TY - JOUR A1 - Balci, K. A1 - Akkaya, Y. A1 - Akyuz, S. A1 - Collier, W. B. A1 - Stricker, M. C. A1 - Stover, D. D. A1 - Ritzhaupt, G. A1 - Koch, Andreas A1 - Kleinpeter, Erich T1 - The effects of conformation and zwitterionic tautomerism on the structural and vibrational spectral data of anserine JF - Vibrational spectroscopy : an international journal devoted to applications of infrared and raman spectroscopy N2 - In this study, the stable conformers of neutral anserine were searched by molecular dynamics simulations and energy minimization calculations using the MM2 force field. Thermochemical calculations at B3LYP/6-31G(d) level of theory followed these preliminary calculations. The results confirmed that neutral anserine has quite a flexible structure and many stable gauche and trans conformers at room temperature. Nevertheless, two are considerably more favourable in energy than the others and expected to dominate the gas-phase and matrix IR spectra of the molecule. The corresponding structural and vibrational spectral data for these two conformers of neutral anserine, whose relative stabilities were also examined by high-accuracy energy calculations carried out using G3MP2B3 method, and for the most stable conformer of anserine in zwitterion form were calculated at B3LYP/6-311++G(d,p) level of theory. The calculated harmonic force constants were refined using the Scaled Quantum Mechanical Force Field (SQM-FF) method and then used to produce the refined wavenumbers, potential energy distributions (PEDs) and IR and Raman intensities. These refined data together with the scaled harmonic wavenumbers obtained using another method, Dual Scale factors (DS), enabled us to correctly analyse the observed IR and Raman spectra of anserine and revealed the effects of conformation and zwitterionic tautomerism on its structural and vibrational spectral data. (C) 2016 Elsevier B.V. All rights reserved. KW - Anserine KW - Matrix IR spectrum KW - Tautomerism KW - SQM-FF KW - Dual scale factors Y1 - 2016 U6 - https://doi.org/10.1016/j.vibspec.2016.08.003 SN - 0924-2031 SN - 1873-3697 VL - 86 SP - 277 EP - 289 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Balci, Kubilay A1 - Yapar, G. A1 - Akkaya, Y. A1 - Akyuz, S. A1 - Koch, Andreas A1 - Kleinpeter, Erich T1 - A conformational analysis and vibrational spectroscopic investigation on 1,2-bis(o-carboxyphenoxy) ethane molecule JF - Vibrational spectroscopy : an international journal devoted to applications of infrared and raman spectroscopy N2 - The minima on the potential energy surface of 1,2-bis(o-carboxyphenoxy)ethane (CPE) molecule in its electronic ground state were searched by a molecular dynamics simulation performed with MM2 force field. For each of the found minimum-energy conformers, the corresponding equilibrium geometry, charge distribution, HOMO-LUMO energy gap, force field, vibrational normal modes and associated IR and Raman spectral data were determined by means of the density functional theory (DFT) based electronic structure calculations carried out by using B3LYP method and various Pople-style basis sets. The obtained theoretical data confirmed the significant effects of the intra- and inter-molecular hydrogen bonding interactions on the conformational structure, force field, and group vibrations of the molecule. The same data have also revealed that two of the determined stable conformers, both of which exhibit pseudo-crown structure, are considerably more favorable in energy to the others and accordingly provide the major contribution to the experimental spectra of CPE. In the light of the improved vibrational spectral data obtained within the "SQM FF" methodology and "Dual Scale Factors" approach for the monomer and dimer forms of these two conformers, a reliable assignment of the fundamental bands observed in the experimental room-temperature IR and Raman spectra of the molecule was given, and the sensitivities of its group vibrations to conformation, substitution and dimerization were discussed. KW - Glycol podands KW - Salicylic acid KW - IR and Raman spectra KW - SQM FF KW - Dual Scale Factors Y1 - 2012 U6 - https://doi.org/10.1016/j.vibspec.2011.11.011 SN - 0924-2031 VL - 58 IS - 1-2 SP - 27 EP - 43 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Balci, Kubilay A1 - Yapar, G. A1 - Akkaya, S. A1 - Akyuz, S. A1 - Koch, Andreas T1 - A conformational analysis and vibrational spectroscopic investigation on 1,2-bis(o-carboxyphenoxy) ethane molecule N2 - The minima on the potential energy surface of 1,2-bis(o-carboxyphenoxy) ethane (CPE) molecule in its electronic ground state were searched by a molecular dynamics simulation performed with MM2 force field. For each of the found minimum-energy conformers, the corresponding equilibrium geometry, charge distribution, HOMO-LUMO energy gap, force field, vibrational normal modes and associated IR and Raman spectral data were determined by means of the density functional theory (DFT) based electronic structure calculations carried out by using B3LYP method and various Pople- style basis sets. The obtained theoretical data confirmed the significant effects of the intra- and inter-molecular hydrogen bonding interactions on the conformational structure, force field, and group vibrations of the molecule. The same data have also revealed that two of the determined stable conformers, both of which exhibit pseudo-crown structure, are considerably more favorable in energy to the others and accordingly provide the major c ntribution to the experimental spectra of CPE. In the light of the improved vibrational spectral data obtained within the "SQM FF" methodology and "Dual Scale Factors" approach for the monomer and dimer forms of these two conformers, a reliable assignment of the fundamental bands observed in the experimental room-temperature IR and Raman spectra of the molecule was given, and the sensitivities of its group vibratb20s to conformation, substitution and dimerization were discussed. Y1 - 2012 ER -