TY - JOUR A1 - Zeuschner, Steffen Peer A1 - Wang, Xi-Guang A1 - Deb, Marwan A1 - Popova, Elena A1 - Malinowski, Gregory A1 - Hehn, Michel A1 - Keller, Niels A1 - Berakdar, Jamal A1 - Bargheer, Matias T1 - Standing spin wave excitation in Bi BT - YIG films via temperature-induced anisotropy changes and magneto-elastic coupling JF - Physical review : B, Condensed matter and materials physics N2 - Based on micromagnetic simulations and experimental observations of the magnetization and lattice dynamics after the direct optical excitation of the magnetic insulator Bi : YIG or indirect excitation via an optically opaque Pt/Cu double layer, we disentangle the dynamical effects of magnetic anisotropy and magneto-elastic coupling. The strain and temperature of the lattice are quantified via modeling ultrafast x-ray diffraction data. Measurements of the time-resolved magneto-optical Kerr effect agree well with the magnetization dynamics simulated according to the excitation via two mechanisms: the magneto-elastic coupling to the experimentally verified strain dynamics and the ultrafast temperature-induced transient change in the magnetic anisotropy. The numerical modeling proves that, for direct excitation, both mechanisms drive the fundamental mode with opposite phase. The relative ratio of standing spin wave amplitudes of higher-order modes indicates that both mechanisms are substantially active. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevB.106.134401 SN - 2469-9950 SN - 2469-9969 VL - 106 IS - 13 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Zeuschner, Steffen A1 - Parpiiev, Tymur A1 - Pezeril, Thomas A1 - Hillion, Arnaud A1 - Dumesnil, Karine A1 - Anane, Abdelmadjid A1 - Pudell, Jan-Etienne A1 - Willig, Lisa A1 - Rössle, Matthias A1 - Herzog, Marc A1 - von Reppert, Alexander A1 - Bargheer, Matias T1 - Tracking picosecond strain pulses in heterostructures that exhibit giant magnetostriction JF - Structural Dynamics N2 - We combine ultrafast X-ray diffraction (UXRD) and time-resolved Magneto-Optical Kerr Effect (MOKE) measurements to monitor the strain pulses in laser-excited TbFe2/Nb heterostructures. Spatial separation of the Nb detection layer from the laser excitation region allows for a background-free characterization of the laser-generated strain pulses. We clearly observe symmetric bipolar strain pulses if the excited TbFe2 surface terminates the sample and a decomposition of the strain wavepacket into an asymmetric bipolar and a unipolar pulse, if a SiO2 glass capping layer covers the excited TbFe2 layer. The inverse magnetostriction of the temporally separated unipolar strain pulses in this sample leads to a MOKE signal that linearly depends on the strain pulse amplitude measured through UXRD. Linear chain model simulations accurately predict the timing and shape of UXRD and MOKE signals that are caused by the strain reflections from multiple interfaces in the heterostructure. KW - Heterostructures KW - Magnetooptical effects KW - Metal oxides KW - Crystal lattices KW - Transition metals KW - Magnetism KW - Ultrafast X-ray diffraction KW - Lasers KW - Bragg peak KW - Phonons Y1 - 2019 U6 - https://doi.org/10.1063/1.5084140 SN - 2329-7778 VL - 6 IS - 2 PB - AIP Publishing LLC CY - Melville, NY ER - TY - GEN A1 - Zeuschner, Steffen A1 - Parpiiev, Tymur A1 - Pezeril, Thomas A1 - Hillion, Arnaud A1 - Dumesnil, Karine A1 - Anane, Abdelmadjid A1 - Pudell, Jan-Etienne A1 - Willig, Lisa A1 - Rössle, Matthias A1 - Herzog, Marc A1 - von Reppert, Alexander A1 - Bargheer, Matias T1 - Tracking picosecond strain pulses in heterostructures that exhibit giant magnetostriction T2 - Postprints der Universität Potsdam : Mathematisch-naturwissenschaftliche Reihe N2 - We combine ultrafast X-ray diffraction (UXRD) and time-resolved Magneto-Optical Kerr Effect (MOKE) measurements to monitor the strain pulses in laser-excited TbFe2/Nb heterostructures. Spatial separation of the Nb detection layer from the laser excitation region allows for a background-free characterization of the laser-generated strain pulses. We clearly observe symmetric bipolar strain pulses if the excited TbFe2 surface terminates the sample and a decomposition of the strain wavepacket into an asymmetric bipolar and a unipolar pulse, if a SiO2 glass capping layer covers the excited TbFe2 layer. The inverse magnetostriction of the temporally separated unipolar strain pulses in this sample leads to a MOKE signal that linearly depends on the strain pulse amplitude measured through UXRD. Linear chain model simulations accurately predict the timing and shape of UXRD and MOKE signals that are caused by the strain reflections from multiple interfaces in the heterostructure. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 706 KW - Heterostructures KW - Magnetooptical effects KW - Metal oxides KW - Crystal lattices KW - Transition metals KW - Magnetism KW - Ultrafast X-ray diffraction KW - Lasers KW - Bragg peak KW - Phonons Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-428457 SN - 1866-8372 IS - 706 ER - TY - JOUR A1 - Zeuschner, S. P. A1 - Mattern, M. A1 - Pudell, Jan-Etienne A1 - von Reppert, A. A1 - Rössle, M. A1 - Leitenberger, Wolfram A1 - Schwarzkopf, J. A1 - Boschker, J. E. A1 - Herzog, Marc A1 - Bargheer, Matias T1 - Reciprocal space slicing BT - a time-efficient approach to femtosecond x-ray diffraction JF - Structural Dynamics N2 - An experimental technique that allows faster assessment of out-of-plane strain dynamics of thin film heterostructures via x-ray diffraction is presented. In contrast to conventional high-speed reciprocal space-mapping setups, our approach reduces the measurement time drastically due to a fixed measurement geometry with a position-sensitive detector. This means that neither the incident (ω) nor the exit (2θ) diffraction angle is scanned during the strain assessment via x-ray diffraction. Shifts of diffraction peaks on the fixed x-ray area detector originate from an out-of-plane strain within the sample. Quantitative strain assessment requires the determination of a factor relating the observed shift to the change in the reciprocal lattice vector. The factor depends only on the widths of the peak along certain directions in reciprocal space, the diffraction angle of the studied reflection, and the resolution of the instrumental setup. We provide a full theoretical explanation and exemplify the concept with picosecond strain dynamics of a thin layer of NbO2. Y1 - 0202 U6 - https://doi.org/10.1063/4.0000040 SN - 2329-7778 VL - 8 PB - AIP Publishing LLC CY - Melville, NY ER - TY - GEN A1 - Zeuschner, S. P. A1 - Mattern, M. A1 - Pudell, Jan-Etienne A1 - von Reppert, A. A1 - Rössle, M. A1 - Leitenberger, Wolfram A1 - Schwarzkopf, J. A1 - Boschker, J. E. A1 - Herzog, Marc A1 - Bargheer, Matias T1 - Reciprocal space slicing BT - a time-efficient approach to femtosecond x-ray diffraction T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - An experimental technique that allows faster assessment of out-of-plane strain dynamics of thin film heterostructures via x-ray diffraction is presented. In contrast to conventional high-speed reciprocal space-mapping setups, our approach reduces the measurement time drastically due to a fixed measurement geometry with a position-sensitive detector. This means that neither the incident (ω) nor the exit (2θ) diffraction angle is scanned during the strain assessment via x-ray diffraction. Shifts of diffraction peaks on the fixed x-ray area detector originate from an out-of-plane strain within the sample. Quantitative strain assessment requires the determination of a factor relating the observed shift to the change in the reciprocal lattice vector. The factor depends only on the widths of the peak along certain directions in reciprocal space, the diffraction angle of the studied reflection, and the resolution of the instrumental setup. We provide a full theoretical explanation and exemplify the concept with picosecond strain dynamics of a thin layer of NbO2. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1137 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-499761 SN - 1866-8372 IS - 1137 ER - TY - JOUR A1 - Zamponi, Flavio A1 - Ansari, Zunaira A1 - von Korff Schmising, Clemens A1 - Rothhardt, Philip A1 - Zhavoronkov, Nickolai A1 - Woerner, Michael A1 - Elsaesser, Thomas A1 - Bargheer, Matias A1 - Trobitzsch-Ryll, Timo A1 - Haschke, Michael T1 - Femtosecond hard X-ray plasma sources with a kilohertz repetition rate N2 - Laser-driven plasma sources of femtosecond hard X-ray pulses have found widespread application in ultrafast X- ray diffraction. The recent development of plasma sources working at kilohertz repetition rates has allowed for diffraction experiments with strongly improved sensitivity, now revealing subtle fully reversible changes of the geometry of crystal lattices. We provide a brief review of this development and present a novel plasma source with an optimized mechanical and optical design, providing a high flux of several 10(10) photons/s at the Cu-K alpha energy of 8.04 keV and a pulse duration of a parts per thousand currency sign300 fs. First experiments, including the generation of Debye-Scherrer diffraction patterns from Si powder, demonstrate the high performance of this source. Y1 - 2009 UR - http://www.springerlink.com/content/100501 U6 - https://doi.org/10.1007/s00339-009-5171-9 SN - 0947-8396 ER - TY - JOUR A1 - Woerner, Michael A1 - von Korff Schmising, Clemens A1 - Bargheer, Matias A1 - Zhavoronkov, Nickolai A1 - Vrejoiu, Ionela A1 - Hesse, Dietrich A1 - Alexe, Marin A1 - Elsaesser, Thomas T1 - Ultrafast structural dynamics of perovskite superlattices N2 - Femtosecond x-ray diffraction provides direct insight into the ultrafast reversible lattice dynamics of materials with a perovskite structure. Superlattice (SL) structures consisting of a sequence of nanometer-thick layer pairs allow for optically inducing a tailored stress profile that drives the lattice motions and for limiting the influence of strain propagation on the observed dynamics. We demonstrate this concept in a series of diffraction experiments with femtosecond time resolution, giving detailed information on the ultrafast lattice dynamics of ferroelectric and ferromagnetic superlattices. Anharmonically coupled lattice motions in a SrRuO3/PbZr0.2Ti0.8O3 (SRO/ PZT) SL lead to a switch-off of the electric polarizations on a time scale of the order of 1 ps. Ultrafast magnetostriction of photoexcited SRO layers is demonstrated in a SRO/SrTiO3 (STO) SL. Y1 - 2009 UR - http://www.springerlink.com/content/100501 U6 - https://doi.org/10.1007/s00339-009-5174-6 SN - 0947-8396 ER - TY - JOUR A1 - Willig, Lisa A1 - von Reppert, Alexander A1 - Deb, Marwan A1 - Ganss, F. A1 - Hellwig, O. A1 - Bargheer, Matias T1 - Finite-size effects in ultrafast remagnetization dynamics of FePt JF - Physical review : B, Condensed matter and materials physics N2 - We investigate the ultrafast magnetization dynamics of FePt in the L1(0) phase after an optical heating pulse, as used in heat-assisted magnetic recording. We compare continuous and nano-granular thin films and emphasize the impact of the finite size on the remagnetization dynamics. The remagnetization speeds up significantly with increasing external magnetic field only for the continuous film, where domain-wall motion governs the dynamics. The ultrafast remagnetization dynamics in the continuous film are only dominated by heat transport in the regime of high magnetic fields, whereas the timescale required for cooling is prevalent in the granular film for all magnetic field strengths. These findings highlight the necessary conditions for studying the intrinsic heat transport properties in magnetic materials. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevB.100.224408 SN - 2469-9950 SN - 2469-9969 VL - 100 IS - 22 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - von Reppert, Alexander A1 - Willig, Lisa A1 - Pudell, Jan-Etienne A1 - Roessle, M. A1 - Leitenberger, Wolfram A1 - Herzog, Marc A1 - Ganss, F. A1 - Hellwig, O. A1 - Bargheer, Matias T1 - Ultrafast laser generated strain in granular and continuous FePt thin films JF - Applied physics letters N2 - We employ ultrafast X-ray diffraction to compare the lattice dynamics of laser-excited continuous and granular FePt films on MgO (100) substrates. Contrary to recent results on free-standing granular films, we observe in both cases a pronounced and long-lasting out-of-plane expansion. We attribute this discrepancy to the in-plane expansion, which is suppressed by symmetry in continuous films. Granular films on substrates are less constrained and already show a reduced out-of-plane contraction. Via the Poisson effect, out-of-plane contractions drive in-plane expansion and vice versa. Consistently, the granular film exhibits a short-lived out-of-plane contraction driven by ultrafast demagnetization which is followed by a reduced and delayed expansion. From the acoustic reflections of the observed strain waves at the film-substrate interface, we extract a 13% reduction of the elastic constants in thin 10 nm FePt films compared to bulk-like samples. (C) 2018 Author(s). Y1 - 2018 U6 - https://doi.org/10.1063/1.5050234 SN - 0003-6951 SN - 1077-3118 VL - 113 IS - 12 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - von Reppert, Alexander A1 - Sarhan, Radwan Mohamed A1 - Stete, Felix A1 - Pudell, Jan-Etienne A1 - Del Fatti, N. A1 - Crut, A. A1 - Koetz, Joachim A1 - Liebig, Ferenc A1 - Prietzel, Claudia Christina A1 - Bargheer, Matias T1 - Watching the Vibration and Cooling of Ultrathin Gold Nanotriangles by Ultrafast X-ray Diffraction JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - We study the vibrations of ultrathin gold nanotriangles upon optical excitation of the electron gas by ultrafast X-ray diffraction. We quantitatively measure the strain evolution in these highly asymmetric nano-objects, providing a direct estimation of the amplitude and phase of the excited vibrational motion. The maximal strain value is well reproduced by calculations addressing pump absorption by the nanotriangles and their resulting thermal expansion. The amplitude and phase of the out-of-plane vibration mode with 3.6 ps period dominating the observed oscillations are related to two distinct excitation mechanisms. Electronic and phonon pressures impose stresses with different time dependences. The nanosecond relaxation of the expansion yields a direct temperature sensing of the nano-object. The presence of a thin organic molecular layer at the nanotriangle/substrate interfaces drastically reduces the thermal conductance to the substrate. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpcc.6b11651 SN - 1932-7447 VL - 120 SP - 28894 EP - 28899 PB - American Chemical Society CY - Washington ER -