TY - GEN A1 - Baumann, Tobias A1 - Arndt, Katja Maren A1 - Müller, Kristian M. T1 - Directional cloning of DNA fragments using deoxyinosine-containing oligonucleotides and endonuclease V T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background: DNA fragments carrying internal recognition sites for the restriction endonucleases intended for cloning into a target plasmid pose a challenge for conventional cloning. Results: A method for directional insertion of DNA fragments into plasmid vectors has been developed. The target sequence is amplified from a template DNA sample by PCR using two oligonucleotides each containing a single deoxyinosine base at the third position from the 5' end. Treatment of such PCR products with endonuclease V generates 3' protruding ends suitable for ligation with vector fragments created by conventional restriction endonuclease reactions. Conclusions: The developed approach generates terminal cohesive ends without the use of Type II restriction endonucleases, and is thus independent from the DNA sequence. Due to PCR amplification, minimal amounts of template DNA are required. Using the robust Taq enzyme or a proofreading Pfu DNA polymerase mutant, the method is applicable to a broad range of insert sequences. Appropriate primer design enables direct incorporation of terminal DNA sequence modifications such as tag addition, insertions, deletions and mutations into the cloning strategy. Further, the restriction sites of the target plasmid can be either retained or removed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 983 KW - cohesive ends KW - DNA cleavage KW - genetic vectors KW - modified primers KW - molecular methods KW - polymerase chain reaction KW - recombinant Escherichia coli KW - restriction enzymes Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431085 SN - 1866-8372 IS - 983 ER - TY - JOUR A1 - Baumann, Tobias A1 - Arndt, Katja Maren A1 - Müller, Kristian M. T1 - Directional cloning of DNA fragments using deoxyinosine-containing oligonucleotides and endonuclease V JF - BMC biotechnology N2 - Background: DNA fragments carrying internal recognition sites for the restriction endonucleases intended for cloning into a target plasmid pose a challenge for conventional cloning. Results: A method for directional insertion of DNA fragments into plasmid vectors has been developed. The target sequence is amplified from a template DNA sample by PCR using two oligonucleotides each containing a single deoxyinosine base at the third position from the 5' end. Treatment of such PCR products with endonuclease V generates 3' protruding ends suitable for ligation with vector fragments created by conventional restriction endonuclease reactions. Conclusions: The developed approach generates terminal cohesive ends without the use of Type II restriction endonucleases, and is thus independent from the DNA sequence. Due to PCR amplification, minimal amounts of template DNA are required. Using the robust Taq enzyme or a proofreading Pfu DNA polymerase mutant, the method is applicable to a broad range of insert sequences. Appropriate primer design enables direct incorporation of terminal DNA sequence modifications such as tag addition, insertions, deletions and mutations into the cloning strategy. Further, the restriction sites of the target plasmid can be either retained or removed. KW - Cohesive ends KW - DNA cleavage KW - Genetic vectors KW - Modified primers KW - Molecular methods KW - Polymerase chain reaction KW - Recombinant Escherichia coli KW - Restriction enzymes Y1 - 2013 U6 - https://doi.org/10.1186/1472-6750-13-81 SN - 1472-6750 VL - 13 IS - 10 PB - BioMed Central CY - London ER - TY - JOUR A1 - Jedrusik-Bode, Monika A1 - Studencka, Maja A1 - Smolka, Christian A1 - Baumann, Tobias A1 - Schmidt, Henning A1 - Kampf, Jan A1 - Paap, Franziska A1 - Martin, Sophie A1 - Tazi, Jamal A1 - Müller, Kristian M. A1 - Krüger, Marcus A1 - Braun, Thomas A1 - Bober, Eva T1 - The sirtuin SIRT6 regulates stress granule formation in C. elegans and mammals JF - Journal of cell science N2 - SIRT6 is a NAD(+)-dependent deacetylase that modulates chromatin structure and safeguards genomic stability. Until now, SIRT6 has been assigned to the nucleus and only nuclear targets of SIRT6 are known. Here, we demonstrate that in response to stress, C. elegans SIR-2.4 and its mammalian orthologue SIRT6 localize to cytoplasmic stress granules, interact with various stress granule components and induce their assembly. Loss of SIRT6 or inhibition of its catalytic activity in mouse embryonic fibroblasts impairs stress granule formation and delays disassembly during recovery, whereas deficiency of SIR-2.4 diminishes maintenance of P granules and decreases survival of C. elegans under stress conditions. Our findings uncover a novel, evolutionary conserved function of SIRT6 in the maintenance of stress granules in response to stress. KW - C. elegans KW - G3BP KW - SIRT6 KW - Sirtuins KW - Stress KW - Stress granules Y1 - 2013 U6 - https://doi.org/10.1242/jcs.130708 SN - 0021-9533 SN - 1477-9137 VL - 126 IS - 22 SP - 5166 EP - + PB - Company of Biologists Limited CY - Cambridge ER - TY - THES A1 - Baumann, Tobias T1 - Stability and Interconnected protein properties studied with TEM ß-lactamase Y1 - 2013 CY - Potsdam ER -