Aufgrund der etablierten hydrrologisch-klimatischen Wechselwirkungen werden Rückschlüsse auf die natürliche Variabilität des ostafrikanischen Klimas gezogen. Zudem wird die Sensitivität der Keniarift-Seen in Bezug auf die Stärke der äquatorialen Insolation und hinsichtilch variabler Oberflächenwassertemperaturen des Indischen Ozeans bewertet. N2 - In this work, an approach of paleoclimate reconstruction for tropical East Africa is presented. After giving a short summary of modern climate conditions in the tropics and the East African climate peculiarity, the potential of reconstructing climate from paleolake sediments is discussed. As demonstrated, the hydrologic sensitivity of high-elevated closed-basin lakes in the Central Kenya Rift yields valuable guaranties for the establishment of long-term climate records. Temporal fluctuations of the limnological characteristics saved in the lake sediments are used to define variations in the Quaternary climate history. Based on diatom analyses in radiocarbon- and 40Ar/39Ar-dated sediments, a chronology of paleoecologic fluctuations is developed for the Central Kenya Rift -lakes Nakuru, Elmenteita and Naivasha. At least during the penultimate interglacial (around 140 to 60 kyr BP) and during the last interglacial (around 12 to 4 kyr BP), these lakes experienced several transgression-regression cycles on time intervals of about 11,000 years. Additionally, a long-term trend of lake evolution is found suggesting the general succession from deep freshwater lakes towards more saline waters during the last million years. Using ecologic transfer functions and a simple lake-balance model, the observed paleohydrologic fluctuations are linked to potential precipitation-evaporation changes in the lake basins. Though also tectonic influences on the drainage pattern and the effect of varied seepage are investigated, it can be shown that already a small increase in precipitation of about 30±10 % may have affected the hydrologic budget of the intra-rift lakes within the reconstructed range. The findings of this study help to assess the natural climate variability of East Africa. They furthermore reflect the sensitivity of the Central Kenya Rift -lakes to fluctuations of large-scale climate parameters, such as solar radiation and sea-surface temperatures of the Indian Ocean. KW - Geologie KW - Diatomeen KW - Seen KW - Paläoklima KW - Modellierung KW - Afrika KW - geology KW - diatoms KW - lake KW - paleoclimate KW - modeling KW - Africa Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001428 ER - TY - JOUR A1 - Dühnforth, Miriam A1 - Bergner, Andreas G. N. A1 - Trauth, Martin H. T1 - Early Holocene water budget of the Nakuru-Elmenteita basin, Central Kenya Rift Y1 - 2008 UR - http://www.springerlink.com/content/100294 U6 - https://doi.org/10.1007/s10933-006-9003-z SN - 0921-2728 ER - TY - JOUR A1 - Trauth, Martin H. A1 - Bergner, Andreas G. N. A1 - Foerster, Verena A1 - Junginger, Annett A1 - Maslin, Mark A. A1 - Schäbitz, Frank T1 - Episodes of environmental stability versus instability in Late Cenozoic lake records of Eastern Africa JF - Journal of human evolution N2 - Episodes of environmental stability and instability may be equally important for African hominin speciation, dispersal, and cultural innovation. Three examples of a change from stable to unstable environmental conditions are presented on three different time scales: (1) the Mid Holocene (MH) wet dry transition in the Chew Bahir basin (Southern Ethiopian Rift; between 11 ka and 4 ka), (2) the MIS 5-4 transition in the Naivasha basin (Central Kenya Rift; between 160 ka and 50 ka), and (3) the Early Mid Pleistocene Transition (EMPT) in the Olorgesailie basin (Southern Kenya Rift; between 1.25 Ma and 0.4 Ma). A probabilistic age modeling technique is used to determine the timing of these transitions, taking into account possible abrupt changes in the sedimentation rate including episodes of no deposition (hiatuses). Interestingly, the stable-unstable conditions identified in the three records are always associated with an orbitally-induced decrease of insolation: the descending portion of the 800 kyr cycle during the EMPT, declining eccentricity after the 115 ka maximum at the MIS 5-4 transition, and after similar to 10 ka. This observation contributes to an evidence-based discussion of the possible mechanisms causing the switching between environmental stability and instability in Eastern Africa at three different orbital time scales (10,000 to 1,000,000 years) during the Cenozoic. This in turn may lead to great insights into the environmental changes occurring at the same time as hominin speciation, brain expansion, dispersal out of Africa, and cultural innovations and may provide key evidence to build new hypotheses regarding the causes of early human evolution. (C) 2015 Elsevier Ltd. All rights reserved. KW - Paleoclimate KW - East Africa KW - Human evolution KW - Lakes KW - Sediments Y1 - 2015 U6 - https://doi.org/10.1016/j.jhevol.2015.03.011 SN - 0047-2484 VL - 87 SP - 21 EP - 31 PB - Elsevier CY - London ER - TY - JOUR A1 - Philips, Andrea A1 - Walz, Ariane A1 - Bergner, Andreas G. N. A1 - Gräff, Thomas A1 - Heistermann, Maik A1 - Kienzler, Sarah A1 - Korup, Oliver A1 - Lipp, Torsten A1 - Schwanghart, Wolfgang A1 - Zeilinger, Gerold T1 - Immersive 3D geovisualization in higher education JF - Journal of geography in higher education N2 - In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students reveal benefits, such as better orientation in the study area, higher interactivity with the data, improved discourse among students and enhanced motivation through immersive 3D geovisualization. This suggests that immersive 3D visualization can effectively be used in higher education and that 3D CAVE settings enhance interactive learning between students. KW - immersive 3D geovisualization KW - 3D CAVE KW - higher education KW - learning success KW - student survey KW - flood risk Y1 - 2015 U6 - https://doi.org/10.1080/03098265.2015.1066314 SN - 0309-8265 SN - 1466-1845 VL - 39 IS - 3 SP - 437 EP - 449 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Bergner, Andreas G. N. A1 - Trauth, Martin H. A1 - Bookhagen, Bodo T1 - Magnitude of precipitation : evaporation changes in the Naivasha Basin (Kenya) during the last 150 kyrs N2 - We modeled the two most extreme highstands of Lake Naivasha during the last 175 k.y. to estimate potential precipitation/ evaporation changes in this basin. In a first step, the bathymetry of the paleolakes at f135 and 9 k.y. BP was reconstructed from sediment cores and surface outcrops. Second, we modeled the paleohydrologic budget during the highstands using a simplified coupled energy mass-balance model. Our results show that the hydrologic and hence the climate conditions at f135 and 9 k.y. BP were similar, but significantly different from today. The main difference is a f15% higher value in precipitation compared to the present. An adaptation and migration of vegetation in the cause of climate changes would result in a f30% increase in precipitation. The most likely cause for such a wetter climate at f135 and 9 k.y. BP is a more intense intertropical convergence and increased precipitation in East Africa. Y1 - 2003 ER - TY - JOUR A1 - Bergner, Andreas G. N. A1 - Strecker, Manfred A1 - Trauth, Martin H. A1 - Deino, Alan L. A1 - Gasse, Francoise A1 - Blisniuk, Peter Michael A1 - Duehnforth, Miriam T1 - Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa N2 - The long-term histories of the neighboring Nakuru-Elmenteita and Naivasha lake basins in the Central Kenya Rift illustrate the relative importance of tectonic versus climatic effects on rift-lake evolution and the formation of disparate sedimentary environments. Although modem climate conditions in the Central Kenya Rift are very similar for these basins, hydrology and hydrochemistry of present-day lakes Nakuru, Elmenteita and Naivasha contrast dramatically due to tectonically controlled differences in basin geometries, catchment size, and fluvial processes. In this study, we use eighteen C-14 and Ar-40/Ar-39 dated fluvio-lacustrine sedimentary sections to unravel the spatiotemporal evolution of the lake basins in response to tectonic and climatic influences. We reconstruct paleoclimatic and ecological trends recorded in these basins based on fossil diatom assemblages and geologic field mapping. Our study shows a tendency towards increasing alkalinity and shrinkage of water bodies in both lake basins during the last million years. Ongoing volcano-tectonic segmentation of the lake basins, as well as reorganization of upstream drainage networks have led to contrasting hydrologic regimes with adjacent alkaline and freshwater conditions. During extreme wet periods in the past, such as during the early Holocene climate optimum, lake levels were high and all basins evolved toward freshwater systems. During drier periods some of these lakes revert back to alkaline conditions, while others maintain freshwater characteristics. Our results have important implications for the use and interpretation of lake sediment as climate archives in tectonically active regions and emphasize the need to deconvolve lacustrine records with respect to tectonics versus climatic forcing mechanisms. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/02773791 U6 - https://doi.org/10.1016/j.quascirev.2009.07.008 SN - 0277-3791 ER - TY - JOUR A1 - Trauth, Martin H. A1 - Maslin, Mark A. A1 - Deino, Alan L. A1 - Strecker, Manfred A1 - Bergner, Andreas G. N. A1 - Dühnforth, Miriam T1 - High- and low-latitude forcing of Plio-Pleistocene African climate and human evolution N2 - The late Cenozoic climate of East Africa is punctuated by episodes of short, alternating periods of extreme wetness and aridity, superimposed on a regime of subdued moisture availability exhibiting a long-term drying trend. These periods of extreme climate variability appear to correlate with maxima in the 400-thousand-year (kyr) component of the Earth's eccentricity cycle. Prior to 2.7 Ma the wet phases appear every 400 kyrs, whereas after 2.7 Ma, the wet phases appear every 800 kyrs, with periods of precessional-forced extreme climate variability at 2.7-2.5 Ma, 1.9-1.7 Ma, and 1.1-0.9 Ma before present. The last three major lake phases occur at the times of major global climatic transitions, such as the onset of Northern Hemisphere Glaciation (2.7-2.5 Ma), intensification of the Walker Circulation (1.9-1.7 Ma), and the Mid-Pleistocene Revolution (1.0-0.7 Ma). High-latitude forcing is required to compress the Intertropical Convergence Zone so that East Africa becomes locally sensitive to precessional forcing, resulting in rapid shifts from wet to dry conditions. These periods of extreme climate variability may have provided a catalyst for evolutionary change and driven key speciation and dispersal events amongst mammals and hominins in East Africa. (C) 2007 Elsevier Ltd. All rights reserved. Y1 - 2008 U6 - https://doi.org/10.1016/j.jhevol.2006.12.009 ER - TY - JOUR A1 - Trauth, Martin H. A1 - Deino, Alan A1 - Bergner, Andreas G. N. A1 - Strecker, Manfred T1 - East African climate change and orbital forcing during the last 175 kyr BP N2 - Variations in the temporal and spatial distribution of solar radiation caused by orbital changes provide a partial explanation for the observed long-term fluctuations in African lake levels. The understanding of such relationships is essential for designing climate-prediction models for the tropics. Our assessment of the nature and timing of East African climate change is based on lake-level fluctuations of Lake Naivasha in the Central Kenya Rift (0°55'S 36°20'E), inferred from sediment characteristics, diatoms, authigenic mineral assemblages and 17 single-crystal 40Ar/39Ar age determinations. Assuming that these fluctuations reflect climate changes, the Lake Naivasha record demonstrates that periods of increased humidity in East Africa mainly followed maximum equatorial solar radiation in March or September. Interestingly, the most dramatic change in the Naivasha Basin occurred as early as 146 kyr BP and the highest lake level was recorded at about 139 to 133 kyr BP. This is consistent with other well-dated low-latitude climate records, but does not correspond to peaks in Northern Hemisphere summer insolation as the trigger for the ice- age cycles. The Naivasha record therefore provides evidence for low-latitude forcing of the ice-age climate cycles. Y1 - 2003 ER -