TY - JOUR A1 - Bösche, Nina Kristine A1 - Rogass, Christian A1 - Lubitz, Christin A1 - Brell, Maximilian A1 - Herrmann, Sabrina A1 - Mielke, Christian A1 - Tonn, Sabine A1 - Appelt, Oona A1 - Altenberger, Uwe A1 - Kaufmann, Hermann T1 - Hyperspectral REE (Rare Earth Element) Mapping of Outcrops-Applications for Neodymium Detection JF - Remote sensing N2 - In this study, an in situ application for identifying neodymium (Nd) enriched surface materials that uses multitemporal hyperspectral images is presented (HySpex sensor). Because of the narrow shape and shallow absorption depth of the neodymium absorption feature, a method was developed for enhancing and extracting the necessary information for neodymium from image spectra, even under illumination conditions that are not optimal. For this purpose, the two following approaches were developed: (1) reducing noise and analyzing changing illumination conditions by averaging multitemporal image scenes and (2) enhancing the depth of the desired absorption band by deconvolving every image spectrum with a Gaussian curve while the rest of the spectrum remains unchanged (Richardson-Lucy deconvolution). To evaluate these findings, nine field samples from the Fen complex in Norway were analyzed using handheld X-ray fluorescence devices and by conducting detailed laboratory-based geochemical rare earth element determinations. The result is a qualitative outcrop map that highlights zones that are enriched in neodymium. To reduce the influences of non-optimal illumination, particularly at the studied site, a minimum of seven single acquisitions is required. Sharpening the neodymium absorption band allows for robust mapping, even at the outer zones of enrichment. From the geochemical investigations, we found that iron oxides decrease the applicability of the method. However, iron-related absorption bands can be used as secondary indicators for sulfidic ore zones that are mainly enriched with rare earth elements. In summary, we found that hyperspectral spectroscopy is a noninvasive, fast and cost-saving method for determining neodymium at outcrop surfaces. Y1 - 2015 U6 - https://doi.org/10.3390/rs70505160 SN - 2072-4292 VL - 7 IS - 5 SP - 5160 EP - 5186 PB - MDPI CY - Basel ER - TY - JOUR A1 - Mielke, Christian A1 - Rogass, Christian A1 - Bösche, Nina Kristine A1 - Segl, Karl A1 - Altenberger, Uwe T1 - EnGeoMAP 2.0-Automated Hyperspectral Mineral Identification for the German EnMAP Space Mission JF - Remote sensing N2 - Algorithms for a rapid analysis of hyperspectral data are becoming more and more important with planned next generation spaceborne hyperspectral missions such as the Environmental Mapping and Analysis Program (EnMAP) and the Japanese Hyperspectral Imager Suite (HISUI), together with an ever growing pool of hyperspectral airborne data. The here presented EnGeoMAP 2.0 algorithm is an automated system for material characterization from imaging spectroscopy data, which builds on the theoretical framework of the Tetracorder and MICA (Material Identification and Characterization Algorithm) of the United States Geological Survey and of EnGeoMAP 1.0 from 2013. EnGeoMAP 2.0 includes automated absorption feature extraction, spatio-spectral gradient calculation and mineral anomaly detection. The usage of EnGeoMAP 2.0 is demonstrated at the mineral deposit sites of Rodalquilar (SE-Spain) and Haib River (S-Namibia) using HyMAP and simulated EnMAP data. Results from Hyperion data are presented as supplementary information. KW - EnMAP KW - Hyperion KW - EnGeoMAP 2 KW - 0 KW - mineral mapping KW - imaging spectroscopy Y1 - 2016 U6 - https://doi.org/10.3390/rs8020127 SN - 2072-4292 VL - 8 SP - 392 EP - 414 PB - MDPI CY - Basel ER - TY - JOUR A1 - Mielke, Christian A1 - Muedi, T. A1 - Papenfuss, Anne A1 - Bösche, Nina Kristine A1 - Rogass, C. A1 - Gauert, C. D. K. A1 - Altenberger, Uwe A1 - de Wit, M. J. T1 - Multi- and hyperspectral spaceborne remote sensing of the Aggeneys base metal sulphide mineral deposit sites in the Lower Orange River region, South Africa JF - South African Journal of Geology N2 - New tools and algorithms for geological femote Sensing are developed and verified at test sites throughout the world in preparation of the German hyperspectral satellite Mission (EnMAP), which is an Environmental Mapping and Analysis Program. The aggeneys Cu-Pb-Zn deposit, situated in the arid north western part of South Africa, represents a unique field laboratory for testing these new tools. Here spaceborne hyperspectral data covering the Swartberg, and hyperspectral spaceborne data can be demonkrated, such as the Iron Feature Depth index (IFD), which has recently been proposed for mine waste mapping in the North West Province of South Africa and for gossan detection at Haib River in South Namibia. The work presented here explores the potential of the IFD for gossan mapping and characterization at Gamsberg and Big Syncline, from EO-1 ALI and Landsat-8 OLI data together with mineral maps from expert systems such as the United States Geological Survey (USGS) Material Identification and Characterization Algorithm (MICA), and first results from EnMAPs EnGeoMAP algorithm. Field spectroscopic measurements and field sampling were carried out to validate and calibrate the results from the expert systems and the IFD. This ground truthing is a necessary complementary step to link the results from the expert systems and the IFD to in-situ field spectroscopy. Future mineral exploration initiatives may benefit from the techniques described here, because they can significantly narrow the expensive, exploration activities such as hyperspectral airborne data, field activities and drilling, by identifying the most promising mineral anomalies in an area from the spaceborne data. Y1 - 2016 U6 - https://doi.org/10.2113/gssajg.119.1.63 SN - 1012-0750 SN - 1996-8590 VL - 119 SP - 63 EP - 76 PB - Geological Society of South Africa CY - Marshalltown ER - TY - GEN A1 - Bösche, Nina Kristine A1 - Rogass, Christian A1 - Lubitz, Christin A1 - Brell, Maximilian A1 - Herrmann, Sabrina A1 - Mielke, Christian A1 - Tonn, Sabine A1 - Appelt, Oona A1 - Altenberger, Uwe A1 - Kaufmann, Hermann T1 - Hyperspectral REE (Rare Earth Element) mapping of outcrops BT - applications for neodymium detection N2 - In this study, an in situ application for identifying neodymium (Nd) enriched surface materials that uses multitemporal hyperspectral images is presented (HySpex sensor). Because of the narrow shape and shallow absorption depth of the neodymium absorption feature, a method was developed for enhancing and extracting the necessary information for neodymium from image spectra, even under illumination conditions that are not optimal. For this purpose, the two following approaches were developed: (1) reducing noise and analyzing changing illumination conditions by averaging multitemporal image scenes and (2) enhancing the depth of the desired absorption band by deconvolving every image spectrum with a Gaussian curve while the rest of the spectrum remains unchanged (Richardson-Lucy deconvolution). To evaluate these findings, nine field samples from the Fen complex in Norway were analyzed using handheld X-ray fluorescence devices and by conducting detailed laboratory-based geochemical rare earth element determinations. The result is a qualitative outcrop map that highlights zones that are enriched in neodymium. To reduce the influences of non-optimal illumination, particularly at the studied site, a minimum of seven single acquisitions is required. Sharpening the neodymium absorption band allows for robust mapping, even at the outer zones of enrichment. From the geochemical investigations, we found that iron oxides decrease the applicability of the method. However, iron-related absorption bands can be used as secondary indicators for sulfidic ore zones that are mainly enriched with rare earth elements. In summary, we found that hyperspectral spectroscopy is a noninvasive, fast and cost-saving method for determining neodymium at outcrop surfaces T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 350 KW - rare earth elements KW - imaging spectroscopy KW - neodymium KW - hyperspectral KW - HySpex KW - remote sensing KW - Fen complex Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400171 ER -