TY - GEN A1 - Vogt, Julia H. M. A1 - Schippers, Jos H. M. T1 - Setting the PAS, the role of circadian PAS domain proteins during environmental adaptation in plants T2 - Frontiers in plant science N2 - The per-ARNT-sim (PAS) domain represents an ancient protein module that can be found across all kingdoms of life. The domain functions as a sensing unit for a diverse array of signals, including molecular oxygen, small metabolites, and light. In plants, several PAS domain-containing proteins form an integral part of the circadian clock and regulate responses to environmental change. Moreover, these proteins function in pathways that control development and plant stress adaptation responses. Here, we discuss the role of PAS domain-containing proteins in anticipation, and adaptation to environmental changes in plants. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 430 KW - PAS domain KW - circadian clock KW - signal transduction KW - environmental stress response KW - growth adaptation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406492 ER - TY - GEN A1 - Witzel, Katja A1 - Neugart, Susanne A1 - Ruppel, Silke A1 - Schreiner, Monika A1 - Wiesner, Melanie A1 - Baldermann, Susanne T1 - Recent progress in the use of ‘omics technologies in brassicaceous vegetables T2 - Frontiers in plant science N2 - Continuing advances in 'omics methodologies and instrumentation is enhancing the understanding of how plants cope with the dynamic nature of their growing environment. 'Omics platforms have been only recently extended to cover horticultural crop species. Many of the most widely cultivated vegetable crops belong to the genus Brassica: these include plants grown for their root (turnip, rutabaga/swede), their swollen stem base (kohlrabi), their leaves (cabbage, kale, pak choi) and their inflorescence (cauliflower, broccoli). Characterization at the genome, transcript, protein and metabolite levels has illustrated the complexity of the cellular response to a whole series of environmental stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold acclimation, and excessive and sub optimal irradiation. This review covers recent applications of omics technologies to the brassicaceous vegetables, and discusses future scenarios in achieving improvements in crop end-use quality. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 429 KW - genomics KW - transcriptomics KW - metabolomics KW - proteomics KW - crop KW - microbiomics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406479 ER - TY - GEN A1 - Rieck, Angelika A1 - Herlemann, Daniel P. R. A1 - Jürgens, Klaus A1 - Grossart, Hans-Peter T1 - Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea T2 - Frontiers in microbiology N2 - Many studies on bacterial community composition (BCC) do not distinguish between particle associated (PA) and free-living (FL) bacteria or neglect the PA fraction by pre-filtration removing most particles. Although temporal and spatial gradients in environmental variables are known to shape BCC, it remains unclear how and to what extent PA and FL bacterial diversity responds to such environmental changes. To elucidate the BCC of both bacterial fractions related to different environmental settings, we studied surface samples of three Baltic Sea stations (marine, mesohaline, and oligohaline) in two different seasons (summer and fall/winter). Amplicon sequencing of the 16S rRNA gene revealed significant differences in BCC of both bacterial fractions among stations and seasons, with a particularly high number of PA operational taxonomic units (OTUs at genus-level) at the marine station in both seasons. "Shannon and Simpson indices" showed a higher diversity of PA than FL bacteria at the marine station in both seasons and at the oligohaline station in fall/winter. In general, a high fraction of bacterial OTUs was found exclusively in the PA fraction (52% of total OTUs). These findings indicate that PA bacteria significantly contribute to overall bacterial richness and that they differ from FL bacteria. Therefore, to gain a deeper understanding on diversity and dynamics of aquatic bacteria, PA and FL bacteria should be generally studied independently. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 428 KW - microbial communities KW - microbial diversity KW - particle-associated and free-living bacteria KW - Baltic Sea KW - salinity gradient KW - seasons KW - 454-pyrosequencing Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406442 ER - TY - GEN A1 - Johnson, Kim L. A1 - Ramm, Sascha A1 - Kappel, Christian A1 - Ward, Sally A1 - Leyser, Ottoline A1 - Sakamoto, Tomoaki A1 - Kurata, Tetsuya A1 - Bevan, Michael W. A1 - Lenhard, Michael T1 - The tinkerbell (tink) mutation identifies the dual-specificity MAPK phosphatase INDOLE- 3-BUTYRIC ACID-RESPONSE5 (IBR5) as a novel regulator of organ size in Arabidopsis T2 - PLoS ONE N2 - Mitogen-activated dual-specificity MAPK phosphatases are important negative regulators in the MAPK signalling pathways responsible for many essential processes in plants. In a screen for mutants with reduced organ size we have identified a mutation in the active site of the dual-specificity MAPK phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) that we named tinkerbell (tink) due to its small size. Analysis of the tink mutant indicates that IBR5 acts as a novel regulator of organ size that changes the rate of growth in petals and leaves. Organ size and shape regulation by IBR5 acts independently of the KLU growth-regulatory pathway. Microarray analysis of tink/ibr5-6 mutants identified a likely role for this phosphatase in male gametophyte development. We show that IBR5 may influence the size and shape of petals through auxin and TCP growth regulatory pathways. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 427 KW - class-i KW - protein phosphatase KW - auxin KW - responses KW - thaliana KW - kinase KW - growth KW - interacts KW - distinct KW - pathway Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410245 ER - TY - GEN A1 - Klauß, André A1 - König, Marcelle A1 - Hille, Carsten T1 - Upgrade of a scanning confocal microscope to a single-beam path STED microscope T2 - PLoS ONE N2 - By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED) microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-align STED microscope in the single-beam path layout, previously proposed as "easy-STED", achieving lateral resolution