TY - JOUR A1 - Benina, Maria A1 - Obata, Toshihiro A1 - Mehterov, Nikolay A1 - Ivanov, Ivan A1 - Petrov, Veselin A1 - Toneva, Valentina A1 - Fernie, Alisdair R. A1 - Gechev, Tsanko S. T1 - Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature JF - Frontiers in plant science N2 - Haberlea rhodopensis is a resurrection species with extreme resistance to drought stress and desiccation but also with ability to withstand low temperatures and freezing stress. In order to identify biochemical strategies which contribute to Haberlea's remarkable stress tolerance, the metabolic reconfiguration of H. rhodopensis during low temperature (4 degrees C) and subsequent return to optimal temperatures (21 degrees C) was investigated and compared with that of the stress tolerant Thellungiella halophyla and the stress sensitive Arabidopsis thaliana. Metabolic analysis by GC-MS revealed intrinsic differences in the metabolite levels of the three species even at 21 degrees C. H. rhodopensis had significantly more raffinose, melibiose, trehalose, rhamnose, myo-inositol, sorbitol, galactinol, erythronate, threonate, 2-oxoglutarate, citrate, and glycerol than the other two species. A. thaliana had the highest levels of putrescine and fumarate, while T halophila had much higher levels of several amino acids, including alanine, asparagine, beta-alanine, histidine, isoleucine, phenylalanine, serine, threonine, and valine. In addition, the three species responded differently to the low temperature treatment and the subsequent recovery, especially with regard to the sugar metabolism. Chilling induced accumulation of maltose in H. rhodopensis and raffinose in A. thaliana but the raffinose levels in low temperature exposed Arabidopsis were still much lower than these in unstressed Haberlea. While all species accumulated sucrose during chilling, that accumulation was transient in H. rhodopensis and A. thaliana but sustained in T halophila after the return to optimal temperature. Thus, Haberlea's metabolome appeared primed for chilling stress but the low temperature acclimation induced additional stress-protective mechanisms. A diverse array of sugars, organic acids, and polyols constitute Haberlea's main metabolic defence mechanisms against chilling, while accumulation of amino acids and amino acid derivatives contribute to the low temperature acclimation in Arabidopsis and Thellungiella. Collectively, these results show inherent differences in the metabolomes under the ambient temperature and the strategies to respond to low temperature in the three species. KW - Arabidopsis thaliana KW - Haberlea rhodopensis KW - low temperature stress KW - metabolite profiling KW - Thellungiella halophila Y1 - 2013 U6 - https://doi.org/10.3389/fpls.2013.00499 SN - 1664-462X VL - 4 IS - 1 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Ivanov, Ivan A1 - Benina, Maria A1 - Petrov, Veselin A1 - Gechev, Tsanko S. A1 - Toneva, Valentina T1 - Metabolic responses of gloxinia perennis to dehydration and rehydration JF - COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES N2 - Gloxinia perennis is a species from the family Gesneriaceae with little known physiology, particularly in respect to responses to dehydration. G. perennis survived water deprivation for a month and then quickly recovered upon rehydration. The slow loss of water was in contrast with the quick dehydration of other Gesnerian species - Boea hygrometrica, Ramonda serbica, and Haber lea rhodopensis. Furthermore, a significant difference between older and younger leaves of G. perennis was observed. While the relative water content in the early stages of water deprivation was reduced to 65% in the old leaves, it was not or slightly reduced in the young ones, implying a mechanism that protects specifically the younger leaves from dehydration. Water deprivation induced accumulation of gama-aminobutyric acid and sugars like sucrose and raffinose, but decreased the levels of amino acids such as glycine, leucine, and isoleucine. The levels of these amino acids recovered after rehydration and in some cases like glycine and isoleucine were even higher in rehydrated leaves compared with unstressed controls. We conclude that G.perennis can survive prolonged drought stress but its responses to dehydration are different from the resurrection species from Gesneriaceae. All this makes G. perennis a good model that can be used for comparative genomics and metabolomics of Gesneriads exposed to desiccation. KW - Gloxinia perennis KW - drought stress KW - metabolome analysis Y1 - 2014 SN - 1310-1331 VL - 67 IS - 12 SP - 1657 EP - 1662 PB - Publ. House of the Bulgarian Acad. of Sciences CY - Sofia ER - TY - JOUR A1 - Petrov, Veselin A1 - Schippers, Jos A1 - Benina, Maria A1 - Minkov, Ivan A1 - Müller-Röber, Bernd A1 - Gechev, Tsanko S. T1 - In search for new players of the oxidative stress network by phenotyping an Arabidopsis T-DNA mutant collection on reactive oxygen species-eliciting chemicals JF - Plant omics N2 - The ability of some chemical compounds to cause oxidative stress offers a fast and convenient way to study the responses of plants to reactive oxygen species (ROS). In order to unveil potential novel genetic players of the ROS-regulatory network, a population of similar to 2,000 randomly selected Arabidopsis thaliana T-DNA insertion mutants was screened for ROS sensitivity/resistance by growing seedlings on agar medium supplemented with stress-inducing concentrations of the superoxide-eliciting herbicide methyl viologen or the catalase inhibitor 3-amino-triazole. A semi-robotic setup was used to capture and analyze images of the chemically treated seedlings which helped interpret the screening results by providing quantitative information on seedling area and healthy-to-chlorotic tissue ratios for data verification. A ROS-related phenotype was confirmed in three of the initially selected 33 mutant candidates, which carry T-DNA insertions in genes encoding a Ring/Ubox superfamily protein, ABI5 binding protein 1 (AFP1), previously reported to be involved in ABA signaling, and a protein of unknown function, respectively. In addition, we identified six mutants, most of which have not been described yet, that are related to growth or chloroplast development and show defects in a ROS-independent manner. Thus, semi-automated image capturing and phenotyping applied on publically available T-DNA insertion collections adds a simple means for discovering novel mutants in complex physiological processes and identifying the genes involved. KW - growth KW - image analysis KW - methyl viologen KW - LemnaTec KW - screening KW - superoxide Y1 - 2013 SN - 1836-0661 VL - 6 IS - 1 SP - 46 EP - 54 PB - Southern Cross Publ. CY - Lismore ER -