TY - GEN A1 - Meiling, Till Thomas A1 - Cywiński, Piotr J. A1 - Bald, Ilko T1 - White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis N2 - In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 264 KW - Fluorescence spectroscopy KW - Nanoparticles KW - Synthesis and processing Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-97087 ER - TY - GEN A1 - Prinz, Julia A1 - Heck, Christian A1 - Ellerik, Lisa A1 - Merk, Virginia A1 - Bald, Ilko T1 - DNA origami based Au–Ag-core–shell nanoparticle dimers with single-molecule SERS sensitivity N2 - DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 221 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-89714 SP - 5612 EP - 5620 ER - TY - GEN A1 - Olejko, Lydia A1 - Cywiński, P. J. A1 - Bald, Ilko T1 - An ion-controlled four-color fluorescent telomeric switch on DNA origami structures N2 - The folding of single-stranded telomeric DNA into guanine (G) quadruplexes is a conformational change that plays a major role in sensing and drug targeting. The telomeric DNA can be placed on DNA origami nanostructures to make the folding process extremely selective for K+ ions even in the presence of high Na+ concentrations. Here, we demonstrate that the K+-selective G-quadruplex formation is reversible when using a cryptand to remove K+ from the G-quadruplex. We present a full characterization of the reversible switching between single-stranded telomeric DNA and G-quadruplex structures using Förster resonance energy transfer (FRET) between the dyes fluorescein (FAM) and cyanine3 (Cy3). When attached to the DNA origami platform, the G-quadruplex switch can be incorporated into more complex photonic networks, which is demonstrated for a three-color and a four-color FRET cascade from FAM over Cy3 and Cy5 to IRDye700 with G-quadruplex-Cy3 acting as a switchable transmitter. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 254 KW - resonance energy-transfer KW - g-quadruplex KW - quantum dots KW - strand breakage KW - photonic wires KW - 3-color fret KW - nanostructures KW - recognition KW - sensitivity KW - assemblies Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95831 SP - 10339 EP - 10347 ER - TY - GEN A1 - Schürmann, Robin Mathis A1 - Bald, Ilko T1 - Real-time monitoring of plasmon induced dissociative electron transfer to the potential DNA radiosensitizer 8-bromoadenine N2 - The excitation of localized surface plasmons in noble metal nanoparticles (NPs) results in different nanoscale effects such as electric field enhancement, the generation of hot electrons and a temperature increase close to the NP surface. These effects are typically exploited in diverse fields such as surface-enhanced Raman scattering (SERS), NP catalysis and photothermal therapy (PTT). Halogenated nucleobases are applied as radiosensitizers in conventional radiation cancer therapy due to their high reactivity towards secondary electrons. Here, we use SERS to study the transformation of 8-bromoadenine (8BrA) into adenine on the surface of Au and AgNPs upon irradiation with a low-power continuous wave laser at 532, 633 and 785 nm, respectively. The dissociation of 8BrA is ascribed to a hot-electron transfer reaction and the underlying kinetics are carefully explored. The reaction proceeds within seconds or even milliseconds. Similar dissociation reactions might also occur with other electrophilic molecules, which must be considered in the interpretation of respective SERS spectra. Furthermore, we suggest that hot-electron transfer induced dissociation of radiosensitizers such as 8BrA can be applied in the future in PTT to enhance the damage of tumor tissue upon irradiation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 330 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-395113 ER - TY - GEN A1 - Tasior, Mariusz A1 - Bald, Ilko A1 - Deperasińska, Irena A1 - Cywiński, Piotr J. A1 - Gryko, Daniel T. T1 - An internal charge transfer-dependent solvent effect in V-shaped azacyanines N2 - New V-shaped non-centrosymmetric dyes, possessing a strongly electron-deficient azacyanine core, have been synthesized based on a straightforward two-step approach. The key step in this synthesis involves palladium-catalysed cross-coupling of dibromo-N,N′-methylene-2,2′-azapyridinocyanines with arylacetylenes. The resulting strongly polarized π-expanded heterocycles exhibit green to orange fluorescence and they strongly respond to changes in solvent polarity. We demonstrate that differently electron-donating peripheral groups have a significant influence on the internal charge transfer, hence on the solvent effect and fluorescence quantum yield. TD-DFT calculations confirm that, in contrast to the previously studied bis(styryl)azacyanines, the proximity of S1 and T2 states calculated for compounds bearing two 4-N,N-dimethylaminophenylethynyl moieties establishes good conditions for efficient intersystem crossing and is responsible for its low fluorescence quantum yield. Non-linear properties have also been determined for new azacyanines and the results show that depending on peripheral groups, the synthesized dyes exhibit small to large two-photon absorption cross sections reaching 4000 GM. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 306 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-102704 SP - 11714 EP - 11720 ER - TY - JOUR A1 - Olejko, Lydia A1 - Cywinski, Piotr J. A1 - Bald, Ilko T1 - Ion-Selective formation of a guanine quadruplex on DNA origami structures JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - DNA origami nanostructures are a versatile tool that can be used to arrange functionalities with high local control to study molecular processes at a single-molecule level. Here, we demonstrate that DNA origami substrates can be used to suppress the formation of specific guanine (G) quadruplex structures from telomeric DNA. The folding of telomeres into G-quadruplex structures in the presence of monovalent cations (e.g. Na+ and K+) is currently used for the detection of K+ ions, however, with insufficient selectivity towards Na+. By means of FRET between two suitable dyes attached to the 3- and 5-ends of telomeric DNA we demonstrate that the formation of G-quadruplexes on DNA origami templates in the presence of sodium ions is suppressed due to steric hindrance. Hence, telomeric DNA attached to DNA origami structures represents a highly sensitive and selective detection tool for potassium ions even in the presence of high concentrations of sodium ions. KW - DNA nanotechnology KW - FRET KW - G-quadruplexes KW - nanostructures KW - self-assembly Y1 - 2015 U6 - https://doi.org/10.1002/anie.201409278 SN - 1433-7851 SN - 1521-3773 VL - 54 IS - 2 SP - 673 EP - 677 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Choi, Youngeun A1 - Schmidt, Carsten A1 - Tinnefeld, Philip A1 - Bald, Ilko A1 - Rödiger, Stefan T1 - A new reporter design based on DNA origami nanostructures for quantification of short oligonucleotides using microbeads T2 - Postprints der Universität Potsdam : Mathematisch-naturwissenschaftliche Reihe N2 - The DNA origami technique has great potential for the development of brighter and more sensitive reporters for fluorescence based detection schemes such as a microbead-based assay in diagnostic applications. The nanostructures can be programmed to include multiple dye molecules to enhance the measured signal as well as multiple probe strands to increase the binding strength of the target oligonucleotide to these nanostructures. Here we present a proof-of-concept study to quantify short oligonucleotides by developing a novel DNA origami based reporter system, combined with planar microbead assays. Analysis of the assays using the VideoScan digital imaging platform showed DNA origami to be a more suitable reporter candidate for quantification of the target oligonucleotides at lower concentrations than a conventional reporter that consists of one dye molecule attached to a single stranded DNA. Efforts have been made to conduct multiplexed analysis of different targets as well as to enhance fluorescence signals obtained from the reporters. We therefore believe that the quantification of short oligonucleotides that exist in low copy numbers is achieved in a better way with the DNA origami nanostructures as reporters. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 705 KW - nucleic-acids KW - hybridization KW - microrna KW - flourescence KW - biomarkers KW - platform KW - particle KW - binding KW - array KW - gene Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-428271 SN - 1866-8372 IS - 705 ER - TY - JOUR A1 - Piekarczyk, Andreas A1 - Bald, Ilko A1 - Flosadottir, Helga D. A1 - Omarsson, Benedikt A1 - Lafosse, Anne A1 - Ingolfsson, Oddur T1 - Influence of metal ion complexation on the metastable fragmentation of DNA hexamers JF - The European physical journal : D, Atomic, molecular, optical and plasma physics N2 - Here, we study the metastable decay of 5'-d(TTGCTT) in the presence of 0-6 alkaline metal ions (Li+, Na+, K+, Rb+) and 0-3 alkaline earth metal ions (Mg2+ and Ca2+), which replace the corresponding number of protons in the oligonucleotide. We find that all ions studied here stabilize the oligonucleotide with respect to simple 3'-C-O backbone cleavage, but at the same time these metal ions promote a central oligonucleotide deletion accompanied by a concomitant recombination of the terminal d(TT) groups. We find that the quenching of the 3'-C-O backbone cleavage is not ion specific, since it is due to the removal of the phosphate protons upon replacement with the respective metal ions. The central nucleotide deletion competes with the 3'-C-O backbone cleavage channels and is thus promoted through the replacement of the exchangeable protons against metal ions. However, with increasing positive charge density of the metal ions the yield of the central nucleotide deletion further increases. We attribute this effect to the necessity of sufficient proximity of the terminal d(TT) group to allow for their recombination on this reaction path. Hence, the formation of a reactive conformer is mediated by the metal ions. Y1 - 2014 U6 - https://doi.org/10.1140/epjd/e2014-40838-7 SN - 1434-6060 SN - 1434-6079 VL - 68 IS - 6 PB - Springer CY - New York ER - TY - JOUR A1 - Vogel, Stefanie A1 - Rackwitz, Jenny A1 - Schuerman, Robin A1 - Prinz, Julia A1 - Milosavljevic, Aleksandar R. A1 - Refregiers, Matthieu A1 - Giuliani, Alexandre A1 - Bald, Ilko T1 - Using DNA origami nanostructures to determine absolute cross sections for UV photon-induced DNA strand breakage JF - The journal of physical chemistry letters N2 - We have characterized ultraviolet (UV) photon-induced DNA strand break processes by determination of absolute cross sections for photoabsorption and for sequence-specific DNA single strand breakage induced by photons in an energy range from 6.50 to 8.94 eV. These represent the lowest-energy photons able to induce DNA strand breaks. Oligonudeotide targets are immobilized on a UV transparent substrate in controlled quantities through attachment to DNA origami templates. Photon-induced dissociation of single DNA strands is visualized and quantified using atomic force microscopy. The obtained quantum yields for strand breakage vary between 0.06 and 0.5, indicating highly efficient DNA strand breakage by UV photons, which is clearly dependent on the photon energy. Above the ionization threshold strand breakage becomes clearly the dominant form of DNA radiation damage, which is then also dependent on the nucleotide sequence. Y1 - 2015 U6 - https://doi.org/10.1021/acs.jpclett.5b02238 SN - 1948-7185 VL - 6 IS - 22 SP - 4589 EP - 4593 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kopyra, Janina A1 - Keller, A. A1 - Bald, Ilko T1 - On the role of fluoro-substituted nucleosides in DNA radiosensitization for tumor radiation therapy JF - RSC Advances Y1 - 2014 U6 - https://doi.org/10.1039/c3ra46735j SN - 2046-2069 VL - 4 IS - 13 SP - 6825 EP - 6829 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Tasior, Mariusz A1 - Bald, Ilko A1 - Deperasinska, Irena A1 - Cywinski, Piotr J. A1 - Gryko, Daniel T. T1 - An internal charge transfer-dependent solvent effect in V-shaped azacyanines JF - Organic & biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry Y1 - 2015 U6 - https://doi.org/10.1039/c5ob01633a SN - 1477-0520 SN - 1477-0539 VL - 13 IS - 48 SP - 11714 EP - 11720 PB - Royal Society of Chemistry CY - Cambridge ER - TY - BOOK A1 - Bechmann, Wolfgang A1 - Bald, Ilko T1 - Einstieg in die Physikalische Chemie für Naturwissenschaftler T3 - Studienbücher Chemie Lehrbuch N2 - Mit einer ausgewogenen Stoffauswahl aus den Teilgebieten Chemische Thermodynamik, Reaktionskinetik und Elektrochemie wird der Leser an das Studium der Physikalischen Chemie herangeführt. Das Verständnis der Theorie wird durch zahlreiche Aufgabenstellungen und die Angabe ihrer Lösungswege erleichtert. Das Buch gibt dem Studenten darüber hinaus Anregungen für ausgewählte Experimente zu den behandelten Teilgebieten, mit denen sich ein Grundverständnis physikalisch-chemischer Zusammenhänge entwickeln lässt. Y1 - 2018 SN - 978-3-662-55857-7 PB - Springer CY - Berlin ET - 6 ER - TY - JOUR A1 - Ebel, Kenny A1 - Bald, Ilko T1 - Length and Energy Dependence of Low-Energy Electron-Induced Strand Breaks in Poly(A) DNA JF - International Journal of Molecular Sciences N2 - The DNA in living cells can be effectively damaged by high-energy radiation, which can lead to cell death. Through the ionization of water molecules, highly reactive secondary species such as low-energy electrons (LEEs) with the most probable energy around 10 eV are generated, which are able to induce DNA strand breaks via dissociative electron attachment. Absolute DNA strand break cross sections of specific DNA sequences can be efficiently determined using DNA origami nanostructures as platforms exposing the target sequences towards LEEs. In this paper, we systematically study the effect of the oligonucleotide length on the strand break cross section at various irradiation energies. The present work focuses on poly-adenine sequences (d(A₄), d(A₈), d(A₁₂), d(A₁₆), and d(A₂₀)) irradiated with 5.0, 7.0, 8.4, and 10 eV electrons. Independent of the DNA length, the strand break cross section shows a maximum around 7.0 eV electron energy for all investigated oligonucleotides confirming that strand breakage occurs through the initial formation of negative ion resonances. When going from d(A₄) to d(A₁₆), the strand break cross section increases with oligonucleotide length, but only at 7.0 and 8.4 eV, i.e., close to the maximum of the negative ion resonance, the increase in the strand break cross section with the length is similar to the increase of an estimated geometrical cross section. For d(A₂₀), a markedly lower DNA strand break cross section is observed for all electron energies, which is tentatively ascribed to a conformational change of the dA₂₀ sequence. The results indicate that, although there is a general length dependence of strand break cross sections, individual nucleotides do not contribute independently of the absolute strand break cross section of the whole DNA strand. The absolute quantification of sequence specific strand breaks will help develop a more accurate molecular level understanding of radiation induced DNA damage, which can then be used for optimized risk estimates in cancer radiation therapy. KW - DNA origami KW - DNA radiation damage KW - DNA strand breaks KW - low-energy electrons KW - sequence dependence Y1 - 2019 U6 - https://doi.org/10.3390/ijms21010111 SN - 1422-0067 VL - 21 IS - 1 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Choi, Youngeun A1 - Schmidt, Carsten A1 - Tinnefeld, Philip A1 - Bald, Ilko A1 - Rödiger, Stefan T1 - A new reporter design based on DNA origami nanostructures for quantification of short oligonucleotides using microbeads JF - Scientific Reports N2 - The DNA origami technique has great potential for the development of brighter and more sensitive reporters for fluorescence based detection schemes such as a microbead-based assay in diagnostic applications. The nanostructures can be programmed to include multiple dye molecules to enhance the measured signal as well as multiple probe strands to increase the binding strength of the target oligonucleotide to these nanostructures. Here we present a proof-of-concept study to quantify short oligonucleotides by developing a novel DNA origami based reporter system, combined with planar microbead assays. Analysis of the assays using the VideoScan digital imaging platform showed DNA origami to be a more suitable reporter candidate for quantification of the target oligonucleotides at lower concentrations than a conventional reporter that consists of one dye molecule attached to a single stranded DNA. Efforts have been made to conduct multiplexed analysis of different targets as well as to enhance fluorescence signals obtained from the reporters. We therefore believe that the quantification of short oligonucleotides that exist in low copy numbers is achieved in a better way with the DNA origami nanostructures as reporters. KW - nucleic-acids KW - hybridization KW - microrna KW - flourescence KW - biomarkers KW - platform KW - particle KW - binding KW - array KW - gene Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-41136-x SN - 2045-2322 IS - 9 PB - Macmillan Publishers Limited CY - London ER - TY - JOUR A1 - Rackwitz, Jenny A1 - Kopyra, Janina A1 - Dabkowska, Iwona A1 - Ebel, Kenny A1 - Rankovic, MiloS Lj. A1 - Milosavljevic, Aleksandar R. A1 - Bald, Ilko T1 - Sensitizing DNA Towards Low-Energy Electrons with 2-Fluoroadenine JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - 2-Fluoroadenine ((2F)A) is a therapeutic agent, which is suggested for application in cancer radiotherapy. The molecular mechanism of DNA radiation damage can be ascribed to a significant extent to the action of low-energy (<20 eV) electrons (LEEs), which damage DNA by dissociative electron attachment. LEE induced reactions in (2F)A are characterized both isolated in the gas phase and in the condensed phase when it is incorporated into DNA. Information about negative ion resonances and anion-mediated fragmentation reactions is combined with an absolute quantification of DNA strand breaks in (2F)A-containing oligonucleotides upon irradiation with LEEs. The incorporation of (2F)A into DNA results in an enhanced strand breakage. The strand-break cross sections are clearly energy dependent, whereas the strand-break enhancements by (2F)A at 5.5, 10, and 15 eV are very similar. Thus, (2F)A can be considered an effective radiosensitizer operative at a wide range of electron energies. KW - ab initio calculations KW - dissociative electron attachment KW - DNA origami KW - DNA radiation damage KW - fludarabine Y1 - 2016 U6 - https://doi.org/10.1002/anie.201603464 SN - 1433-7851 SN - 1521-3773 VL - 55 SP - 10248 EP - 10252 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Meiling, Till T. A1 - Cywinski, Piotr J. A1 - Bald, Ilko T1 - White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis JF - Scientific reports N2 - In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (> 1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst. Y1 - 2016 U6 - https://doi.org/10.1038/srep28557 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Prinz, Julia A1 - Matkovic, Aleksandar A1 - Pesic, Jelena A1 - Gajic, Rados A1 - Bald, Ilko T1 - Hybrid Structures for Surface-Enhanced Raman Scattering: DNA Origami/Gold Nanoparticle Dimer/Graphene JF - Small N2 - A combination of three innovative materials within one hybrid structure to explore the synergistic interaction of their individual properties is presented. The unique electronic, mechanical, and thermal properties of graphene are combined with the plasmonic properties of gold nanoparticle (AuNP) dimers, which are assembled using DNA origami nanostructures. This novel hybrid structure is characterized by means of correlated atomic force microscopy and surface-enhanced Raman scattering (SERS). It is demonstrated that strong interactions between graphene and AuNPs result in superior SERS performance of the hybrid structure compared to their individual components. This is particularly evident in efficient fluorescence quenching, reduced background, and a decrease of the photobleaching rate up to one order of magnitude. The versatility of DNA origami structures to serve as interface for complex and precise arrangements of nanoparticles and other functional entities provides the basis to further exploit the potential of the here presented DNA origami-AuNP dimer-graphene hybrid structures. Y1 - 2016 U6 - https://doi.org/10.1002/smll.201601908 SN - 1613-6810 SN - 1613-6829 VL - 12 SP - 5458 EP - 5467 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schürmann, Robin Mathis A1 - Bald, Ilko T1 - Decomposition of DNA Nucleobases by Laser Irradiation of Gold Nanoparticles Monitored by Surface-Enhanced Raman Scattering JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Different approaches have been proposed to treat cancer cells using gold nanoparticles (AuNPs) in combination with radiation ranging from infrared lasers to high-energy ion beams. Here we study the decomposition of the DNA/RNA nucleobases thymine (T) and uracil (U) and the well-known radiosensitizer 5-bromouracil (BrU) in close vicinity to AuNPs, which are irradiated with a nanosecond pulsed laser (532 nm) matching the surface plasmon resonance of the AuNPs. The induced damage of nucleobases is analyzed by UV-vis absorption spectroscopy and surface-enhanced Raman scattering (SERS). A clear DNA damage is observed upon laser irradiation. SERS spectra indicate the fragmentation of the aromatic ring system of T and U as the dominant form of damage, whereas with BrU mainly the cleavage of the Br-C bond and formation of Br- ions is observed. This is accompanied by a partial transformation of BrU into U. The observed damage is at least partly ascribed to the intermediate formation of low energy electrons from the laser-excited AuNPs and subsequent dissociative electron attachment to T, U, and BrU. These reactions represent basic DNA damage pathways occurring on the one hand in plasmon-assisted cancer therapy and on the other hand in conventional cancer radiation therapy using AuNPs as sensitizing agents. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpcc.5b10564 SN - 1932-7447 VL - 120 SP - 3001 EP - 3009 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Olejko, Lydia A1 - Cywinski, P. J. A1 - Bald, Ilko T1 - An ion-controlled four-color fluorescent telomeric switch on DNA origami structures JF - Nanoscale N2 - The folding of single-stranded telomeric DNA into guanine (G) quadruplexes is a conformational change that plays a major role in sensing and drug targeting. The telomeric DNA can be placed on DNA origami nanostructures to make the folding process extremely selective for K+ ions even in the presence of high Na+ concentrations. Here, we demonstrate that the K+-selective G-quadruplex formation is reversible when using a cryptand to remove K+ from the G-quadruplex. We present a full characterization of the reversible switching between single-stranded telomeric DNA and G-quadruplex structures using Forster resonance energy transfer (FRET) between the dyes fluorescein (FAM) and cyanine3 (Cy3). When attached to the DNA origami platform, the G-quadruplex switch can be incorporated into more complex photonic networks, which is demonstrated for a three-color and a four-color FRET cascade from FAM over Cy3 and Cy5 to IRDye700 with G-quadruplex-Cy3 acting as a switchable transmitter. Y1 - 2016 U6 - https://doi.org/10.1039/c6nr00119j SN - 2040-3364 SN - 2040-3372 VL - 8 SP - 10339 EP - 10347 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Prinz, Julia A1 - Heck, Christian A1 - Ellerik, Lisa A1 - Merk, Virginia A1 - Bald, Ilko T1 - DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity JF - Nanoscale N2 - DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 10(10), which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. Y1 - 2016 U6 - https://doi.org/10.1039/c5nr08674d SN - 2040-3364 SN - 2040-3372 VL - 8 SP - 5612 EP - 5620 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Schürmann, Robin Mathis A1 - Tsering, Thupten A1 - Tanzer, Katrin A1 - Denifl, Stephan A1 - Kumar, S. V. K. A1 - Bald, Ilko T1 - Resonant Formation of Strand Breaks in Sensitized Oligonucleotides Induced by Low-Energy Electrons (0.5-9 eV) JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Halogenated nucleobases are used as radiosensitizers in cancer radiation therapy, enhancing the reactivity of DNA to secondary low-energy electrons (LEEs). LEEs induce DNA strand breaks at specific energies (resonances) by dissociative electron attachment (DEA). Although halogenated nucleobases show intense DEA resonances at various electron energies in the gas phase, it is inherently difficult to investigate the influence of halogenated nucleobases on the actual DNA strand breakage over the broad range of electron energies at which DEA can take place (<12 eV). By using DNA origami nanostructures, we determined the energy dependence of the strand break cross-section for oligonucleotides modified with 8-bromoadenine ((8Br)A). These results were evaluated against DEA measurements with isolated (8Br)A in the gas phase. Contrary to expectations, the major contribution to strand breaks is from resonances at around 7 eV while resonances at very low energy (<2 eV) have little influence on strand breaks. KW - cancer radiation therapy KW - dissociative electron attachment KW - DNA origami KW - DNA radiation damage KW - radiosensitizers Y1 - 2017 U6 - https://doi.org/10.1002/anie.201705504 SN - 1433-7851 SN - 1521-3773 VL - 56 SP - 10952 EP - 10955 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schuermann, Robin A1 - Tanzer, Katrin A1 - Dabkowska, Iwona A1 - Denifl, Stephan A1 - Bald, Ilko T1 - Stability of the Parent Anion of the Potential Radiosensitizer 8-Bromoadenine Formed by Low-Energy (< 3 eV) Electron Attachment JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - 8-Bromoadenine ((8Br)A) is a potential DNA radiosensitizer for cancer radiation therapy due to its efficient interaction with low-energy electrons (LEEs). LEEs are a short-living species generated during the radiation damage of DNA by high-energy radiation as it is applied in cancer radiation therapy. Electron attachment to (8Br)A in the gas phase results in a stable parent anion below 3 eV electron energy in addition to fragmentation products formed by resonant exocyclic bond cleavages. Density functional theory (DFT) calculations of the (8Br)A(-) anion reveal an exotic bond between the bromine and the C8 atom with a bond length of 2.6 angstrom, where the majority of the charge is located on bromine and the spin is mainly located on the C8 atom. The detailed understanding of such long-lived anionic states of nucleobase analogues supports the rational development of new therapeutic agents, in which the enhancement of dissociative electron transfer to the DNA backbone is critical to induce DNA strand breaks in cancerous tissue. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpcb.7b02130 SN - 1520-6106 VL - 121 SP - 5730 EP - 5734 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schürmann, Robin Mathis A1 - Bald, Ilko T1 - Effect of adsorption kinetics on dissociation of DNA-nucleobases on gold nanoparticles under pulsed laser illumination JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Photothermal therapy is a novel approach to destroy cancer cells by an increase of temperature due to laser illumination of gold nanoparticles (GNPs) that are incorporated into the cells. Here, we study the decomposition of DNA nucleobases via irradiation of gold nanoparticles with ns-laser pulses. The kinetics of the adsorption and decomposition process is described by a theoretical model based on the Langmuir assumptions and correlated with experimentally determined reaction rates revealing a strong influence of the nucleobase specific adsorption. Beside the four nucleobases, their brominated analogs, which are potential radiosensitizers in cancer therapy, are also investigated and show a significant modification of the decomposition rates. The fastest decomposition rates are observed for adenine, 8-bromoadenine, 8-bromoguanine and 5-bromocytosine. These results are in good agreement with the relative adsorption rates that are determined from the aggregation kinetics of the GNPs taking the effect of an inhomogeneous surface into account. For adenine and its brominated analog, the decomposition products are further analyzed by surface enhanced Raman scattering (SERS) indicating a strong fragmentation of the molecules into their smallest subunits. Y1 - 2017 U6 - https://doi.org/10.1039/c6cp08433h SN - 1463-9076 SN - 1463-9084 VL - 19 SP - 10796 EP - 10803 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Bald, Ilko A1 - Schürmann, Robin Mathis A1 - Ebel, Kenny A1 - Nicolas, Christophe A1 - Milosavljevic, Aleksandar R. T1 - Role of valence band states and plasmonic enhancement in electron-transfer-induced transformation of nitrothiophenol JF - The Journal of Physical Chemistry Letters N2 - Hot-electron-induced reactions are more and more recognized as a critical and ubiquitous reaction in heterogeneous catalysis. However, the kinetics of these reactions is still poorly understood, which is also due to the complexity of plasmonic nanostructures. We determined the reaction rates of the hot-electron-mediated reaction of 4-nitrothiophenol (NTP) on gold nanoparticles (AuNPs) using fractal kinetics as a function of the laser wavelength and compared them with the plasmonic enhancement of the system. The reaction rates can be only partially explained by the plasmonic response of the NPs. Hence, synchrotron X-ray photoelectron spectroscopy (XPS) measurements of isolated NTP-capped AuNP clusters have been performed for the first time. In this way, it was possible to determine the work function and the accessible valence band states of the NP systems. The results show that besides the plasmonic enhancement, the reaction rates are strongly influenced by the local density of the available electronic states of the system. Y1 - 2019 UR - https://pubs.acs.org/doi/10.1021/acs.jpclett.9b00848 U6 - https://doi.org/10.1021/acs.jpclett.9b00848 SN - 1948-7185 VL - 10 SP - 3153 EP - 3158 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Tapio, Kosti A1 - Bald, Ilko T1 - The potential of DNA origami to build multifunctional materials JF - Multifunctional Materials N2 - The development of the DNA origami technique has revolutionized the field of DNA nanotechnology as it allows to create virtually any arbitrarily shaped nanostructure out of DNA on a 10–100 nm length scale by a rather robust self-assembly process. Additionally, DNA origami nanostructures can be modified with chemical entities with nanometer precision, which allows to tune precisely their properties, their mutual interactions and interactions with their environment. The flexibility and modularity of DNA origami allows also for the creation of dynamic nanostructures, which opens up a plethora of possible functions and applications. Here we review the fundamental properties of DNA origami nanostructures, the wide range of functions that arise from these properties and finally present possible applications of DNA origami based multifunctional materials. Y1 - 2020 UR - https://iopscience.iop.org/article/10.1088/2399-7532/ab80d5 U6 - https://doi.org/10.1088/2399-7532/ab80d5 SN - 2399-7532 VL - 3 IS - 3 PB - IOP Publishing CY - Bristol ER - TY - JOUR A1 - da Silva, Filipe Ferreira A1 - Varella, Marcio T. do N. A1 - Jones, Nykola C. A1 - Hoffmann, Soren Vronning A1 - Denifl, Stephan A1 - Bald, Ilko A1 - Kopyra, Janina T1 - Electron-Induced Reactions in 3-Bromopyruvic Acid JF - Chemistry - a European journal N2 - 3-Bromopyruvic acid (3BP) is a potential anticancer drug, the action of which on cellular metabolism is not yet entirely clear. The presence of a bromine atom suggests that it is also reactive towards low-energy electrons, which are produced in large quantities during tumour radiation therapy. Detailed knowledge of the interaction of 3BP with secondary electrons is a prerequisite to gain a complete picture of the effects of 3BP in different forms of cancer therapy. Herein, dissociative electron attachment (DEA) to 3BP in the gas phase has been studied both experimentally by using a crossed-beam setup and theoretically through scattering and quantum chemical calculations. These results are complemented by a vacuum ultraviolet absorption spectrum. The main fragmentation channel is the formation of Br- close to 0 eV and within several resonant features at 1.9 and 3-8 eV. At low electron energies, Br- formation proceeds through sigma* and pi* shape resonances, and at higher energies through core-excited resonances. It is found that the electron-capture cross-section is clearly increased compared with that of non-brominated pyruvic acid, but, at the same time, fragmentation reactions through DEA are significantly altered as well. The 3BP transient negative ion is subject to a lower number of fragmentation reactions than those of pyruvic acid, which indicates that 3BP could indeed act by modifying the electron-transport chains within oxidative phosphorylation. It could also act as a radio-sensitiser. KW - density functional calculations KW - dissociative electron attachment KW - drug discovery KW - gas-phase reactions KW - sensitizers Y1 - 2019 U6 - https://doi.org/10.1002/chem.201806132 SN - 0947-6539 SN - 1521-3765 VL - 25 IS - 21 SP - 5498 EP - 5506 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Vogel, Stefanie A1 - Ebel, Kenny A1 - Schürmann, Robin Mathis A1 - Heck, Christian A1 - Meiling, Till A1 - Milosavljevic, Aleksandar R. A1 - Giuliani, Alexandre A1 - Bald, Ilko T1 - Vacuum-UV and Low-Energy Electron-Induced DNA Strand Breaks BT - Influence of the DNA Sequence and Substrate JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - DNA is effectively damaged by radiation, which can on the one hand lead to cancer and is on the other hand directly exploited in the treatment of tumor tissue. DNA strand breaks are already induced by photons having an energy below the ionization energy of DNA. At high photon energies, most of the DNA strand breaks are induced by low-energy secondary electrons. In the present study we quantified photon and electron induced DNA strand breaks in four different 12mer oligonucleotides. They are irradiated directly with 8.44 eV vacuum ultraviolet (VUV) photons and 8.8 eV low energy electrons (LEE). By using Si instead of VUV transparent CaF2 as a substrate the VUV exposure leads to an additional release of LEEs, which have a maximum energy of 3.6 eV and can significantly enhance strand break cross sections. Atomic force microscopy is used to visualize strand breaks on DNA origami platforms and to determine absolute values for the strand break cross sections. Upon irradiation with 8.44 eV photons all the investigated sequences show very similar strand break cross sections in the range of 1.7-2.3x10(-16) cm(2). The strand break cross sections for LEE irradiation at 8.8 eV are one to two orders of magnitude larger than the ones for VUV photons, and a slight sequence dependence is observed. The sequence dependence is even more pronounced for LEEs with energies <3.6 eV. The present results help to assess DNA damage by photons and electrons close to the ionization threshold. KW - DNA origami KW - DNA radiation damage KW - DNA strand breaks KW - low-energy electrons KW - vacuum-UV radiation Y1 - 2019 U6 - https://doi.org/10.1002/cphc.201801152 SN - 1439-4235 SN - 1439-7641 VL - 20 IS - 6 SP - 823 EP - 830 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Abdoul-Carime, Hassan A1 - Bald, Ilko A1 - Illenberger, Eugen A1 - Kopyra, Janina T1 - Selective Synthesis of Ethylene and Acetylene from Dimethyl Sulfide Cold Films Controlled by Slow Electrons JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - One of the major challenges in chemical synthesis is to trigger and control a specific reaction route leading to a specific final product, while side products are avoided. Methodologies based on resonant processes at the molecular level, for example, photochemistry, offer the possibility of inducing selective reactions. Electrons at energies below the molecular ionization potential (<10 eV) are known to dissociate molecules via resonant processes with higher cross sections and specificity than photons. Here we show that even subexcitation electrons with energies as low as 1 eV produce ethylene and acetylene from dimethyl sulfide in competing reactions. However, the production of ethylene can specifically be targeted by controlling the energy of electrons (similar to 3 to 4 eV). Finally, pure ethylene is selectively desorbed by heating the substrate from 90 to 105 K. Beyond the synthesis of these versatile hydrocarbons for various industrial applications from a biogenic sulfur compound, our findings demonstrate the feasibility of electron induced selective chemistry applicable on the nanoscale. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpcc.8b07377 SN - 1932-7447 VL - 122 IS - 42 SP - 24137 EP - 24142 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Vogel, Stefanie A1 - Ebel, Kenny A1 - Heck, Christian A1 - Schürmann, Robin Mathis A1 - Milosavljevic, Aleksandar R. A1 - Giuliani, Alexandre A1 - Bald, Ilko T1 - Vacuum-UV induced DNA strand breaks BT - influence of the radiosensitizers 5-bromouracil and 8-bromoadenine JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Radiation therapy is a basic part of cancer treatment. To increase the DNA damage in carcinogenic cells and preserve healthy tissue at the same time, radiosensitizing molecules such as halogenated nucleobase analogs can be incorporated into the DNA during the cell reproduction cycle. In the present study 8.44 eV photon irradiation induced single strand breaks (SSB) in DNA sequences modified with the radiosensitizer 5-bromouracil (U-5Br) and 8-bromoadenine ((8Br)A) are investigated. U-5Br was incorporated in the 13mer oligonucleotide flanked by different nucleobases. It was demonstrated that the highest SSB cross sections were reached, when cytosine and thymine were adjacent to U-5Br, whereas guanine as a neighboring nucleobase decreases the activity of U-5Br indicating that competing reaction mechanisms are active. This was further investigated with respect to the distance of guanine to U-5Br separated by an increasing number of adenine nucleotides. It was observed that the SSB cross sections were decreasing with an increasing number of adenine spacers between guanine and U-5Br until the SSB cross sections almost reached the level of a non-modified DNA sequence, which demonstrates the high sequence dependence of the sensitizing effect of U-5Br. (8Br)A was incorporated in a 13mer oligonucleotide as well and the strand breaks were quantified upon 8.44 eV photon irradiation in direct comparison to a non-modified DNA sequence of the same composition. No clear enhancement of the SSB yield of the modified in comparison to the non-modified DNA sequence could be observed. Additionally, secondary electrons with a maximum energy of 3.6 eV were generated when using Si as a substrate giving rise to further DNA damage. A clear enhancement in the SSB yield can be ascertained, but to the same degree for both the non-modified DNA sequence and the DNA sequence modified with (8Br)A. Y1 - 2019 U6 - https://doi.org/10.1039/c8cp06813e SN - 1463-9076 SN - 1463-9084 VL - 21 IS - 4 SP - 1972 EP - 1979 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Bechmann, Wolfgang A1 - Bald, Ilko T1 - Wechselwirkung zwischen elektromagnetischer Strahlung und Stoff – Grundlagen der Spektroskopie N2 - Unter elektromagnetischer Strahlung versteht man eine Welle aus gekoppelten elektrischen und magnetischen Feldern. Stoffe, die dieser Welle ausgesetzt sind, können von ihr Energie aufnehmen. Dabei wechseln die Stoffe zwischen ihrem, der jeweiligen Temperatur entsprechenden energetischen Grundzustand G und einem energetisch angeregten Zustand A* (Abbildung 4.1). Y1 - 2020 SN - 978-3-662-62033-5 SN - 978-3-662-62034-2 U6 - https://doi.org/10.1007/978-3-662-62034-2_4 SP - 303 EP - 457 PB - Springer CY - Berlin ET - 7. Auflage ER - TY - JOUR A1 - Bechmann, Wolfgang A1 - Bald, Ilko T1 - Reaktionskinetik JF - Einstieg in die Physikalische Chemie für Naturwissenschaftler N2 - Bei der Untersuchung chemischer Reaktionen interessiert zunächst, welche Reaktionsprodukte aus gegebenen Ausgangsstoffen gebildet werden können. Wichtig sind weiterhin Angaben zum möglichen Grad der Umsetzung der Ausgangsstoffe und zur Energiebilanz einer Reaktion. Damit sind aber noch keine Aussagen über den zeitlichen Ablauf der Stoffumwandlung getroffen. Y1 - 2020 SN - 978-3-662-62033-5 SN - 978-3-662-62034-2 U6 - https://doi.org/10.1007/978-3-662-62034-2_2 SP - 141 EP - 220 PB - Springer CY - Berlin ET - 7. Auflage ER - TY - JOUR A1 - Bechmann, Wolfgang A1 - Bald, Ilko T1 - Elektrochemie JF - Einstieg in die Physikalische Chemie für Naturwissenschaftler N2 - Es war eine Reihe experimenteller Befunde, die zur Entwicklung dieses Teilgebietes der Physikalischen Chemie und auch zu seiner Unterteilung führte. Die Liste der Namen, die mit den Experimenten verknüpft sind, liest sich nicht nur wie eine Zeittafel der Geschichte der Elektrizitätslehre, sondern auch der Physikalischen Chemie selbst. Y1 - 2020 SN - 978-3-662-62033-5 SN - 978-3-662-62034-2 U6 - https://doi.org/10.1007/978-3-662-62034-2_3 SP - 221 EP - 301 PB - Springer CY - Berlin ET - 7. Auflage ER - TY - JOUR A1 - Bechmann, Wolfgang A1 - Bald, Ilko T1 - Chemische Thermodynamik JF - Einstieg in die Physikalische Chemie für Naturwissenschaftler N2 - Der Begriff Thermodynamik ist von den griechischen Wörtern ϑερμος (warm) und δυναμις (Kraft) abgeleitet. Er steht für das Teilgebiet der Physik (Wärmelehre), das sich vor allem mit der Umwandlung von Wärmeenergie in andere Energieformen bei physikalischen Vorgängen befasst. Y1 - 2020 SN - 978-3-662-62034-2 SN - 978-3-662-62033-5 U6 - https://doi.org/10.1007/978-3-662-62034-2_1 SP - 13 EP - 140 PB - Springer CY - Berlin ET - 7. Auflage ER - TY - BOOK A1 - Bechmann, Wolfgang A1 - Bald, Ilko T1 - Einstieg in die Physikalische Chemie für Naturwissenschaftler T3 - Studienbücher Chemie Lehrbuch N2 - Der Einstieg in die Physikalische Chemie für Naturwissenschaftler Einführung in die Grundlagen der Spektroskopie und der wichtigsten Methoden der Stoff- und Strukturanalytik Mit Übungsaufgaben und allen Lösungen inkl. der Lösungswege Enthält Anleitungen für Praktikumsversuche Y1 - 2020 SN - 978-3-662-62033-5 SN - 978-3-662-62034-2 U6 - https://doi.org/10.1007/978-3-662-62034-2 PB - Springer CY - Berlin ET - 7. Auflage ER - TY - JOUR A1 - Bechmann, Wolfgang A1 - Bald, Ilko T1 - Lösungen JF - Einstieg in die Physikalische Chemie für Naturwissenschaftler N2 - In diesem Kapitel finden Sie die Lösungen zu den Übungsaufgaben. Y1 - 2020 SN - 978-3-662-62033-5 SN - 978-3-662-62034-2 U6 - https://doi.org/10.1007/978-3-662-62034-2_5 SP - 459 EP - 492 PB - Springer CY - Berlin ET - 7. Auflage ER - TY - JOUR A1 - Kopyra, Janina A1 - Wierzbicka, Paulina A1 - Tulwin, Adrian A1 - Thiam, Guillaume A1 - Bald, Ilko A1 - Rabilloud, Franck A1 - Abdoul-Carime, Hassan T1 - Experimental and theoretical studies of dissociative electron attachment to metabolites oxaloacetic and citric acids JF - International Journal of Molecular Sciences (IJMS) N2 - In this contribution the dissociative electron attachment to metabolites found in aerobic organisms, namely oxaloacetic and citric acids, was studied both experimentally by means of a crossed-beam setup and theoretically through density functional theory calculations. Prominent negative ion resonances from both compounds are observed peaking below 0.5 eV resulting in intense formation of fragment anions associated with a decomposition of the carboxyl groups. In addition, resonances at higher energies (3–9 eV) are observed exclusively from the decomposition of the oxaloacetic acid. These fragments are generated with considerably smaller intensities. The striking findings of our calculations indicate the different mechanism by which the near 0 eV electron is trapped by the precursor molecule to form the transitory negative ion prior to dissociation. For the oxaloacetic acid, the transitory anion arises from the capture of the electron directly into some valence states, while, for the citric acid, dipole- or multipole-bound states mediate the transition into the valence states. What is also of high importance is that both compounds while undergoing DEA reactions generate highly reactive neutral species that can lead to severe cell damage in a biological environment. KW - dissociative electron attachment KW - negative ions KW - oxaloacetic acid KW - citric acid KW - mass spectrometry Y1 - 2021 U6 - https://doi.org/10.3390/ijms22147676 SN - 1422-0067 VL - 22 IS - 14 PB - MDPI CY - Basel ER - TY - JOUR A1 - Rühlmann, Madlen A1 - Büchele, Dominique A1 - Ostermann, Markus A1 - Bald, Ilko A1 - Schmid, Thomas T1 - Challenges in the quantification of nutrients in soils using laser-induced breakdown spectroscopy BT - a case study with calcium JF - Spectrochimica Acta Part B: Atomic Spectroscopy N2 - The quantification of the elemental content in soils with laser-induced breakdown spectroscopy (LIBS) is challenging because of matrix effects strongly influencing the plasma formation and LIBS signal. Furthermore, soil heterogeneity at the micrometre scale can affect the accuracy of analytical results. In this paper, the impact of univariate and multivariate data evaluation approaches on the quantification of nutrients in soil is discussed. Exemplarily, results for calcium are shown, which reflect trends also observed for other elements like magnesium, silicon and iron. For the calibration models, 16 certified reference soils were used. With univariate and multivariate approaches, the calcium mass fractions in 60 soils from different testing grounds in Germany were calculated. The latter approach consisted of a principal component analysis (PCA) of adequately pre-treated data for classification and identification of outliers, followed by partial least squares regression (PLSR) for quantification. For validation, the soils were also characterised with inductively coupled plasma optical emission spectroscopy (ICP OES) and X-ray fluorescence (XRF) analysis. Deviations between the LIBS quantification results and the reference analytical results are discussed. KW - Laser-induced breakdown spectroscopy (LIBS) KW - Soil KW - Multivariate data analysis KW - Principal component analysis (PCA) KW - Partial least squares regression (PLSR) Y1 - 2018 U6 - https://doi.org/10.1016/j.sab.2018.05.003 SN - 0584-8547 VL - 146 SP - 115 EP - 121 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Choi, Youngeun A1 - Kotthoff, Lisa A1 - Olejko, Lydia A1 - Resch-Genger, Ute A1 - Bald, Ilko T1 - DNA origami-based forster resonance energy-transfer Nanoarrays and their application as ratiometric sensors JF - ACS applied materials & interfaces N2 - DNA origami nanostructures provide a platform where dye molecules can be arranged with nanoscale accuracy allowing to assemble multiple fluorophores without dye-dye aggregation. Aiming to develop a bright and sensitive ratiometric sensor system, we systematically studied the optical properties of nanoarrays of dyes built on DNA origami platforms using a DNA template that provides a high versatility of label choice at minimum cost. The dyes are arranged at distances, at which they efficiently interact by Forster resonance energy transfer (FRET). To optimize array brightness, the FRET efficiencies between the donor fluorescein (FAM) and the acceptor cyanine 3 were determined for different sizes of the array and for different arrangements of the dye molecules within the array. By utilizing nanoarrays providing optimum FRET efficiency and brightness, we subsequently designed a ratiometric pH nanosensor using coumarin 343 as a pH-inert FRET donor and FAM as a pH responsive acceptor. Our results indicate that the sensitivity of a ratiometric sensor can be improved simply by arranging the dyes into a well-defined array. The dyes used here can be easily replaced by other analyte-responsive dyes, demonstrating the huge potential of DNA nanotechnology for light harvesting, signal enhancement, and sensing schemes in life sciences. KW - DNA origami KW - nanoarray KW - FRET KW - ratiometric sensing KW - pH sensing Y1 - 2018 U6 - https://doi.org/10.1021/acsami.8b03585 SN - 1944-8244 SN - 1944-8252 VL - 10 IS - 27 SP - 23295 EP - 23302 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schürmann, Robin Mathis A1 - Vogel, Stefanie A1 - Ebel, Kenny A1 - Bald, Ilko T1 - The physico-chemical basis of DNA radiosensitization BT - implications for cancer radiation therapy JF - Chemistry - a European journal N2 - High-energy radiation is used in combination with radiosensitizing therapeutics to treat cancer. The most common radiosensitizers are halogenated nucleosides and cisplatin derivatives, and recently also metal nanoparticles have been suggested as potential radiosensitizing agents. The radiosensitizing action of these compounds can at least partly be ascribed to an enhanced reactivity towards secondary low-energy electrons generated along the radiation track of the high-energy primary radiation, or to an additional emission of secondary reactive electrons close to the tumor tissue. This is referred to as physico-chemical radiosensitization. In this Concept article we present current experimental methods used to study fundamental processes of physico-chemical radiosensitization and discuss the most relevant classes of radiosensitizers. Open questions in the current discussions are identified and future directions outlined, which can lead to optimized treatment protocols or even novel therapeutic concepts. KW - cancer KW - dissociative electron attachment KW - low-energy electrons KW - radiation therapy KW - radiosensitizers Y1 - 2018 U6 - https://doi.org/10.1002/chem.201800804 SN - 0947-6539 SN - 1521-3765 VL - 24 IS - 41 SP - 10271 EP - 10279 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Meiling, Till Thomas A1 - Schürmann, Robin Mathis A1 - Vogel, Stefanie A1 - Ebel, Kenny A1 - Nicolas, Christophe A1 - Milosavljevic, Aleksandar R. A1 - Bald, Ilko T1 - Photophysics and Chemistry of Nitrogen-Doped Carbon Nanodots with High Photoluminescence Quantum Yield JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Fluorescent carbon nanodots (CNDs) are very promising nanomaterials for a broad range of applications because of their high photostability, presumed selective luminescence, and low cost at which they can be produced. In this respect, CNDs are superior to well-established semiconductor quantum dots and organic dyes. However, reported synthesis protocols for CNDs typically lead to low photoluminescence quantum yield (PLQY) and low reproducibility, resulting in a poor understanding of the CND chemistry and photophysics. Here, we report a one-step synthesis of nitrogen-doped carbon nanodots (N-CNDs) from various carboxylic acids, Tris, and ethylenediaminetetraacetic acid resulting in high PLQY of up to 90%. The reaction conditions in terms of starting materials, temperature, and reaction time are carefully optimized and their influence on the photophysical properties is characterized. We find that citric acid-derived N-CNDs can result in a very high PLQY of 90%, but they do not show selective luminescence. By contrast, acetic acid-derived N-CNDs show selective luminescence but a PLQY of 50%. The chemical composition of the surface and core of these two selected N-CND types is characterized among others by high-resolution synchrotron X-ray photoelectron spectroscopy using single isolated N-CND clusters. The results indicate that photoexcitation occurs in the N-CND core, whereas the emission properties are determined by the N-CND surface groups. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpcc.8b00748 SN - 1932-7447 VL - 122 IS - 18 SP - 10217 EP - 10230 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Ribar, Anita A1 - Huber, Stefan E. A1 - Smialek, Malgorzata A. A1 - Tanzer, Katrin A1 - Neustetter, Michael A1 - Schürmann, Robin A1 - Bald, Ilko A1 - Denifl, Stephan T1 - Hydroperoxyl radical and formic acid formation from common DNA stabilizers upon low energy electron attachment JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - 2-Amino-2-(hydroxymethyl)-1,3-propanediol (TRIS) and ethylenediaminetetraacetic acid ( EDTA) are key components of biological buffers and are frequently used as DNA stabilizers in irradiation studies. Such surface or liquid phase studies are done with the aim to understand the fundamental mechanisms of DNA radiation damage and to improve cancer radiotherapy. When ionizing radiation is used, abundant secondary electrons are formed during the irradiation process, which are able to attach to the molecular compounds present on the surface. In the present study we experimentally investigate low energy electron attachment to TRIS and methyliminodiacetic acid ( MIDA), an analogue of EDTA, supported by quantum chemical calculations. The most prominent dissociation channel for TRIS is through hydroperoxyl radical formation, whereas the dissociation of MIDA results in the formation of formic and acetic acid. These compounds are well-known to cause DNA modifications, like strand breaks. The present results indicate that buffer compounds may not have an exclusive protecting effect on DNA as suggested previously. Y1 - 2018 U6 - https://doi.org/10.1039/c7cp07697e SN - 1463-9076 SN - 1463-9084 VL - 20 IS - 8 SP - 5578 EP - 5585 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Rackwitz, Jenny A1 - Bald, Ilko T1 - Low-energy electron-induced strand breaks in telomere-derived DNA sequences BT - influence of DNA sequence and topology JF - Chemistry - a European journal N2 - During cancer radiation therapy high-energy radiation is used to reduce tumour tissue. The irradiation produces a shower of secondary low-energy (<20 eV) electrons, which are able to damage DNA very efficiently by dissociative electron attachment. Recently, it was suggested that low-energy electron-induced DNA strand breaks strongly depend on the specific DNA sequence with a high sensitivity of G-rich sequences. Here, we use DNA origami platforms to expose G-rich telomere sequences to low-energy (8.8 eV) electrons to determine absolute cross sections for strand breakage and to study the influence of sequence modifications and topology of telomeric DNA on the strand breakage. We find that the telomeric DNA 5′-(TTA GGG)2 is more sensitive to low-energy electrons than an intermixed sequence 5′-(TGT GTG A)2 confirming the unique electronic properties resulting from G-stacking. With increasing length of the oligonucleotide (i.e., going from 5′-(GGG ATT)2 to 5′-(GGG ATT)4), both the variety of topology and the electron-induced strand break cross sections increase. Addition of K+ ions decreases the strand break cross section for all sequences that are able to fold G-quadruplexes or G-intermediates, whereas the strand break cross section for the intermixed sequence remains unchanged. These results indicate that telomeric DNA is rather sensitive towards low-energy electron-induced strand breakage suggesting significant telomere shortening that can also occur during cancer radiation therapy. KW - DNA damage KW - DNA strand breaks KW - low-energy electron KW - radiation therapy KW - telomeric DNA Y1 - 2018 U6 - https://doi.org/10.1002/chem.201705889 SN - 0947-6539 SN - 1521-3765 VL - 24 IS - 18 SP - 4680 EP - 4688 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Zühlke, Martin A1 - Meiling, Till Thomas A1 - Roder, Phillip A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Bald, Ilko A1 - Löhmannsröben, Hans-Gerd A1 - Janßen, Traute A1 - Erhard, Marcel A1 - Repp, Alexander T1 - Photodynamic inactivation of E. coli bacteria via carbon nanodots JF - ACS omega / American Chemical Society N2 - The increasing development of antibiotic resistance in bacteria has been a major problem for years, both in human and veterinary medicine. Prophylactic measures, such as the use of vaccines, are of great importance in reducing the use of antibiotics in livestock. These vaccines are mainly produced based on formaldehyde inactivation. However, the latter damages the recognition elements of the bacterial proteins and thus could reduce the immune response in the animal. An alternative inactivation method developed in this work is based on gentle photodynamic inactivation using carbon nanodots (CNDs) at excitation wavelengths λex > 290 nm. The photodynamic inactivation was characterized on the nonvirulent laboratory strain Escherichia coli K12 using synthesized CNDs. For a gentle inactivation, the CNDs must be absorbed into the cytoplasm of the E. coli cell. Thus, the inactivation through photoinduced formation of reactive oxygen species only takes place inside the bacterium, which means that the outer membrane is neither damaged nor altered. The loading of the CNDs into E. coli was examined using fluorescence microscopy. Complete loading of the bacterial cells could be achieved in less than 10 min. These studies revealed a reversible uptake process allowing the recovery and reuse of the CNDs after irradiation and before the administration of the vaccine. The success of photodynamic inactivation was verified by viability assays on agar. In a homemade flow photoreactor, the fastest successful irradiation of the bacteria could be carried out in 34 s. Therefore, the photodynamic inactivation based on CNDs is very effective. The membrane integrity of the bacteria after irradiation was verified by slide agglutination and atomic force microscopy. The method developed for the laboratory strain E. coli K12 could then be successfully applied to the important avian pathogens Bordetella avium and Ornithobacterium rhinotracheale to aid the development of novel vaccines. KW - Bacteria KW - Genetics KW - Fluorescence KW - Photodynamics KW - Irradiation Y1 - 2021 U6 - https://doi.org/10.1021/acsomega.1c01700 SN - 2470-1343 VL - 6 IS - 37 SP - 23742 EP - 23749 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Heck, Christian A1 - Prinz, Julia A1 - Dathe, Andre A1 - Merk, Virginia A1 - Stranik, Ondrej A1 - Fritzsche, Wolfgang A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Gold Nanolenses Self-Assembled by DNA Origami JF - ACS Photonics N2 - Nanolenses are self-similar chains of metal nanoparticles, which can theoretically provide extremely high field enhancements. Yet, the complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, DNA origami is used to self-assemble 10, 20, and 60 nm gold nanoparticles as plasmonic gold nanolenses (AuNLs) in solution and in billions of copies. Three different geometrical arrangements are assembled, and for each of the three designs, surface-enhanced Raman scattering (SERS) capabilities of single AuNLs are assessed. For the design which shows the best properties, SERS signals from the two different internal gaps are compared by selectively placing probe dyes. The highest Raman enhancement is found for the gap between the small and medium nanoparticle, which is indicative of a cascaded field enhancement. KW - plasmonics KW - DNA origami KW - SERS KW - nanolenses KW - gold nanoparticles Y1 - 2017 U6 - https://doi.org/10.1021/acsphotonics.6b00946 SN - 2330-4022 VL - 4 SP - 1123 EP - 1130 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schürmann, Robin Mathis A1 - Bald, Ilko T1 - Real-time monitoring of plasmon induced dissociative electron transfer to the potential DNA radiosensitizer 8-bromoadenine JF - Nanoscale N2 - The excitation of localized surface plasmons in noble metal nanoparticles (NPs) results in different nanoscale effects such as electric field enhancement, the generation of hot electrons and a temperature increase close to the NP surface. These effects are typically exploited in diverse fields such as surface-enhanced Raman scattering (SERS), NP catalysis and photothermal therapy (PTT). Halogenated nucleobases are applied as radiosensitizers in conventional radiation cancer therapy due to their high reactivity towards secondary electrons. Here, we use SERS to study the transformation of 8-bromoadenine ((8Br)A) into adenine on the surface of Au and AgNPs upon irradiation with a low-power continuous wave laser at 532, 633 and 785 nm, respectively. The dissociation of (8Br)A is ascribed to a hot-electron transfer reaction and the underlying kinetics are carefully explored. The reaction proceeds within seconds or even milliseconds. Similar dissociation reactions might also occur with other electrophilic molecules, which must be considered in the interpretation of respective SERS spectra. Furthermore, we suggest that hot-electron transfer induced dissociation of radiosensitizers such as (8Br)A can be applied in the future in PTT to enhance the damage of tumor tissue upon irradiation. Y1 - 2017 U6 - https://doi.org/10.1039/c6nr08695k SN - 2040-3364 SN - 2040-3372 VL - 9 SP - 1951 EP - 1955 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Rackwitz, Jenny A1 - Ranković, Miloš Lj. A1 - Milosavljević, Aleksandar R. A1 - Bald, Ilko T1 - A novel setup for the determination of absolute cross sections for low-energy electron induced strand breaks in oligonucleotides BT - the effect of the radiosensitizer 5-fluorouracil* JF - The European physical journal : D, Atomic, molecular, optical and plasma physics N2 - Low-energy electrons (LEEs) play an important role in DNA radiation damage. Here we present a method to quantify LEE induced strand breakage in well-defined oligonucleotide single strands in terms of absolute cross sections. An LEE irradiation setup covering electron energies <500 eV is constructed and optimized to irradiate DNA origami triangles carrying well-defined oligonucleotide target strands. Measurements are presented for 10.0 and 5.5 eV for different oligonucleotide targets. The determination of absolute strand break cross sections is performed by atomic force microscopy analysis. An accurate fluence determination ensures small margins of error of the determined absolute single strand break cross sections sigma SSB. In this way, the influence of sequence modification with the radiosensitive 5-Fluorouracil (U-5F) is studied using an absolute and relative data analysis. We demonstrate an increase in the strand break yields of U-5F containing oligonucleotides by a factor of 1.5 to 1.6 compared with non-modified oligonucleotide sequences when irradiated with 10 eV electrons. Y1 - 2017 U6 - https://doi.org/10.1140/epjd/e2016-70608-4 SN - 1434-6060 SN - 1434-6079 VL - 71 PB - Springer CY - New York ER - TY - JOUR A1 - Olejko, Lydia A1 - Bald, Ilko T1 - FRET efficiency and antenna effect in multi-color DNA origami-based light harvesting systems JF - RSC Advances N2 - Artificial light harvesting complexes find applications in artificial photosynthesis, photovoltaics and light harvesting chemical sensors. They are used to enhance the absorption of light of a reaction center which is often represented by a single acceptor. Here, we present different light harvesting systems on DNA origami structures and analyze systematically the light harvesting efficiency. By changing the number and arrangement of different fluorophores (FAM as donor, Cy3 as transmitter and Cy5 as acceptor molecules) the light harvesting efficiency is optimized to create a broadband absorption and to improve the antenna effect 1 (including two energy transfer steps) from 0.02 to 1.58, and the antenna effect 2 (including a single energy transfer step) from 0.04 to 8.7, i.e. the fluorescence emission of the acceptor is significantly higher when the light-harvesting antenna is excited at lower wavelength compared to direct excitation of the acceptor. The channeling of photo energy to the acceptor proceeds by Forster Resonance Energy Transfer (FRET) and we carefully analyze also the FRET efficiency of the different light harvesting systems. Accordingly, the antenna effect can be tuned by modifying the stoichiometry of donor, transmitter and acceptor dyes, whereas the FRET efficiency is mainly governed by the spectroscopic properties of dyes and their distances. Y1 - 2017 U6 - https://doi.org/10.1039/c7ra02114c SN - 2046-2069 VL - 7 IS - 39 SP - 23924 EP - 23934 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Ebel, Kenny A1 - Bald, Ilko T1 - Low-energy (5-20 eV) electron-induced single and double strand breaks in well-defined DNA sequences JF - The journal of physical chemistry letters / American Chemical Society N2 - Ionizing radiation is used in cancer radiation therapy to effectively damage the DNA of tumors. The main damage is due to generation of highly reactive secondary species such as low-energy electrons (LEEs). The accurate quantification of DNA radiation damage of well-defined DNA target sequences in terms of absolute cross sections for LEE-induced DNA strand breaks is possible by the DNA origami technique; however, to date, it is possible only for DNA single strands. In the present work DNA double strand breaks in the DNA sequence 5'-d(CAC)(4)/5'd(GTG)(4) are compared with DNA single strand breaks in the oligonucleotides 5'-d(CAC)(4) and 5'-d(GTG)(4) upon irradiation with LEEs in the energy range from 5 to 20 eV. A maximum of strand break cross section was found around 7 and 10 eV independent of the DNA sequence, indicating that dissociative electron attachment is the underlying mechanism of strand breakage and confirming previous studies using plasmid DNA. Y1 - 2022 U6 - https://doi.org/10.1021/acs.jpclett.2c00684 SN - 1948-7185 VL - 13 IS - 22 SP - 4871 EP - 4876 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Marques, Telma S. A1 - Smialek, Malgorzata A. A1 - Schürmann, Robin A1 - Bald, Ilko A1 - Raposo, Maria A1 - Eden, Sam A1 - Mason, Nigel J. T1 - Decomposition of halogenated nucleobases by surface plasmon resonance excitation of gold nanoparticles JF - The European physical journal : D, Atomic, molecular, optical and plasma physics N2 - Halogenated uracil derivatives are of great interest in modern cancer therapy, either as chemotherapeutics or radiosensitisers depending on their halogen atom. This work applies UV-Vis spectroscopy to study the radiation damage of uracil, 5-bromouracil and 5-fluorouracil dissolved in water in the presence of gold nanoparticles upon irradiation with an Nd:YAG ns-pulsed laser operating at 532 nm at different fluences. Gold nanoparticles absorb light efficiently by their surface plasmon resonance and can significantly damage DNA in their vicinity by an increase of temperature and the generation of reactive secondary species, notably radical fragments and low energy electrons. A recent study using the same experimental approach characterized the efficient laser-induced decomposition of the pyrimidine ring structure of 5-bromouracil mediated by the surface plasmon resonance of gold nanoparticles. The present results show that the presence of irradiated gold nanoparticles decomposes the ring structure of uracil and its halogenated derivatives with similar efficiency. In addition to the fragmentation of the pyrimidine ring, for 5-bromouracil the cleavage of the carbon-halogen bond could be observed, whereas for 5-fluorouracil this reaction channel was inhibited. Locally-released halogen atoms can react with molecular groups within DNA, hence this result indicates a specific mechanism by which doping with 5-bromouracil can enhance DNA damage in the proximity of laser irradiated gold nanoparticles. Y1 - 2020 U6 - https://doi.org/10.1140/epjd/e2020-10208-3 SN - 1434-6060 SN - 1434-6079 VL - 74 IS - 11 PB - Springer CY - New York ER - TY - GEN A1 - Zühlke, Martin A1 - Meiling, Till Thomas A1 - Roder, Phillip A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Bald, Ilko A1 - Löhmannsröben, Hans-Gerd A1 - Janßen, Traute A1 - Erhard, Marcel A1 - Repp, Alexander T1 - Photodynamic Inactivation of E. coli Bacteria via Carbon Nanodots T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The increasing development of antibiotic resistance in bacteria has been a major problem for years, both in human and veterinary medicine. Prophylactic measures, such as the use of vaccines, are of great importance in reducing the use of antibiotics in livestock. These vaccines are mainly produced based on formaldehyde inactivation. However, the latter damages the recognition elements of the bacterial proteins and thus could reduce the immune response in the animal. An alternative inactivation method developed in this work is based on gentle photodynamic inactivation using carbon nanodots (CNDs) at excitation wavelengths λex > 290 nm. The photodynamic inactivation was characterized on the nonvirulent laboratory strain Escherichia coli K12 using synthesized CNDs. For a gentle inactivation, the CNDs must be absorbed into the cytoplasm of the E. coli cell. Thus, the inactivation through photoinduced formation of reactive oxygen species only takes place inside the bacterium, which means that the outer membrane is neither damaged nor altered. The loading of the CNDs into E. coli was examined using fluorescence microscopy. Complete loading of the bacterial cells could be achieved in less than 10 min. These studies revealed a reversible uptake process allowing the recovery and reuse of the CNDs after irradiation and before the administration of the vaccine. The success of photodynamic inactivation was verified by viability assays on agar. In a homemade flow photoreactor, the fastest successful irradiation of the bacteria could be carried out in 34 s. Therefore, the photodynamic inactivation based on CNDs is very effective. The membrane integrity of the bacteria after irradiation was verified by slide agglutination and atomic force microscopy. The method developed for the laboratory strain E. coli K12 could then be successfully applied to the important avian pathogens Bordetella avium and Ornithobacterium rhinotracheale to aid the development of novel vaccines. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1220 KW - Bacteria KW - Genetics KW - Fluorescence KW - Photodynamics KW - Irradiation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-538425 SN - 1866-8372 SP - 23742 EP - 23749 PB - Universität Potsdam CY - Potsdam ER -