TY - JOUR A1 - Kahmen, Ansgar A1 - Sachse, Dirk A1 - Arndt, Stefan K. A1 - Tu, Kevin P. A1 - Farrington, Heraldo A1 - Vitousek, Peter M. A1 - Dawson, Todd E. T1 - Cellulose delta O-18 is an index of leaf-to-air vapor pressure difference (VPD) in tropical plants JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Cellulose in plants contains oxygen that derives in most cases from precipitation. Because the stable oxygen isotope composition, delta O-18, of precipitation is associated with environmental conditions, cellulose delta O-18 should be as well. However, plant physiological models using delta O-18 suggest that cellulose delta O-18 is influenced by a complex mix of both climatic and physiological drivers. This influence complicates the interpretation of cellulose delta O-18 values in a paleo-context. Here, we combined empirical data analyses with mechanistic model simulations to i) quantify the impacts that the primary climatic drivers humidity (e(a)) and air temperature (T-air) have on cellulose delta O-18 values in different tropical ecosystems and ii) determine which environmental signal is dominating cellulose delta O-18 values. Our results revealed that e(a) and T-air equally influence cellulose delta O-18 values and that distinguishing which of these factors dominates the delta O-18 values of cellulose cannot be accomplished in the absence of additional environmental information. However, the individual impacts of e(a) and T-air on the delta O-18 values of cellulose can be integrated into a single index of plant-experienced atmospheric vapor demand: the leaf-to-air vapor pressure difference (VPD). We found a robust relationship between VPD and cellulose delta O-18 values in both empirical and modeled data in all ecosystems that we investigated. Our analysis revealed therefore that delta O-18 values in plant cellulose can be used as a proxy for VPD in tropical ecosystems. As VPD is an essential variable that determines the biogeochemical dynamics of ecosystems, our study has applications in ecological-, climate-, or forensic-sciences. KW - stable isotopes KW - plant-water relations KW - paleoecology KW - climate change KW - Hawaii Y1 - 2011 U6 - https://doi.org/10.1073/pnas.1018906108 SN - 0027-8424 VL - 108 IS - 5 SP - 1981 EP - 1986 PB - National Acad. of Sciences CY - Washington ER -