TY - JOUR A1 - Ayzel, Georgy T1 - Deep neural networks in hydrology BT - the new generation of universal and efficient models BT - новое поколение универсальных и эффективных моделей JF - Vestnik of Saint Petersburg University. Earth Sciences N2 - For around a decade, deep learning - the sub-field of machine learning that refers to artificial neural networks comprised of many computational layers - modifies the landscape of statistical model development in many research areas, such as image classification, machine translation, and speech recognition. Geoscientific disciplines in general and the field of hydrology in particular, also do not stand aside from this movement. Recently, the proliferation of modern deep learning-based techniques and methods has been actively gaining popularity for solving a wide range of hydrological problems: modeling and forecasting of river runoff, hydrological model parameters regionalization, assessment of available water resources. identification of the main drivers of the recent change in water balance components. This growing popularity of deep neural networks is primarily due to their high universality and efficiency. The presented qualities, together with the rapidly growing amount of accumulated environmental information, as well as increasing availability of computing facilities and resources, allow us to speak about deep neural networks as a new generation of mathematical models designed to, if not to replace existing solutions, but significantly enrich the field of geophysical processes modeling. This paper provides a brief overview of the current state of the field of development and application of deep neural networks in hydrology. Also in the following study, the qualitative long-term forecast regarding the development of deep learning technology for managing the corresponding hydrological modeling challenges is provided based on the use of "Gartner Hype Curve", which in the general details describes a life cycle of modern technologies. N2 - В течение последнего десятилетия глубокое обучение - область машинного обучения, относящаяся к искусственным нейронным сетям, состоящим из множества вычислительных слоев, - изменяет ландшафт развития статистических моделей во многих областях исследований, таких как классификация изображений, машинный перевод, распознавание речи. Географические науки, а также входящая в их состав область исследования гидрологии суши, не стоят в стороне от этого движения. В последнее время применение современных технологий и методов глубокого обучения активно набирает популярность для решения широкого спектра гидрологических задач: моделирования и прогнозирования речного стока, районирования модельных параметров, оценки располагаемых водных ресурсов, идентификации факторов, влияющих на современные изменения водного режима. Такой рост популярности глубоких нейронных сетей продиктован прежде всего их высокой универсальностью и эффективностью. Представленные качества в совокупности с быстрорастущим количеством накопленной информации о состоянии окружающей среды, а также ростом доступности вычислительных средств и ресурсов, позволяют говорить о глубоких нейронных сетях как о новом поколении математических моделей, призванных если не заменить существующие решения, то значительно обогатить область моделирования геофизических процессов. В данной работе представлен краткий обзор текущего состояния области разработки и применения глубоких нейронных сетей в гидрологии. Также в работе предложен качественный долгосрочный прогноз развития технологии глубокого обучения для решения задач гидрологического моделирования на основе использования «кривой ажиотажа Гартнера», в общих чертах описывающей жизненный цикл современных технологий. T2 - Глубокие нейронные сети в гидрологии KW - deep neural networks KW - deep learning KW - machine learning KW - hydrology KW - modeling KW - глубокие нейронные сети KW - глубокое обучение KW - машинное обучение KW - гидрология KW - моделирование Y1 - 2021 U6 - https://doi.org/10.21638/spbu07.2021.101 SN - 2541-9668 SN - 2587-585X VL - 66 IS - 1 SP - 5 EP - 18 PB - Univ. Press CY - St. Petersburg ER - TY - JOUR A1 - Seleem, Omar A1 - Ayzel, Georgy A1 - Costa Tomaz de Souza, Arthur A1 - Bronstert, Axel A1 - Heistermann, Maik T1 - Towards urban flood susceptibility mapping using data-driven models in Berlin, Germany JF - Geomatics, natural hazards and risk N2 - Identifying urban pluvial flood-prone areas is necessary but the application of two-dimensional hydrodynamic models is limited to small areas. Data-driven models have been showing their ability to map flood susceptibility but their application in urban pluvial flooding is still rare. A flood inventory (4333 flooded locations) and 11 factors which potentially indicate an increased hazard for pluvial flooding were used to implement convolutional neural network (CNN), artificial neural network (ANN), random forest (RF) and support vector machine (SVM) to: (1) Map flood susceptibility in Berlin at 30, 10, 5, and 2 m spatial resolutions. (2) Evaluate the trained models' transferability in space. (3) Estimate the most useful factors for flood susceptibility mapping. The models' performance was validated using the Kappa, and the area under the receiver operating characteristic curve (AUC). The results indicated that all models perform very well (minimum AUC = 0.87 for the testing dataset). The RF models outperformed all other models at all spatial resolutions and the RF model at 2 m spatial resolution was superior for the present flood inventory and predictor variables. The majority of the models had a moderate performance for predictions outside the training area based on Kappa evaluation (minimum AUC = 0.8). Aspect and altitude were the most influencing factors on the image-based and point-based models respectively. Data-driven models can be a reliable tool for urban pluvial flood susceptibility mapping wherever a reliable flood inventory is available. KW - Urban pluvial flood susceptibility KW - convolutional neural network KW - deep KW - learning KW - random forest KW - support vector machine KW - spatial resolution; KW - flood predictors Y1 - 2022 U6 - https://doi.org/10.1080/19475705.2022.2097131 SN - 1947-5705 SN - 1947-5713 VL - 13 IS - 1 SP - 1640 EP - 1662 PB - Taylor & Francis CY - London ER - TY - GEN A1 - Seleem, Omar A1 - Ayzel, Georgy A1 - Costa Tomaz de Souza, Arthur A1 - Bronstert, Axel A1 - Heistermann, Maik T1 - Towards urban flood susceptibility mapping using data-driven models in Berlin, Germany T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Identifying urban pluvial flood-prone areas is necessary but the application of two-dimensional hydrodynamic models is limited to small areas. Data-driven models have been showing their ability to map flood susceptibility but their application in urban pluvial flooding is still rare. A flood inventory (4333 flooded locations) and 11 factors which potentially indicate an increased hazard for pluvial flooding were used to implement convolutional neural network (CNN), artificial neural network (ANN), random forest (RF) and support vector machine (SVM) to: (1) Map flood susceptibility in Berlin at 30, 10, 5, and 2 m spatial resolutions. (2) Evaluate the trained models' transferability in space. (3) Estimate the most useful factors for flood susceptibility mapping. The models' performance was validated using the Kappa, and the area under the receiver operating characteristic curve (AUC). The results indicated that all models perform very well (minimum AUC = 0.87 for the testing dataset). The RF models outperformed all other models at all spatial resolutions and the RF model at 2 m spatial resolution was superior for the present flood inventory and predictor variables. The majority of the models had a moderate performance for predictions outside the training area based on Kappa evaluation (minimum AUC = 0.8). Aspect and altitude were the most influencing factors on the image-based and point-based models respectively. Data-driven models can be a reliable tool for urban pluvial flood susceptibility mapping wherever a reliable flood inventory is available. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1297 KW - Urban pluvial flood susceptibility KW - convolutional neural network KW - deep learning KW - random forest KW - support vector machine KW - spatial resolution KW - flood predictors Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-576806 SN - 1866-8372 IS - 1297 SP - 1640 EP - 1662 ER - TY - JOUR A1 - Seleem, Omar A1 - Ayzel, Georgy A1 - Bronstert, Axel A1 - Heistermann, Maik T1 - Transferability of data-driven models to predict urban pluvial flood water depth in Berlin, Germany JF - Natural Hazards and Earth System Sciences N2 - Data-driven models have been recently suggested to surrogate computationally expensive hydrodynamic models to map flood hazards. However, most studies focused on developing models for the same area or the same precipitation event. It is thus not obvious how transferable the models are in space. This study evaluates the performance of a convolutional neural network (CNN) based on the U-Net architecture and the random forest (RF) algorithm to predict flood water depth, the models' transferability in space and performance improvement using transfer learning techniques. We used three study areas in Berlin to train, validate and test the models. The results showed that (1) the RF models outperformed the CNN models for predictions within the training domain, presumable at the cost of overfitting; (2) the CNN models had significantly higher potential than the RF models to generalize beyond the training domain; and (3) the CNN models could better benefit from transfer learning technique to boost their performance outside training domains than RF models. Y1 - 2023 U6 - https://doi.org/10.5194/nhess-23-809-2023 SN - 1684-9981 SN - 1561-8633 VL - 23 IS - 2 SP - 809 EP - 822 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Seleem, Omar A1 - Ayzel, Georgy A1 - Bronstert, Axel A1 - Heistermann, Maik T1 - Transferability of data-driven models to predict urban pluvial flood water depth in Berlin, Germany T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Data-driven models have been recently suggested to surrogate computationally expensive hydrodynamic models to map flood hazards. However, most studies focused on developing models for the same area or the same precipitation event. It is thus not obvious how transferable the models are in space. This study evaluates the performance of a convolutional neural network (CNN) based on the U-Net architecture and the random forest (RF) algorithm to predict flood water depth, the models' transferability in space and performance improvement using transfer learning techniques. We used three study areas in Berlin to train, validate and test the models. The results showed that (1) the RF models outperformed the CNN models for predictions within the training domain, presumable at the cost of overfitting; (2) the CNN models had significantly higher potential than the RF models to generalize beyond the training domain; and (3) the CNN models could better benefit from transfer learning technique to boost their performance outside training domains than RF models. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1323 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-589168 SN - 1866-8372 IS - 1323 SP - 809 EP - 822 ER -