TY - JOUR A1 - Nietzsche, Madlen A1 - Guerra, Tiziana A1 - Alseekh, Saleh A1 - Wiermer, Marcel A1 - Sonnewald, Sophia A1 - Fernie, Alisdair R. A1 - Börnke, Frederik T1 - STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) Interacts with Protein Kinase SnRK1 JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Sucrose nonfermenting related kinase1 (SnRK1) is a conserved energy sensor kinase that regulates cellular adaptation to energy deficit in plants. Activation of SnRK1 leads to the down-regulation of ATP-consuming biosynthetic processes and the stimulation of energy-generating catabolic reactions by transcriptional reprogramming and posttranslational modifications. Although considerable progress has been made during the last years in understanding the SnRK1 signaling pathway, many of its components remain unidentified. Here, we show that the catalytic alpha-subunits KIN10 and KIN11 of the Arabidopsis (Arabidopsis thaliana) SnRK1 complex interact with the STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) inside the plant cell nucleus. Overexpression of STKR1 in transgenic Arabidopsis plants led to reduced growth, a delay in flowering, and strongly attenuated senescence. Metabolite profiling revealed that the transgenic lines exhausted their carbohydrates during the dark period to a greater extent than the wild type and accumulated a range of amino acids. At the global transcriptome level, genes affected by STKR1 overexpression were broadly associated with systemic acquired resistance, and transgenic plants showed enhanced resistance toward a virulent strain of the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. We discuss a possible connection of STKR1 function, SnRK1 signaling, and plant immunity. Y1 - 2017 U6 - https://doi.org/10.1104/pp.17.01461 SN - 0032-0889 SN - 1532-2548 VL - 176 IS - 2 SP - 1773 EP - 1792 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Malinova, Irina A1 - Alseekh, Saleh A1 - Feil, Regina A1 - Fernie, Alisdair R. A1 - Baumann, Otto A1 - Schoettler, Mark Aurel A1 - Lunn, John Edward A1 - Fettke, Jörg T1 - Starch Synthase 4 and Plastidal Phosphorylase Differentially Affect Starch Granule Number and Morphology JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - The process of starch granule formation in leaves of Arabidopsis ( Arabidopsis thaliana) is obscure. Besides STARCH SYNTHASE4 (SS4), the PLASTIDIAL PHOSPHORYLASE (PHS1) also seems to be involved, since dpe2-1/phs1a double mutants lacking both PHS1 and the cytosolic DISPROPORTIONATING ENZYME2 (DPE2) displayed only one starch granule per chloroplast under normal growth conditions. For further studies, a dpe2-1/phs1a/ss4 triple mutant and various combinations of double mutants were generated and metabolically analyzed with a focus on starch metabolism. The dpe2-1/phs1a/ ss4 mutant revealed a massive starch excess phenotype. Furthermore, these plants grown under 12 h of light/12 h of dark harbored a single large and spherical starch granule per plastid. The number of starch granules was constant when the light/dark regime was altered, but this was not observed in the parental lines. With regard to growth, photosynthetic parameters, and metabolic analyses, the triple mutant additionally displayed alterations in comparison with ss4 and dpe21/phs1a. The results clearly illustrate that PHS1 and SS4 are differently involved in starch granule formation and do not act in series. However, SS4 appears to exert a stronger influence. In connection with the characterized double mutants, we discuss the generation of starch granules and the observed formation of spherical starch granules. Y1 - 2017 U6 - https://doi.org/10.1104/pp.16.01859 SN - 0032-0889 SN - 1532-2548 VL - 174 SP - 73 EP - 85 PB - American Society of Plant Physiologists CY - Rockville ER - TY - THES A1 - Alseekh, Saleh T1 - Identification and mode of inheritance of quantitative trait loci (QTL) for metabolite abundance in tomato Y1 - 2015 ER - TY - JOUR A1 - Malinova, Irina A1 - Mahlow, Sebastian A1 - Alseekh, Saleh A1 - Orawetz, Tom A1 - Fernie, Alisdair R. A1 - Baumann, Otto A1 - Steup, Martin A1 - Fettke, Jörg T1 - Double knockout mutants of arabidopsis grown under normal conditions reveal that the plastidial phosphorylase isozyme participates in transitory starch metabolism JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - In leaves of two starch-related single-knockout lines lacking either the cytosolic transglucosidase (also designated as disproportionating enzyme 2, DPE2) or the maltose transporter (MEX1), the activity of the plastidial phosphorylase isozyme (PHS1) is increased. In both mutants, metabolism of starch-derived maltose is impaired but inhibition is effective at different subcellular sites. Two constitutive double knockout mutants were generated (designated as dpe2-1 x phs1a and mex1 x phs1b) both lacking functional PHS1. They reveal that in normally grown plants, the plastidial phosphorylase isozyme participates in transitory starch degradation and that the central carbon metabolism is closely integrated into the entire cell biology. All plants were grown either under continuous illumination or in a light-dark regime. Both double mutants were compromised in growth and, compared with the single knockout plants, possess less average leaf starch when grown in a light-dark regime. Starch and chlorophyll contents decline with leaf age. As revealed by transmission electron microscopy, mesophyll cells degrade chloroplasts, but degradation is not observed in plants grown under continuous illumination. The two double mutants possess similar but not identical phenotypes. When grown in a light-dark regime, mesophyll chloroplasts of dpe2-1 x phs1a contain a single starch granule but under continuous illumination more granules per chloroplast are formed. The other double mutant synthesizes more granules under either growth condition. In continuous light, growth of both double mutants is similar to that of the parental single knockout lines. Metabolite profiles and oligoglucan patterns differ largely in the two double mutants. Y1 - 2014 U6 - https://doi.org/10.1104/pp.113.227843 SN - 0032-0889 SN - 1532-2548 VL - 164 IS - 2 SP - 907 EP - 921 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Apriyanto, Ardha A1 - Compart, Julia A1 - Zimmermann, Vincent A1 - Alseekh, Saleh A1 - Fernie, Alisdair R. A1 - Fettke, Jörg T1 - Indication that starch and sucrose are biomarkers for oil yield in oil palm (Elaeis guineensis Jacq.) JF - Food chemistry N2 - Oil palm (Elaeis guineensis Jacq.) is the most productive oil-producing crop per hectare of land. The oil that accumulates in the mesocarp tissue of the fruit is the highest observed among fruit-producing plants. A comparative analysis between high-, medium-, and low-yielding oil palms, particularly during fruit development, revealed unique characteristics. Metabolomics analysis was able to distinguish accumulation patterns defining of the various developmental stages and oil yield. Interestingly, high- and medium-yielding oil palms exhibited substantially increased sucrose levels compared to low-yielding palms. In addition, parameters such as starch granule morphology, granule size, total starch content, and starch chain length distribution (CLD) differed significantly among the oil yield categories with a clear correlation between oil yield and various starch parameters. These results provide new insights into carbohydrate and starch metabolism for biosynthesis of oil palm fruits, indicating that starch and sucrose can be used as novel, easy-to-analyze, and reliable biomarker for oil yield. KW - carbohydrate KW - mesocarp KW - metabolites KW - oil palm KW - oil yield KW - sucrose; KW - starch Y1 - 2022 U6 - https://doi.org/10.1016/j.foodchem.2022.133361 SN - 0308-8146 SN - 1873-7072 VL - 393 PB - Elsevier CY - New York, NY [u.a.] ER -