TY - JOUR A1 - Hovestadt, Maximilian A1 - Bendt, Stephan A1 - Mondal, Suvendu Sekhar A1 - Behrens, Karsten A1 - Reif, Florian A1 - Dopken, Merle A1 - Holdt, Hans-Jürgen A1 - Keil, Frerich J. A1 - Hartmann, Martin T1 - Experimental and Theoretical Analysis of the Influence of Different Linker Molecules in Imidazolate Frameworks Potsdam (IFP-n) on the Separation of Olefin-Paraffin Mixtures JF - Langmuir N2 - Four metal organic frameworks with similar topology but different chemical environment inside the pore structure, namely, IFP-1, IFP-3, IFP-5, and IFP-7, have been investigated with respect to the separation potential for olefin paraffin mixtures as well as the influence of the different linkers on adsorption properties using experiments and Monte Carlo simulations. All IFP structures show a higher adsorption of ethane compared to ethene with the exception of IFP-7 which shows no selectivity in breakthrough experiments. For propane/propane separation, all adsorbents show a higher adsorption for the olefin. The experimental results agree quite well with the simulated values except for the IFP-7, which is presumably due to the flexibility of the structure. Moreover, the experimental and simulated isotherms were confirmed with breakthrough experiments that render IFP-1, IFP-3, and IFP-5 as suitable for the purification of ethene from ethane. Y1 - 2017 U6 - https://doi.org/10.1021/acs.langmuir.7b02016 SN - 0743-7463 VL - 33 SP - 11170 EP - 11179 PB - American Chemical Society CY - Washington ER -