TY - JOUR A1 - Sangoro, Joshia R. A1 - Iacob, C. A1 - Agapov, A. L. A1 - Wang, Yangyang A1 - Berdzinski, Stefan A1 - Rexhausen, Hans A1 - Strehmel, Veronika A1 - Friedrich, C. A1 - Sokolov, A. P. A1 - Kremer, F. T1 - Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids JF - Soft matter N2 - Charge transport and structural dynamics in low molecular weight and polymerized 1-vinyl-3-pentylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquids (ILs) are investigated by a combination of broadband dielectric spectroscopy, dynamic mechanical spectroscopy and differential scanning calorimetry. While the dc conductivity and fluidity exhibit practically identical temperature dependence for the non-polymerized IL, a significant decoupling of ionic conduction from structural dynamics is observed for the polymerized IL. In addition, the dc conductivity of the polymerized IL exceeds that of its molecular counterpart by four orders of magnitude at their respective calorimetric glass transition temperatures. This is attributed to the unusually high mobility of the anions especially at lower temperatures when the structural dynamics is significantly slowed down. A simple physical explanation of the possible origin of the remarkable decoupling of ionic conductivity from structural dynamics is proposed. Y1 - 2014 U6 - https://doi.org/10.1039/c3sm53202j SN - 1744-683X SN - 1744-6848 VL - 10 IS - 20 SP - 3536 EP - 3540 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Strehmel, Veronika A1 - Berdzinski, Stefan A1 - Strauch, Peter A1 - Hoffmann-Jacobsen, Kerstin A1 - Strehmel, Bernd T1 - Investigation of molecular solvents and ionic liquids with a dual probe JF - Zeitschrift für physikalische Chemie : international journal of research in physical chemistry and chemical physics N2 - A dual probe was investigated by UV-Vis, fluorescence, and ESR spectroscopy. It comprises the pyrene chromophore and the paramagnetic 2,2,6,6-tetramethylpiperidinyl-N-oxyl radical that are covalently linked together via an ester bridge. The dual probe was used to investigate molecular solvents of different polarity as well as ionic liquids bearing either imidazolium or pyrrolidinium cations and various anions, such as bis(trifluoromethylsulfonyl)imide, tetrafluoroborate, tris(pentafluoroethyl)trifluorophosphate, or dicyanamide. The dual probe does not show solvatochromism that is typical for some pyrenes. Furthermore, the dual probe is considerable less mobile compared to 2,2,6,6-tetramethylpiperidinyl-N-oxyl (TEMPO) without additional substituent as detected by ESR spectroscopy. This is caused by the bulky pyrenyl substituent bound at the dual probe resulting in a reduced mobility of the dual probe. KW - Ionic Liquid KW - Fluorescence KW - ESR KW - Molecular Probe Y1 - 2014 U6 - https://doi.org/10.1515/zpch-2014-0453 SN - 0942-9352 VL - 228 IS - 2-3 SP - 155 EP - 169 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Strehmel, Veronika A1 - Berdzinski, Stefan A1 - Rexhausen, Hans T1 - Interactions between ionic liquids and radicals JF - Journal of molecular liquids N2 - Ionic liquids were investigated with both stable radicals on the basis of 2,2,6,6-tetramethylpiperidine-1-yloxyl (TEMPO) and photogenerated lophyl radicals. The ionic liquids are composed either of bis(trifluoromethylsulfonyl)imide (NTf2) as anion and various cations or they contain an imidazolium ion in combination with various anions. The cations include imidazolium, pyrrolidinium, piperidinium, polymethine or ammonium ions. Furthermore, BF4-, PF6-, triflate, camphorsulfonate, lactate, tosylate or tris(pentafluoroethyl) trifluorophosphate (FAP) are the counter ions in the imidazolium salts. The structural variation of the ionic liquids results in differences in glass formation, semiaystallinity, or crystallinity, as well as in viscosity differences. Furthermore, a vinyl substituent at the imidazolium ion and a methacryloyloxyethyl substituent at the ammonium ion result in polymerizable ionic liquids that were converted via a radical mechanism in amorphous polymerized ionic liquids with a glass transition temperature, which is significantly higher compared to the ionic liquids. An additional substituent at TEMPO causes additional hydrogen bond formation or additional Coulomb interactions with the individual ions of the ionic liquids compared to TEMPO. This influences the mobility of these radicals in the ionic liquid expressed by differences in the average rotational correlation time (T-rot). The mobility of the radicals in the ionic liquids as function of the temperature describes ionic liquids either as continuum in analogy to molecular solvents using the Stokes-Einstein model, that is the case for 1-butyl-3-methylimidazolium NTf2, or as medium where free volume effects are important for the mobility of a solute in the ionic liquid using the model of Spernol, Gierer, and Wirtz. The 1-butyl-3-methylimidazolium BF4- fits well into the latter. Furthermore, the isotropic hyperfine coupling constant (A(iso)(N-14)) of the stable radicals gives information about micropolarity of the ionic liquids only if the mobility of the radical is high enough in the ionic liquid. In addition to the rotational mobility of the stable radicals, the photogenerated lophyl radicals give information about translational diffusion of radicals and solvent cage effects in the ionic liquids. The application of the Eyring equation results mostly in the expected negative values of the activation entropy for the transition state that is typical for bimolecular reactions. Only few examples show a less negative or positive activation entropy for the bimolecular reaction, which may be attributed to radical recombination within the solvent cage to a high extent. The results obtained during investigation of radicals in ionic liquids are important to understand the radical processes in ionic liquids that may occur for example in dye sensitized solar cells, photo or thermally induced reactions or radical polymerizations in ionic liquids. KW - Ionic liquids KW - Radicals KW - Spin probes KW - Polymerized ionic liquids KW - Microviscosity KW - Micropolarity Y1 - 2014 U6 - https://doi.org/10.1016/j.molliq.2013.12.007 SN - 0167-7322 SN - 1873-3166 VL - 192 SP - 153 EP - 170 PB - Elsevier CY - Amsterdam ER -