TY - THES A1 - Kossmann, Janina T1 - Controlled condensation to functional materials – synergetic effect of nitrogen content and pore structure T1 - Kontrollierte Kondensation zu funktionellen Materialien - Synergetische Wirkung von Stickstoffgehalt und Porenstruktur N2 - The development and optimization of carbonaceous materials is of great interest for several applications including gas sorption, electrochemical storage and conversion, or heterogeneous catalysis. In this thesis, the exploration and optimization of nitrogen containing carbonaceous materials by direct condensation of smart chosen, molecular precursors will be presented. As suggested with the concept of noble carbons, the choice of a stable, nitrogen-containing precursor will lead to an even more stable, nitrogen doped carbonaceous material with a controlled structure and electronic properties. Molecules fulfilling this requirement are for example nucleobases. The direct condensation of nucleobases leads to highly nitrogen containing carbonaceous materials without any further post or pretreatment. By using salt melt templating, pore structure adjustment is possible without the use of hazardous or toxic reagents and the template can be reused. Using these simple tools, the synergetic effect of the pore structure and nitrogen content of the materials can be explored. Within this thesis, the influence of the condensation parameters will be correlated to the structure and performance of the materials. First, the influence of the condensation temperature to the porosity and nitrogen content of guanine will be discussed and the exploration of highly CO2 selective structural pores in C1N1 materials will be shown. Further tuning the pore structure of the materials by salt melt templating will be then explored, the potential of the prepared materials as heterogeneous catalysts and their basic catalytic strength will be correlated to their nitrogen content and pore morphology. A similar approach is used to explore the water sorption behavior of uric acid derived carbonaceous materials as potential sorbents for heat transformation applications. Changes in maximum water uptake and hydrophilicity of the prepared materials will be correlated to the nitrogen content and pore architecture. Due to the high thermal stability, porosity, and nitrogen content of ionic liquid derived nitrogen doped carbonaceous materials, a simple impregnation and calcination route can be conducted to obtain copper nano cluster decorated nitrogen-doped carbonaceous materials. The activity as catalyst for the oxygen reduction reaction of the obtained materials will be shown and structure performance relations are discussed. In conclusion, the versatility of nitrogen doped carbonaceous materials with a nitrogen to carbon ratio of up to one will be shown. The possibility to tune the pore structure as well as the nitrogen content by using a simple procedure including salt melt templating as well as the use of molecular precursors and their effect on the performance will be discussed. N2 - Die Entwicklung und Optimierung von kohlenstoffhaltigen Materialien ist von großem Interesse in vielen Anwendungsbereichen, darunter Gassorption, elektrochemische Speicherung und Umwandlung von Energie und in der heterogenen Katalyse. In dieser Arbeit wird die Erforschung und Optimierung von stickstoff‑ und kohlenstoffhaltigen Materialien durch direkte Kondensation ausgewählter, molekularer Ausgangsstoffe vorgestellt. Entsprechend dem Konzept der edlen Kohlenstoffe (noble carbons), führt die Kondensation eines stabilen, stickstoffhaltigen Ausgangsstoffes zu einem noch stabileren, stickstoffdotierten kohlenstoffhaltigen Material mit kontrollierter Struktur und elektronischen Eigenschaften. Moleküle, die diese Anforderung erfüllen, sind zum Beispiel Nukleobasen. Die direkte Kondensation von Nukleobasen führt ohne weitere Nach- oder Vorbehandlungen zu kohlenstoffhaltigen Materialien mit einem sehr hohen Stickstoffanteil. Durch die Verwendung des Salzschmelze-Template Verfahrens ist eine Anpassung der Porenstruktur ohne Verwendung gefährlicher oder toxischer Reagenzien möglich und die Templates können außerdem wiederverwendet werden. Mit diesen einfachen Werkzeugen kann der synergetische Effekt der Porenstruktur und des Stickstoffgehalts der Materialien erforscht werden. Im Rahmen dieser Arbeit wird der Einfluss der Kondensationsparameter auf die Struktur und die Leistung der Materialien in Beziehung gesetzt. Zunächst wird der Einfluss der Kondensationstemperatur auf die Porosität und den Stickstoffgehalt von Guanin erörtert und die Erforschung von CO2-selektiven strukturellen Poren in C1N1-Materialien aufgezeigt. Das Potenzial der hergestellten Materialien als heterogener Katalysator und ihre katalytische Wirkung werden mit ihrem Stickstoffgehalt und ihrer Porenstruktur korreliert. Ein ähnlicher Ansatz wird verwendet, um das Wassersorptionsverhalten von aus Harnsäure hergestellten kohlenstoffhaltigen Materialien als potenzielle Sorptionsmittel für Wärmetransformationsanwendungen zu untersuchen. Die maximale Wasseraufnahme und Hydrophilie der hergestellten Materialien werden mit dem Stickstoffgehalt und der Porenarchitektur korreliert. Aufgrund der hohen thermischen Stabilität, der Porosität und des Stickstoffgehalts der mit ionischer Flüssigkeit hergestellten stickstoffdotierten kohlenstoffhaltigen Materialien können diese des Weiteren als Träger für Metalle dienen. Durch einfache Imprägnierung und Kalzinierung werden Kupfer‑Nanocluster dekorierte stickstoffhaltige Kohlenstoffmaterialen hergestellt und als Katalysator für die in Brennstoffzellen stattfindende Sauerstoff-Reduktionsreaktion genutzt. Zusammenfassend wird die Vielseitigkeit von stickstoffdotierten kohlenstoffhaltigen Materialien mit einem Stickstoff-Kohlenstoff-Verhältnis von bis zu eins aufgezeigt. Es wird die Möglichkeit gezeigt, die Porenstruktur und den Stickstoffgehalt in einem einfachen Verfahren, einschließlich Salzschmelze‑Templating und die Verwendung von molekularen Ausgangsstoffen, zu beeinflussen und somit für gezielte Anwendungen zu variieren. KW - CO2 capture KW - nitrogen containing carbonaceous materials KW - C1N1 KW - heat transformation application KW - oxygen reduction reaction KW - salt melt templating KW - C1N1 KW - CO2-Abscheidung KW - Wärmetransformationsanwendungen KW - Stickstoff‑ und Kohlenstoffhaltige Materialien KW - Sauerstoff-Reduktionsreaktion KW - Salzschmelze-Templating Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-536935 ER - TY - THES A1 - Brandi, Francesco T1 - Integrated biorefinery in continuous flow systems using sustainable heterogeneous catalysts T1 - Integrierte Bioraffinerie in kontinuierlichen Fließsystemen unter Verwendung nachhaltiger heterogener Katalysatoren N2 - The negative impact of crude oil on the environment has led to a necessary transition toward alternative, renewable, and sustainable resources. In this regard, lignocellulosic biomass (LCB) is a promising renewable and sustainable alternative to crude oil for the production of fine chemicals and fuels in a so-called biorefinery process. LCB is composed of polysaccharides (cellulose and hemicellulose), as well as aromatics (lignin). The development of a sustainable and economically advantageous biorefinery depends on the complete and efficient valorization of all components. Therefore, in the new generation of biorefinery, the so-called biorefinery of type III, the LCB feedstocks are selectively deconstructed and catalytically transformed into platform chemicals. For this purpose, the development of highly stable and efficient catalysts is crucial for progress toward viability in biorefinery. Furthermore, a modern and integrated biorefinery relies on process and reactor design, toward more efficient and cost-effective methodologies that minimize waste. In this context, the usage of continuous flow systems has the potential to provide safe, sustainable, and innovative transformations with simple process integration and scalability for biorefinery schemes. This thesis addresses three main challenges for future biorefinery: catalyst synthesis, waste feedstock valorization, and usage of continuous flow technology. Firstly, a cheap, scalable, and sustainable approach is presented for the synthesis of an efficient and stable 35 wt.-% Ni catalyst on highly porous nitrogen-doped carbon support (35Ni/NDC) in pellet shape. Initially, the performance of this catalyst was evaluated for the aqueous phase hydrogenation of LCB-derived compounds such as glucose, xylose, and vanillin in continuous flow systems. The 35Ni/NDC catalyst exhibited high catalytic performances in three tested hydrogenation reactions, i.e., sorbitol, xylitol, and 2-methoxy-4-methylphenol with yields of 82 mol%, 62 mol%, and 100 mol% respectively. In addition, the 35Ni/NDC catalyst exhibited remarkable stability over a long time on stream in continuous flow (40 h). Furthermore, the 35Ni/NDC catalyst was combined with commercially available Beta zeolite in a dual–column integrated process for isosorbide production from glucose (yield 83 mol%). Finally, 35Ni/NDC was applied for the valorization of industrial waste products, namely sodium lignosulfonate (LS) and beech wood sawdust (BWS) in continuous flow systems. The LS depolymerization was conducted combining solvothermal fragmentation of water/alcohol mixtures (i.e.,methanol/water and ethanol/water) with catalytic hydrogenolysis/hydrogenation (SHF). The depolymerization was found to occur thermally in absence of catalyst with a tunable molecular weight according to temperature. Furthermore, the SHF generated an optimized cumulative yield of lignin-derived phenolic monomers of 42 mg gLS-1. Similarly, a solvothermal and reductive catalytic fragmentation (SF-RCF) of BWS was conducted using MeOH and MeTHF as a solvent. In this case, the optimized total lignin-derived phenolic monomers yield was found of 247 mg gKL-1. N2 - Die negativen Auswirkungen von Rohöl auf die Umwelt haben zu einem notwendigen Übergang zu alternativen, erneuerbaren und nachhaltigen Ressourcen geführt. In dieser Hinsicht ist lignozellulosehaltige Biomasse (LCB) eine vielversprechende erneuerbare und nachhaltige Alternative zu Erdöl für die Herstellung von Feinchemikalien und Kraftstoffen in einem sogenannten Bioraffinerie-Prozess. LCB setzt sich aus Polysacchariden (Cellulose und Hemicellulose) sowie Aromaten (Lignin) zusammen. Die Entwicklung einer nachhaltigen und wirtschaftlich vorteilhaften Bioraffinerie hängt von der vollständigen und effizienten Verwertung aller Komponenten ab. Zu diesem Zweck ist die Entwicklung hochstabiler und effizienter Katalysatoren entscheidend für den Fortschritt in Richtung Bioraffinerie-Wirtschaftlichkeit. Darüber hinaus ist eine moderne und integrierte Bioraffinerie auf ein Prozess- und Reaktordesign angewiesen, das auf effizientere und kostengünstigere Methoden abzielt, die den Abfall minimieren. In diesem Zusammenhang hat die Verwendung von kontinuierlichen Durchflusssystemen das Potenzial, sichere, nachhaltige und innovative Transformationen mit einfacher Prozessintegration und Skalierbarkeit für Bioraffineriesysteme zu bieten. Diese Arbeit befasst sich mit drei wesentlichen Herausforderungen für die zukünftige Bioraffinerie: Katalysatorsynthese, Valorisierung von Abfallstoffen und Einsatz von kontinuierlicher Durchflusstechnik. Zuerst wird ein kostengünstiger, skalierbarer und nachhaltiger Ansatz für die Synthese eines effizienten und stabilen 35-Gew.-%-Ni-Katalysators auf einem hochporösen, stickstoffdotierten Kohlenstoffträger (35Ni/NDC) in Pelletform vorgestellt. Zunächst wurde die Leistung dieses Katalysators für die Hydrierung von LCB-abgeleiteten Verbindungen wie Glucose, Xylose und Vanillin in kontinuierlichen Durchflusssystemen in wässriger Phase bewertet. Der 35Ni/NDC-Katalysator zeigte hohe katalytische Leistungen in drei getesteten Hydrierungsreaktionen, d. h. Sorbit, Xylit und 2-Methoxy-4-methylphenol mit Ausbeuten von 82 mol%, 62 mol% bzw. 100 mol%. Darüber hinaus zeigte der 35Ni/NDC-Katalysator eine bemerkenswerte Stabilität über eine lange Zeit im kontinuierlichen Fluss (40 h). Auβerrdem wurde der 35Ni/NDC-Katalysator mit handelsüblichem Beta-Zeolith in einem integrierten Zweisäulenprozess für die Isosorbid-Produktion aus Glukose kombiniert (Ausbeute 83 mol%). Schließlich wurde 35Ni/NDC für die Valorisierung von industriellen Abfallprodukten, nämlich Natriumlignosulfonat (LS) und Buchenholzsägemehl (BWS) in kontinuierlichen Durchflusssystemen eingesetzt. Die Depolymerisation von LS wurde durch eine Kombination von solvothermischer Fragmentierung von Wasser/Alkohol-Gemischen (d.h. MeOH/Wasser und Ethanol/Wasser) mit katalytischer Hydrogenolyse/Hydrierung (SHF) durchgeführt. Es wurde festgestellt, dass die Depolymerisation thermisch in Abwesenheit des Katalysators mit einem abstimmbaren Molekulargewicht in Abhängigkeit von der Temperatur erfolgt. Außerdem wurde mit der SHF eine optimierte kumulative Monomerausbeute von 42 mg gLS-1 erzielt. In ähnlicher Weise wurde eine solvothermale und reduktiv-katalytische Fragmentierung (SF-RCF) von BWS mit MeOH und MeTHF als Lösungsmittel durchgeführt. In diesem Fall wurde eine optimierte Gesamtmonomerausbeute von 247 mg gKL-1 gefunden. KW - sustainable chemistry KW - green chemistry KW - biorefinery KW - flow chemistry KW - heterogeneous catalysis KW - Bioraffinerie KW - grüne Chemie KW - heterogene Katalyse KW - Strömungschemie KW - nachhaltige Chemie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-537660 ER - TY - THES A1 - Haubitz, Toni T1 - Transient absorption spectroscopy T1 - Transienten Absorptionsspektroskopie BT - a versatile tool for investigating excited states in organic and inorganic molecules BT - ein vielseitiges Werkzeug zur Untersuchung angeregter Zustände von organischen und anorganischen Molekülen N2 - The optical properties of chromophores, especially organic dyes and optically active inorganic molecules, are determined by their chemical structures, surrounding media, and excited state behaviors. The classical optical go-to techniques for spectroscopic investigations are absorption and luminescence spectroscopy. While both techniques are powerful and easy to apply spectroscopic methods, the limited time resolution of luminescence spectroscopy and its reliance on luminescent properties can make its application, in certain cases, complex, or even impossible. This can be the case when the investigated molecules do not luminesce anymore due to quenching effects, or when they were never luminescent in the first place. In those cases, transient absorption spectroscopy is an excellent and much more sophisticated technique to investigate such systems. This pump-probe laser-spectroscopic method is excellent for mechanistic investigations of luminescence quenching phenomena and photoreactions. This is due to its extremely high time resolution in the femto- and picosecond ranges, where many intermediate or transient species of a reaction can be identified and their kinetic evolution can be observed. Furthermore, it does not rely on the samples being luminescent, due to the active sample probing after excitation. In this work it is shown, that with transient absorption spectroscopy it was possible to identify the luminescence quenching mechanisms and thus luminescence quantum yield losses of the organic dye classes O4-DBD, S4-DBD, and pyridylanthracenes. Hence, the population of their triplet states could be identified as the competitive mechanism to their luminescence. While the good luminophores O4-DBD showed minor losses, the S4-DBD dye luminescence was almost entirely quenched by this process. However, for pyridylanthracenes, this phenomenon is present in both the protonated and unprotonated forms and moderately effects the luminescence quantum yield. Also, the majority of the quenching losses in the protonated forms are caused by additional non-radiative processes introduced by the protonation of the pyridyl rings. Furthermore, transient absorption spectroscopy can be applied to investigate the quenching mechanisms of uranyl(VI) luminescence by chloride and bromide. The reduction of the halides by excited uranyl(VI) leads to the formation of dihalide radicals X^(·−2). This excited state redox process is thus identified as the quenching mechanism for both halides, and this process, being diffusion-limited, can be suppressed by cryogenically freezing the samples or by observing these interactions in media with a lower dielectric constant, such as ACN and acetone. N2 - Die optischen Eigenschaften von organischen Farbstoffen und optisch aktiven anorganischen Molekülen werden durch ihre chemische Struktur, ihrer chemischer Umgebung, und durch das Verhalten ihrer angeregten Zustände bestimmt. Die klassischen Methoden zur Untersuchung dieser Eigenschaften sind die Absorptions- und Lumineszenzspektroskopie. Obwohl beide Methoden leistungsfähig und einfach anzuwenden sind, stellen die fehlende Zeitauflösung respektive das benötigte Vorhandensein von Lumineszenz in gewissen Anwendungen ein Problem dar. Dies ist der Fall, wenn die zu untersuchenden Moleküle durch Löscheffekte keine Lumineszenz mehr aufweisen oder von vornherein nicht lumineszent sind. Unter diesen Umständen ist die Transientenabsorptionsspektroskopie eine exzellente Alternative. Dieses laserspektroskopische Anregungs-Abfrage-Verfahren ist für mechanistische Untersuchungen von Lumineszenz-Löschphänomenen und Photoreaktionen sehr gut geeignet. Aufgrund seiner extrem hohen Zeitauflösung im Femto- und Picosekundenbereich können Intermediate und transiente Spezies identifiziert und deren kinetische Entwicklung beobachtet werden. Da es sich außerdem eine aktive Abfrage des Probenzustands handelt, entfällt die Notwendigkeit von lumineszenten Probeneigenschaften. In dieser Arbeit konnten mittels Transientenabsorptionsspektroskopie die Lumineszenz-Löschmechanismen der organischen Farbstoffklassen O4-DBD, S4-DBD, und der Pyridylanthracene aufgeklärt werden. Bei all diesen Farbstoffen konnte die Bildung von Triplettzuständen als kompetitiver Mechanismus zur Lumineszenz identifiziert werden. Während bei den O4-DBD-Farbstoffen diese Verluste eher gering ausfallen, wird die Lumineszenz der S4-DBD-Farbstoffe fast vollständig gelöscht. Eine Triplettbildung konnte ebenfalls bei den Pyridylanthracenen beobachtet werden, sie hat jedoch einen eher moderaten Anteil am Löschverhalten der Lumineszenz. Der Hauptteil der Lumineszenz-Löschung der protonierten Pyridylanthracene wird eher durch zusätzliche nicht-strahlende Desaktivierungsprozesse über die Pyridylringe verursacht. Es konnte gezeigt werden, dass die Transientenabsorptionsspektroskopie für die Untersuchung des Löschverhaltens von Uranyl(VI)-Lumineszenz durch Chlorid und Bromid geeignet ist. Es wurde geschlussfolgert, dass die Reduktion der Halogenide durch angeregtes Uranyl(VI) zur Bildung von Dihalogenidradikalen X^(·−2). führt. Diese Redoxreaktion im angeregten Zustand wurde daher als Lumineszenz-Löschmechanismus für beide Halogenide identifiziert. Dieser diffusionslimitierte Mechanismus wird unter cryogenen Bedingungen oder in schwächeren dielektriktrischen Lösemitteln wie ACN oder Aceton unterdrückt. KW - spectroscopy KW - luminescence KW - dye KW - quenching KW - uranyl KW - DBD KW - transient KW - Spektroskopie KW - Lumineszenz KW - Farbstoff KW - Löschung KW - Uranyl KW - DBD KW - Transient Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-535092 ER - TY - THES A1 - Chandrakanth Shetty, Sunidhi T1 - Directed chemical communication in artificial eukaryotic cells T1 - Gezielte chemische Kommunikation in künstlichen eukaryotischen Zellen N2 - Eukaryotic cells can be regarded as complex microreactors capable of performing various biochemical reactions in parallel which are necessary to sustain life. An essential prerequisite for these complex metabolic reactions to occur is the evolution of lipid membrane-bound organelles enabling compartmental- ization of reactions and biomolecules. This allows for a spatiotemporal control over the metabolic reactions within the cellular system. Intracellular organi- zation arising due to compartmentalization is a key feature of all living cells and has inspired synthetic biologists to engineer such systems with bottom-up approaches. Artificial cells provide an ideal platform to isolate and study specific re- actions without the interference from the complex network of biomolecules present in biological cells. To mimic the hierarchical architecture of eukaryotic cells, multi-compartment assemblies with nested liposomal structures also re- ferred to as multi-vesicular vesicles (MVVs) have been widely adopted. Most of the previously reported multi-compartment systems adopt bulk method- ologies which suffer from low yield and poor control over size. Microfluidic strategies help circumvent these issues and facilitate a high-throughput and robust technique to assemble MVVs of uniform size distribution. In this thesis, firstly, the bulk methodologies are explored to build MVVs and implement a synthetic signalling cascade. Next, a polydimethylsiloxane (PDMS)-based microfluidic platform is introduced to build MVVs and the significance of PEGylated lipids for the successful encapsulation of inner com- partments to generate stable multi-compartment systems is highlighted. Next, a novel two-inlet channel PDMS-based microfluidic device to create MVVs encompassing a three-step enzymatic reaction cascade is presented. A directed reaction pathway comprising of the enzymes α-glucosidase (α-Glc), glucose oxidase (GOx), and horseradish peroxidase (HRP) spanning across three compartments via reconstitution of size-selective membrane proteins is described. Furthermore, owing to the monodispersity of our MVVs due to microfluidic strategies, this platform is employed to study the effect of com- partmentalization on reaction kinetics. Further integration of cell-free expression module into the MVVs would allow for gene-mediated signal transduction within artificial eukaryotic cells. Therefore, the chemically inducible cell-free expression of a membrane protein alpha-hemolysin and its further reconstitution into liposomes is carried out. In conclusion, the present thesis aims to build artificial eukaryotic cells to achieve size-selective chemical communication that also show potential for applications as micro reactors and as vehicles for drug delivery. N2 - Eukaryontische Zellen können als komplexe Mikroreaktoren betrachtet werden, die in der Lage sind, verschiedene biochemische Reaktionen parallel durchzuführen, die für die Aufrechterhaltung des Lebens notwendig sind. Eine wesentliche Voraussetzung für die Durchführung dieser komplexen Stoffwechselreaktionen ist die Entwicklung von Organellen mit Lipidmembranen, die eine Kompartimentierung von Reaktionen und Biomolekülen ermöglichen. Dies ermöglicht eine räumlich-zeitliche Kontrolle über die Stoffwechselreaktionen innerhalb des zellulären Systems. Die durch die Kompartimentierung entstehende intrazelluläre Organisation ist ein Schlüsselmerkmal aller lebenden Zellen und hat synthetische Biologen dazu inspiriert, solche Systeme mit Bottom-up-Ansätzen zu entwickeln. Künstliche Zellen bieten eine ideale Plattform, um spezifische Reaktionen zu isolieren und zu untersuchen, ohne dass das komplexe Netzwerk von Biomolekülen, das in biologischen Zellen vorhanden ist, stört. Um die hierarchische Architektur eukaryontischer Zellen zu imitieren, haben sich Multikompartiment-Anordnungen mit verschachtelten liposomalen Strukturen, die auch als multivesikuläre Vesikel (MVV) bezeichnet werden, durchgesetzt. Die meisten der bisher vorgestellten Multikompartiment-Systeme basieren auf Bulk-Methoden, die eine geringe Ausbeute und eine schlechte Kontrolle über die Größe aufweisen. Mikrofluidische Strategien helfen, diese Probleme zu umgehen und ermöglichen eine robuste Technik mit hohem Durchsatz, um MVVs mit einheitlicher Größenverteilung herzustellen. In dieser Dissertation werden zunächst die Bulk-Methoden zum Aufbau von MVVs und zur Implementierung einer synthetischen Signalkaskade untersucht. Anschließend wird eine auf Polydimethylsiloxan (PDMS) basierende mikrofluidische Plattform zur Herstellung von MVVs vorgestellt und die Bedeutung von PEGylierten Lipiden für die erfolgreiche Verkapselung der inneren Kompartimente zur Erzeugung stabiler Multikompartiment-Systeme hervorgehoben. Es wird ein neuartiges mikrofluidisches Gerät mit zwei Einlasskanälen auf PDMS-Basis zur Herstellung von MVVs vorgestellt, das eine dreistufige enzymatische Reaktionskaskade umfasst. Es wird ein gerichteter Reaktionsweg beschrieben, der die Enzyme α-Glucosidase (α-Glc), Glucoseoxidase (GOx) und Meerrettichperoxidase (HRP) umfasst und sich über drei Kompartimente erstreckt, die durch die Rekonstitution von größenselektiven Membranproteinen entstehen. Aufgrund der Monodispersität unserer MVVs durch mikrofluidische Strategien nutze ich diese Plattform außerdem, um die Auswirkungen der Kompartimentierung auf die Reaktionskinetik zu untersuchen. Eine weitere Integration von zellfreien Expressionsmodulen in MVVs würde eine genvermittelte Signaltransduktion in künstlichen eukaryotischen Zellen ermöglichen. Daher wird die chemisch induzierbare zellfreie Expression eines Membranproteins alpha-Hämolysin und seine weitere Rekonstitution in Liposomen durchgeführt. Zusammenfassend lässt sich sagen, dass die vorliegende Arbeit darauf abzielt, künstliche eukaryotische Zellen zu bauen, um eine größenselektive chemische Kommunikation zu erreichen, und das Potenzial für Anwendungen als Mikroreaktoren und als Vehikel für die Verabreichung von Medikamenten aufweisen. KW - microfluidics KW - synthetic biology KW - Mikrofluidik KW - synthetische Biologie Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-533642 ER - TY - THES A1 - Altabal, Osamah T1 - Design and fabrication of geometry-assisted on-demand dosing systems N2 - The controlled dosage of substances from a device to its environment, such as a tissue or an organ in medical applications or a reactor, room, machinery or ecosystem in technical, should ideally match the requirements of the applications, e.g. in terms of the time point at which the cargo is released. On-demand dosage systems may enable such a desired release pattern, if the device contain suitable features that can translate external signals into a release function. This study is motivated by the opportunities arising from microsystems capable of an on-demand release and the contributions that geometrical design may have in realizing such features. The goals of this work included the design, fabrication, characterization and experimental proof-of-concept of geometry-assisted triggerable dosing effect (a) with a sequential dosing release and (b) in a self-sufficient dosage system. Structure-function relationships were addressed on the molecular, morphological and, with a particular attention, the device design level, which is on the micrometer scale. Models and/or computational tools were used to screen the parameter space and provide guidance for experiments. N2 - Die kontrollierte Freisetzung von Substanzen aus einem Device in seine Umgebung, wie ein Gewebe oder Organ in medizinischen Anwendungen oder ein Reaktor, ein Raum, ein Gerät oder ein Ökosystem in technischer Nutzung sollte idealerweise den Anforderungen des Einsatzzweckes entsprechen, beispielsweise hinsichtlich des Zeitpunktes an dem die Freisetzung erfolgt. On-demand Freisetzungssysteme könnten eine derartiges gewünschtes Verhalten zeigen, wenn das System die Befähigung besitzt, externe Signale in eine Freisetzungsfunktion zu überführen. Diese Arbeit greift die Möglichkeiten auf, die sich durch den Einsatz und ein gezieltes Design von mikrostrukturierten Systemen für die Realisierung einer on-demand Freisetzung ergeben könnten. Die Ziele der Arbeit umfassen die Konzeptionierung, Herstellung, Charakterisierung sowie den grundsätzlichen Nachweis durch Stimuli induzierten on-demand Freisetzungsfunktion einerseits in Form eines sequentiellen Freigabeverhaltens und anderseits in Form eines autarken (kontaktfrei ausgelösten) Dosiersystems. Struktur-Eigenschafts-Beziehungen wurden auf molekularer, morphologischer und - mit besonderen Augenmerk - auf der Ebene des Device-Designs untersucht. Modelle und/oder Computer-gestützte Verfahren wurden verwendet um geeignete Materialparameter zu identifizieren und einen Leitfaden für die Experimente bereitzustellen. KW - Stress concentration KW - Negative Poisson’s ratio KW - On-demand release KW - Spannungskonzentrationen KW - Negatives Poisson-Verhältnis KW - On-demand Freisetzung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-532441 ER - TY - THES A1 - Kirchhofer, Tabea T1 - The development of multi - compartmentalised systems for the directed organisation of artificial cells N2 - Membrane contact sites are of particular interest in the field of synthetic biology and biophysics. They are involved in a great variety of cellular functions. They form in between two cellular organelles or an organelle and the plasma membrane in order to establish a communication path for molecule transport or signal transmission. The development of an artificial membrane system which can mimic membrane contact sites using bottom up synthetic biology was the goal of this research study. For this, a multi - compartmentalised giant unilamellar vesicle (GUV) system was created with the membrane of the outer vesicle mimicking the plasma membrane and the inner GUVs posing as cellular organelles. In the following steps, three different strategies were used to achieve an internal membrane - membrane adhesion. N2 - Viele bedeutende Prozesse einer Zelle spielen sich an den Berührungsstellen zwischen Zellmembranen und auch zwischen Zellmembranen und der Plasmamembran ab. An diesen, aus spezifischen Lipiden und Proteinen aufgebauten Kontaktstellen, können auf Grund der geringen Entfernung Signale und auch Moleküle ausgetauscht werden. Ziel dieses Forschungsprojektes war die Entwicklung eines künstlichen Zellmembransystems, das in der Lage ist diese Kontaktstellen nachzubilden. Dafür wurden multikompartmentalisierte riesige unilamellare Vesikel (GUVs) aufgebaut. Dies bedeutet, dass sich ein GUV innerhalb eines anderen GUVs befindet. Das äußere Vesikel bildet in diesem System die Plasma Membran, während das Innere als Zellorganelle fungiert. Dieses System wird auch als Vesosom bezeichnet. Im Folgenden wurden drei verschiedene Strategien entwickelt, um interne Haftung (Adhäsion) zwischen den Membranen zu erzeugen. KW - vesicle studies KW - membrane science KW - synthetic biology KW - internal membrane-membrane adhesion KW - artificial cells KW - multi-compartmentalised vesicles KW - künstliche Zellen KW - interne Membran-Membran Adhäsion KW - Membranforschung bzw. Membranwissenschaften KW - multi-kompartmentalisierte Vesikel KW - Synthetische Biologie KW - Vesikel Forschung/Vesikel Studien Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-528428 ER - TY - THES A1 - Bhaskar, Thanga Bhuvanesh Vijaya T1 - Biomimetic layers of extracellular matrix glycoproteins as designed biointerfaces N2 - The goal of regenerative medicine is to guide biological systems towards natural healing outcomes using a combination of niche-specific cells, bioactive molecules and biomaterials. In this regard, mimicking the extracellular matrix (ECM) surrounding cells and tissues in vivo is an effective strategy to modulate cell behaviors. Cellular function and phenotype is directed by the biochemical and biophysical signals present in the complex 3D network of ECMs composed mainly of glycoproteins and hydrophilic proteoglycans. While cellular modulation in response to biophysical cues emulating ECM features has been investigated widely, the influence of biochemical display of ECM glycoproteins mimicking their presentation in vivo is not well characterized. It remains a significant challenge to build artificial biointerfaces using ECM glycoproteins that precisely match their presentation in nature in terms of morphology, orientation and conformation. This challenge becomes clear, when one understands how ECM glycoproteins self-assemble in the body. Glycoproteins produced inside the cell are secreted in the extra-cellular space, where they are bound to the cell membrane or other glycoproteins by specific interactions. This leads to elevated local concentration and 2Dspatial confinement, resulting in self-assembly by the reciprocal interactions arising from the molecular complementarity encoded in the glycoprotein domains. In this thesis, air-water (A-W) interface is presented as a suitable platform, where self-assembly parameters of ECM glycoproteins such as pH, temperature and ionic strength can be controlled to simulate in vivo conditions (Langmuir technique), resulting in the formation of glycoprotein layers with defined characteristics. The layer can be further compressed with surface barriers to enhance glycoprotein-glycoprotein contacts and defined layers of glycoproteins can be immobilized on substrates by horizontal lift and touch method, called Langmuir-Schäfer (LS) method. Here, the benefit of Langmuir and LS methods in achieving ECM glycoprotein biointerfaces with controlled network morphology and ligand density on substrates is highlighted and contrasted with the commonly used (glyco)protein solution deposition (SO) method on substrates. In general, the (glyco)protein layer formation by SO is rather uncontrolled, influenced strongly by (glyco)protein-substrate interactions and it results in multilayers and aggregations on substrates, while the LS method results in (glyco)proteins layers with a more homogenous presentation. To achieve the goal of realizing defined ECM layers on substrates, ECM glycoproteins having the ability to self-assemble were selected: Collagen-IV (Col-IV) and fibronectin (FN). Highly packed FN layer with uniform presentation of ligands was deposited on polydimethysiloxane VIII (PDMS) by LS method, while a heterogeneous layer was formed on PDMS by SO with prominent aggregations visible. Mesenchymal stem cells (MSC) on PDMS equipped with FN by LS exhibited more homogeneous and elevated vinculin expression and weaker stress fiber formation than on PDMS equipped with FN by SO and these divergent responses could be attributed to the differences in glycoprotein presentation at the interface. Col-IV are scaffolding components of specialized ECM called basement membranes (BM), and have the propensity to form 2D networks by self-polymerization associated with cells. Col- IV behaves as a thin-disordered network at the A-W interface. As the Col-IV layer was compressed at the A-W interface using trough barriers, there was negligible change in thickness (layer thickness ~ 50 nm) or orientation of molecules. The pre-formed organization of Col-IV was transferred by LS method in a controlled fashion onto substrates meeting the wettability criterion (CA ≤ 80°). MSC adhesion (24h) on PET substrates deposited with Col-IV LS films at 10, 15 and 20 mN·m-1 surface pressures was (12269.0 ± 5856.4) cells for LS10, (16744.2 ± 1280.1) cells for LS15 and (19688.3 ± 1934.0) cells for LS20 respectively. Remarkably, by selecting the surface areal density of Col-IV on the Langmuir trough on PET, there is a linear increase between the number of adherent MSCs and the Col-IV ligand density. Further, FN has the ability to self-stabilize and form 2D networks (even without compression) while preserving native β-sheet structure at the A-W interface on a defined subphase (pH = 2). This provides the possibility to form such layers on any vessel (even on standard six-well culture plates) and the cohesive FN layers can be deposited by LS transfer, without the need for expensive LB instrumentation. Multilayers of FN can be immobilized on substrates by this approach, as easily as Layer-by-Layer method, even without the need for secondary adlayer or activated bare substrate. Thus, this facile glycoprotein coating strategy approach is accessible to many researchers to realize defined FN films on substrates for cell culture. In conclusion, Langmuir and LS methods can create biomimetic glycoprotein biointerfaces on substrates controlling aspects of presentation such as network morphology and ligand density. These methods will be utilized to produce artificial BM mimics and interstitial ECM mimics composed of more than one ECM glycoprotein layer on substrates, serving as artificial niches instructing stem cells for cell-replacement therapies in the future. N2 - Ziel der regenerativen Medizin ist es, Regenerationsprozesse in biologischen Systemen mit Hilfe von nischenspezifischen Zellen, bioaktiven Molekülen und Biomaterialien zu modulieren. In diesem Zusammenhang ist die Nachahmung der extrazellulären Matrix (ECM), die Zellen und Gewebe in vivo umgibt, eine wirksame Strategie zur Modulation des Zellverhaltens. Die zelluläre Funktion und der Phänotyp werden durch die biochemischen und biophysikalischen Signale gesteuert, die in dem komplexen 3D-Netzwerk von ECMs vorhanden sind, welches hauptsächlich aus Glykoproteinen und hydrophilen Proteoglykanen besteht. Während die zelluläre Modulation als Reaktion auf biophysikalische Signale, die ECM-Merkmale nachahmen, umfassend untersucht wurde, ist der Einfluss der biochemischen Charakterisierung von ECM-Glykoproteinen, die deren Darstellung in vivo nachahmen, nicht gut charakterisiert. Es bleibt eine bedeutende Herausforderung, künstliche Biogrenzflächen mit ECM-Glykoproteinen zu schaffen, die in Bezug auf Morphologie, Orientierung und Konformation genau ihrer Darstellung in der Natur entsprechen. Diese Herausforderung wird deutlich, wenn man versteht, wie sich die ECM-Glykoproteine im Körper selbst zusammensetzen. Glykoproteine, die im Inneren der Zelle produziert werden, werden im extrazellulären Raum ausgeschieden, wo sie durch spezifische Interaktionen an die Zellmembran oder andere Glykoproteine gebunden werden. Dies führt zu einer erhöhten lokalen Konzentration und zweidimensionalen Raumbegrenzung, was durch die wechselseitigen Wechselwirkungen, die sich aus der in den Glykoprotein-Domänen kodierten molekularen Komplementarität ergeben, zur Selbstorganisation führt. In dieser Arbeit wird die Luft-Wasser (A-W)-Grenzfläche als eine geeignete Umgebung vorgestellt, mit der die Selbstorganisationsparameter von ECM-Glykoproteinen wie pH-Wert, Temperatur und Ionenstärke kontrolliert werden können, um in vivo-Bedingungen zu simulieren (Langmuir-Technik), was zur Bildung von Glykoproteinschichten mit definierten Eigenschaften führt. Die Schicht kann mit Oberflächenbarrieren weiter komprimiert werden, um die Glykoprotein-Glykoprotein-Kontakte zu verstärken, und definierte Schichten von Glykoproteinen können auf Substraten durch eine horizontale Hebe- und Berührungsmethode, sie sogenannte Langmuir-Schäfer (LS)-Methode, immobilisiert werden. Hier wird der Vorteil der Langmuir- und LS-Methode bei der Erzielung von ECM-Glykoprotein-Biogrenzflächen mit kontrollierter Netzwerkmorphologie und Ligandendichte auf Oberflächen hervorgehoben und mit der üblicherweise verwendeten Methode der (Glyko)Protein-Lösungsabscheidung (SO) auf Oberflächen gegenübergestellt. Im Allgemeinen ist die (Glyko)ProteinX Schichtbildung durch SO eher unkontrolliert, wird stark durch (Glyko)Protein-Substrat- Wechselwirkungen beeinflusst und führt zu Mehrfachschichten und Ansammlungen auf Oberflächen, während die LS-Methode zu (Glyko)Protein-Schichten mit einer homogeneren Darstellung führt. Um definierte ECM-Schichten auf Oberflächen zu erzeugen, wurden ECM-Glykoproteine mit der Fähigkeit zur Selbstorganisation ausgewählt: Kollagen-IV (Col-IV) und Fibronektin (FN). Eine dicht gepackte FN-Schicht mit gleichmäßiger Verteilung der Liganden wurde mit der LSMethode auf Polydimethysiloxan (PDMS) aufgetragen, während auf PDMS mit SO eine heterogene Schicht mit klar erkennbaren Verdichtungen gebildet wurde. Mesenchymale Stammzellen (MSC) auf PDMS, denen FN nach der LS-Methode hinzugefügt wurde, wiesen eine homogenere und erhöhte Vinculin-Expression und eine schwächere Stressfaserbildung auf als MSC Stammzellen auf PDMS, dem FN nach der SO-Methode hinzugefügt wurde, und diese verschiedenen Reaktionen konnten auf die Unterschiede in der Glykoprotein-Verteilung an der Grenzfläche zurückgeführt werden. Col-IV ist eine Komponente spezialisierter ECMs, die Basalmembranen (BM) genannt werden, und neigen zur Bildung von 2D-Netzwerke durch Selbstpolymerisation, die mit Zellen assoziiert sind. Col-IV verhält sich wie ein dünnes ungeordnetes Netzwerk an der A-WGrenzfläche. Während die Col-IV-Schicht an der A-W-Grenzfläche mit Hilfe von Trogbarrieren zusammengerückt wurde, gab es eine vernachlässigbare Änderung der Dicke (Schichtdicke ~ 50 nm) oder der Orientierung der Moleküle. Die vorgeformte Organisation von Col-IV wurde mit der LS-Methode kontrolliert auf Oberflächen aufgetragen, die das Kriterium der Benetzbarkeit erfüllten (CA ≤ 80°). Die MSC-Adhäsion (24h) auf Polyethylenterephthalat (PET)-Oberflächen, die mit Col-IV LS-Folien bei Oberflächendrücken von 10, 15 und 20 mN·m-1 aufgebracht wurden, waren (12269,0 ± 5856,4) Zellen für LS10, (16744,2 ± 1280,1) Zellen für LS15 (19688,3 ± 1934,0) Zellen für LS20. Bemerkenswert ist dabei, dass durch die Auswahl der Oberflächen-Flächendichte von Col-IV am Langmuir-Trog auf PET ein linearer Anstieg zwischen der Anzahl der adhärenten MSCs und der Col-IV-Ligandendichte erfolgt. Auch FN die Fähigkeit, sich selbst zu stabilisieren und 2D-Netzwerke zu bilden (sogar ohne Kompression), während die native β-Faltblattstruktur an der A-W-Grenzfläche auf einer definierten Subphase (pH = 2) erhalten bleibt. Dies bietet die Möglichkeit, solche Schichten auf jedem beliebigen Gefäß (sogar auf Platten mit Standard-Six-Well-Kulturen) zu bilden, und die kohäsiven FN-Schichten können durch LS-Transfer abgelagert werden, ohne dass eine teure LB-Instrumentierung erforderlich ist. Mehrfachschichten aus FN können auf diese Weise XI auf Oberflächen immobilisiert werden, genauso einfach wie bei der Layer-by-Layer-Methode, auch ohne die Notwendigkeit einer zweiten adsorbierenden Schicht oder einer aktivierten blanken Oberfläche. Somit ist dieser Ansatz einer einfachen Glykoprotein- Beschichtungsstrategie vielen Forschern zugänglich, um definierte FN-Filme auf Oberflächen für die Zellkultur zu realisieren. Zusammenfassend lässt sich sagen, dass Langmuir- und LSMethoden biomimetische Glykoprotein-Bioschnittstellen auf Oberflächen erzeugen können, die makroskopische Darstellungen wie Netzwerkmorphologie und Ligandendichte kontrollieren. Diese Methoden werden genutzt, um künstliche BM und ECM zu generieren, die aus mehr als einer Glykoproteinschicht bestehen. Diese können dann als künstliche Nischen für Stammzellen, die in zukünftigen Zellersatztherapien zum Einsatz kommen könnte. KW - Extracellular Matrix KW - Biomimetics KW - Glycoproteins KW - Langmuir-Schaefer method KW - Designed Biointerfaces KW - Extrazelluläre Matrix KW - Biomimetik KW - Glykoproteine KW - Langmuir-Schäfer-Methode KW - Designte Biointerface Y1 - 2020 ER - TY - THES A1 - Sanay, Berran T1 - Monomers and polymers based on renewable resources for new photopolymer coating N2 - The present work focuses on minimising the usage of toxic chemicals by integration of the biobased monomers, derived from fatty acid esters, to photopolymerization processes, which are known to be nature friendly. Internal double bond present in the oleic acid was converted to more reactive (meth)acrylate or epoxy group. Biobased starting materials, functionalized by different pendant groups, were used for photopolymerizing formulations to design of new polymeric structures by using ultraviolet light emitting diode (UV-LED) (395 nm) via free radical polymerization or cationic polymerization. New (meth)acrylates (2,3 and 4) consisting of two isomers, methyl 9-((meth)acryloyloxy)-10-hydroxyoctadecanoate / methyl 9-hydroxy-10-((meth)acryloyloxy)octadecanoate (2 and 3) and methyl 9-(1H-imidazol-1-yl)-10-(methacryloyloxy)octadecanoate / methyl 9-(methacryloyloxy)-10-(1H-imidazol-1-yl)octadecanoate (4), modified from oleic acid mix, and ionic liquid monomers (1a and 1b) bearing long alkyl chain were polymerized photochemically. New (meth)acrylates are based on vegetable oil, and ionic liquids (ILs) have nonvolatile behaviour. Therefore, both monomer types have green approach. Photoinitiated polymerization of new (meth)acrylates and ionic liquids was investigated in the presence of ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate (Irgacure® TPO−L) or di(4-methoxybenzoyl)diethylgermane (Ivocerin®) as photoinitiator (PI). Additionally, the results were discussed in comparison with those obtained from commercial 1,6-hexanediol di(meth)acrylate (5 and 6) for deeper investigation of biobased monomer’s potential to substitute petroleum derived materials with renewable resources for possible coating applications. Kinetic study shows that methyl 9-(1H-imidazol-1-yl)-10-(methacryloyloxy)octadecanoate / methyl 9-(methacryloyloxy)-10-(1H-imidazol-1-yl)octadecanoate (4) and ionic liquids (1a and 1b) have quantitative conversion after irradiation process which is important for practical applications. On the other hand, heat generation occurs in a longer time during the polymerization of biobased systems or ILs. The poly(meth)acrylates modified from (meth)acrylated fatty acid methyl ester monomers generally show a low glass transition temperature because of the presence of long aliphatic chain in the polymer structure. However, poly(meth)acrylates containing aromatic group have higher glass transition temperature. Therefore, new 4-(4-methacryloyloxyphenyl)-butan-2-one (7) was synthesized which can be a promising candidate for the green techniques, such as light induced polymerization. Photokinetic investigation of the new monomer, 4-(4-methacryloyloxyphenyl)-butan-2-one (7), was discussed using Irgacure® TPO−L or Ivocerin® as photoinitiator. The reactivity of that monomer was compared to commercial 2-phenoxyethyl methacrylate (8) and phenyl methacrylate (9) basis of the differences on monomer structures. The photopolymer of 4-(4-methacryloyloxyphenyl)-butan-2-one (7) might be an interesting candidate for the coating application with the properties of quantitative conversion and high molecular weight. It also shows higher glass transition temperature. In addition to the linear systems based on renewable materials, new crosslinked polymers were also designed in this thesis. Therefore, isomer mixture consisting of ethane-1,2-diyl bis(9-methacryloyloxy-10-hydroxy octadecanoate), ethane-1,2-diyl 9-hydroxy-10-methacryloyloxy-9’-methacryloyloxy10’-hydroxy octadecanoate and ethane-1,2-diyl bis(9-hydroxy-10-methacryloyloxy octadecanoate) (10) was synthesized by derivation of the oleic acid which has not been previously described in the literature. Crosslinked material based on this biobased monomer was produced by photoinitiated free radical polymerization using Irgacure® TPO−L or Ivocerin® as photoinitiator. Furthermore, material properties were diversified by copolymerization of 10 with 4-(4-methacryloyloxyphenyl)-butan-2-one (7) or methyl 9-(1H-imidazol-1-yl)-10-(methacryloyloxy)octadecanoate / methyl 9-(methacryloyloxy)-10-(1H-imidazol-1-yl)octadecanoate (4). In addition to this, influence of comonomer with different chemical structure on the network system was investigated by analysis of thermo-mechanical properties, crosslink density and molecular weight between two crosslink junctions. An increase in the glass transition temperature caused by copolymerization of biobased monomer 10 with the excess amount of 4-(4-methacryloyloxyphenyl)-butan-2-one (7) was confirmed by both techniques, differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). On the other hand, crosslink density decreased as a result of copolymerization reactions due to the reduction in the mean functionality of the system. Furthermore, surface characterization has been tested by contact angle measurements using solvents with different polarity. This work also contributes to the limited data reported about cationic photopolymerization of the epoxidized vegetable oils in the literature in contrast to the widely investigation of thermal curing of the biorenewable epoxy monomers. In addition to the 9,10-epoxystearic acid methyl ester (11), a new monomer of bis-(9,10-epoxystearic acid) 1,2-ethanediyl ester (12) has been synthesized from oleic acid. These two biobased epoxies have been polymerized via cationic photoinitiated polymerization in the presence of bis(t-butyl)-iodonium-tetrakis(perfluoro-t-butoxy)aluminate ([Al(O-t-C4F9)4]-) and isopropylthioxanthone (ITX) as photinitiating system. Polymerization kinetic of 9,10-epoxystearic acid methyl ester (11) and bis-(9,10-epoxystearic acid) 1,2-ethanediyl ester (12) was investigated and compared with the kinetic of commercial monomers being 3,4-epoxycyclohexylmethyl-3’,4’-epoxycyclohexane carboxylate (13), 1,4-butanediol diglycidyl ether (14), and diglycidylether of bisphenol-A (15). Both biobased epoxies (11 and 12) showed higher conversion than cycloaliphatic epoxy (13), and lower reactivity than 1,4-butanediol diglycidyl ether (14). Additional network systems were designed by copolymerization of bis-(9,10-epoxystearic acid) 1,2-ethanediyl ester (12) and diglycidylether of bisphenol-A (15) in different molar ratios (1:1; 1:5; 1:9). It addresses that, final conversion is dependent on polymerization rate as well as physical processes such as vitrification during polymerization. Moreover, low glass transition temperature of homopolymer derived from bis-(9,10-epoxystearic acid) 1,2-ethanediyl ester (12) was successfully increased by copolymerization with diglycidylether bisphenol-A (15). On the other hand, the surface produced from bis-(9,10-epoxystearic acid) 1,2-ethanediyl ester (12) shows hydrophobic character. Higher concentration of biobased diepoxy (12) in the copolymerizing mixture decreases surface free energy. Network systems were also investigated according to the rubber elasticity theory. Crosslinked polymer derived from the mixture of bis-(9,10-epoxystearic acid) 1,2-ethanediyl ester (12) and diglycidylether of bisphenol-A (15) (molar ratio=1:5) exhibits almost ideal polymer network. N2 - Die vorliegende Arbeit konzentriert sich auf die Minimierung des Einsatzes von giftigen Chemikalien durch die Integration von biobasierten Monomeren, die aus Fettsäureestern gewonnen werden, in Photopolymerisationsprozessen, die als naturfreundlich bekannt sind. Die in der Ölsäure vorhandene interne Doppelbindung wurde in eine reaktivere (Meth)acrylat- oder Epoxidgruppe umgewandelt. Biobasierte Ausgangsmaterialien, funktionalisiert durch verschiedene Seitengruppen, wurden für photopolymerisierende Formulierungen verwendet, um neue polymere Strukturen unter Verwendung einer ultravioletten lichtemittierenden Diode (UV-LED) (395 nm) über freie radikalische Polymerisation oder kationische Polymerisation zu entwickeln. Neue (Meth)acrylate, Methyl-9-((meth)acryloyloxy)-10-hydroxyoctadecanoat / Methyl-9-hydroxy-10-((meth)acryloyloxy)octadecanoat (2 und 3) und Methyl-9-(methacryloyloxy)-10-(1H-imidazol-1yl)octadecanoat / Methyl-9-(1H-imidazol-1yl)-10-(methacryloyloxy)octadecanoat (4), modifiziert aus einem Ölsäuregemisch und ionischen flüssigen Monomeren mit eine langen Alkylkette wurden photochemisch polymerisiert. Die neuen (Meth)acrylate basieren auf Pflanzenöl. Die ionischen Flüssigkeiten (ILs) haben ein nichtflüchtiges Verhalten. Daher haben beide Monomertypen einen grünen Ansatz. Photoinitiierte Polymerisationen von neuen (Meth)acrylaten und ionischen Flüssigkeiten wurden in Gegenwart von Ethyl-(2,4,6-trimethylbenzoyl)phenylphosphinat (Irgacure® TPO-L) oder Di(4-methoxybenzoyl)diethylgerman (Ivocerin®) als Photoinitiator untersucht. Zusätzlich wurden die Ergebnisse im Vergleich mit denen von kommerziellem 1,6-hexandiol di(meth)acrylat (5 und 6) diskutiert, um das Potenzial von biobasierten Monomeren zur Substitution von erdölbasierten Materialien durch erneuerbare Ressourcen für mögliche Beschichtungsanwendungen genauer zu untersuchen. Die kinetische Studie zeigt, dass Methyl-9-(1H-imidazol-1yl)-10-(methacryloyloxy)octadecanoat / Methyl-9-(methacryloyloxy)-10-(1H-imidazol-1yl)octadecanoat (4) und die ionischen Flüssigkeiten (1a und 1b) eine quantitative Umsetzung nach dem Bestrahlungsprozess aufweisen, was für praktische Anwendungen wichtig ist. Andererseits erfolgt die Wärmeentwicklung bei der Polymerisation von biobasierten Systemen oder ILs in einem längeren Zeitraum. Die aus Fettsäuren hergestelltem modifizierten Poly(meth)acrylate zeigen im Allgemeinen eine niedrige Glasübergangstemperatur aufgrund der Anwesenheit einer langen aliphatischen Kette in der Polymerstruktur. Poly(meth)acrylate, die eine aromatische Gruppe enthalten, haben jedoch eine höhere Glasübergangstemperatur. Daher wurde das neue 4-(4-Methacryloyloxyphenyl)-butan-2-on (7) synthetisiert, das ein vielversprechender Kandidat für die grünen Techniken, wie zum Beispiel die lichtinduzierte Polymerisation, sein kann. Die photokinetische Untersuchung des neuen Monomers, 4-(4-Methacryloyloxyphenyl)-butan-2-on (7), wurde unter Verwendung von Irgacure® TPO-L oder Ivocerin® als Photoinitiator diskutiert. Die Reaktivität dieses Monomers wurde mit kommerziellem 2-Phenoxyethylmethacrylat (8) und Phenylmethacrylat (9) aufgrund der Unterschiede in der Monomerstruktur verglichen. Das Photopolymer von 4-(4-Methacryloyloxyphenyl)-butan-2-on (7) könnte ein interessanter Kandidat und eine Alternative zu den herkömmlichen Monomeren für die Beschichtungsanwendung sein aufgrund der quantitativen Umsetzung des Monomeren und des hohen Molekulargewichts sowie einer höheren Glasübergangstemperatur des resultieren den Photopolymeren. Neben den linearen Systemen auf Basis nachwachsender Rohstoffe wurden in dieser Arbeit auch neue vernetzte Polymere entwickelt. So wurde ein Ethan-1,2-diyl bis(9-methacryloyloxy-10-hydroxy octadecanoate), Ethane-1,2-diyl 9-hydroxy-10-methacryloyloxy-9’-methacryloyloxy10’-hydroxy octadecanoat und Ethane-1,2-diyl bis(9-hydroxy-10-methacryloyloxy octadecanoat) (10) Monomer mit zwei funktionellen Gruppen durch weitere Derivatisierung der Ölsäure synthetisiert, das bisher in der Literatur nicht beschrieben wurde. Ein vernetztes Material Auf Basis dieses biobasierten Monomers wurde durch photoinitiierte, radikalische Polymerisation unter Verwendung von Irgacure® TPO-L oder Ivocerin® als Photoinitiator hergestellt. Darüber hinaus wurden die Materialeigenschaften durch Copolymerisation des 10 mit 4-(4-Methacryloyloxyphenyl)-butan-2-on (7) oder Methyl-9-(1H-imidazol-1yl)-10-(methacryloyloxy)-octadecanoat /Methyl-9-(methacryloyloxy)-10-(1H-imidazol-1yl)-octadecanoat (4) variiert. Darüber hinaus wurde der Einfluss von Comonomeren mit unterschiedlicher chemischer Struktur auf das Netzwerksystem durch Analyse der mechanischen Eigenschaften, der Glasübergangstemperaturen, der Vernetzungsdichte und des Molekulargewichts zwischen zwei Vernetzungsstellen untersucht. Eine Erhöhung der Glasübergangstemperatur durch die Copolymerisation von 10 mit einem Überschuss von 4-(4-Methacryloyloxyphenyl)-butan-2-on (7) wurde durch DSC und DMA bestätigt. Andererseits verringerte sich die Vernetzungsdichte aufgrund der Verringerung der mittleren Funktionalität des Systems. Darüber hinaus wurde die Oberflächencharakterisierung durch Kontaktwinkelmessungen unter Verwendung von Lösungsmitteln mit unterschiedlicher Polarität getestet. Diese Arbeit trägt auch zur Erweiterung der in der Literatur über die kationische Photopolymerisation der epoxidierten Pflanzenöle berichteten Erkenntnisse bei, die, im Gegensatz zu den weit verbreiteten Untersuchungen zur thermischen Härtung der biobasierten Epoxidmonomere nur begrenzt verfügbar sind. Zusätzlich zum 9,10-Epoxystearinsäuremethylester (11) wurde ein neues Monomer Bis-(9,10-epoxystearinsäure)-1,2-ethandiylester (12) auf der Basis von Ölsäure synthetisiert. Diese beiden biobasierten Epoxide wurden durch kationische photoinitiierte Polymerisation in Gegenwart von Bis(t-butyl)-iodonium-tetrakis(perfluor-t-butoxy)aluminat ([Al(O-t-C4F9)4]-) und Isopropylthioxanthon (ITX) als photostimulierendes System polymerisiert. Die Polymerisationskinetik von 9,10-Epoxystearinsäuremethylester (11) und Bis-(9,10-epoxystearinsäure)-1,2-ethandiylester (12) wurde untersucht und mit der Kinetik der kommerziellen Monomere 3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexancarboxylat (13), 1,4-Butandioldiglycidylether (14) und Diglycidylether von Bisphenol-A (15) verglichen. Beide biobasierten Epoxide (11 und 12) zeigten eine höhere Umwandlung als das cycloaliphatische Epoxid (13) und eine geringere als 1,4-Butandioldiglycidylether (14). Weitere Netzwerksysteme wurden durch Copolymerisation von Bis-(9,10-epoxystearinsäure)-1,2-ethandiylester (12) und Diglycidylether von Bisphenol-A (15) in verschiedenen molaren Verhältnissen (1:1; 1:5; 1:9) hergestellt. Es wird angesprochen, dass der endgültige Umsatz sowohl von der Polymerisationsgeschwindigkeit als auch von physikalischen Prozessen wie der Verglasung während der Polymerisation abhängig ist. Darüber hinaus wurde die niedrige Glasübergangstemperatur des Homopolymers aus Bis-(9,10-epoxystearinsäure)-1,2-ethandiylester (12) durch Copolymerisation mit Diglycidylether von Bisphenol-A (15) erfolgreich erhöht. Andererseits zeigt die aus Bis-(9,10-epoxystearinsäure) 1,2-ethan-diylester (12) hergestellte Oberfläche einen hydrophoben Charakter. Eine höhere Konzentration des biobasierten difunktionellen Epoxids (12) in der Copolymerisationsmischung verringert die freie Oberflächenenergie. Die Netzwerksysteme wurden auch unter Einsatz der Gummielastizitätstheorie untersucht. Das vernetzte Polymer, das aus der Mischung von Bis-(9,10-epoxystearinsäure) 1,2-ethan-diylester (12) und Diglycidylether von Bisphenol-A (15) (Molverhältnis=1:5) hergestellt wurde, zeigt ein nahezu ideales Polymernetzwerk. KW - Biobased Polymers KW - Renewable Resources KW - Coating Applications KW - Photopolymers KW - Photopolymerization KW - Biobasierte Polymere KW - Beschichtungsanwendung KW - Photoinitiierte Polymerisationen KW - Photopolymer KW - Erneuerbare Ressourcen Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-518684 ER - TY - THES A1 - Izraylit, Victor T1 - Reprogrammable and tunable actuation in multiblock copolymer blends T1 - Reprogrammierbare und abstimmbare Aktuation in Blenden von Multiblock Copolymeren N2 - Soft actuators have drawn significant attention due to their relevance for applications, such as artificial muscles in devices developed for medicine and robotics. Tuning their performance and expanding their functionality are frequently done by means of chemical modification. The introduction of structural elements rendering non-synthetic modification of the performance possible, as well as control over physical appearance and facilitating their recycling is a subject of a great interest in the field of smart materials. The primary aim of this thesis was to create a shape-memory polymeric actuator, where the capability for non-synthetic tuning of the actuation performance is combined with reprocessability. Physically cross-linked polymeric matrices provide a solid material platform, where the in situ processing methods can be employed for modification of the composition and morphology, resulting in the fine tuning of the related mechanical properties and shape-memory actuation capability. The morphological features, required for shape-memory polymeric actuators, namely two crystallisable domains and anchoring points for physical cross-links, were embedded into a multiblock copolymer with poly(ε-caprolactone) and poly(L-lactide) segments (PLLA-PCL). Here, the melting transition of PCL was bisected into the actuating and skeleton-forming units, while the cross-linking was introduced via PLA stereocomplexation in blends with oligomeric poly(D-lactide) (ODLA). PLLA segment number average length of 12-15 repeating units was experimentally defined to be capable of the PLA stereocomplexes formation, but not sufficient for the isotactic crystallisation. Multiblock structure and phase dilution broaden the PCL melting transition, facilitating its separation into two conditionally independent crystalline domains. Low molar mass of the PLA stereocomplex components and a multiblock structure enables processing and reprocessing of the PLLA-PCL / ODLA blends with common non-destructive techniques. The modularity of the PLLA-PCL structure and synthetic approach allows for independent tuning of the properties of its components. The designed material establishes a solid platform for non-synthetic tuning of thermomechanical and structural properties of thermoplastic elastomers. To evaluate the thermomechanical stability of the formed physical network, three criteria were appraised. As physical cross-links, PLA stereocomplexes have to be evenly distributed within the material matrix, their melting temperature shall not overlap with the thermal transitions of the PCL domains and they have to maintain the structural integrity within the strain ε ranges further applied in the shape-memory actuation experiments. Assigning PCL the function of the skeleton-forming and actuating units, and PLA stereocomplexes the role of physical netpoints, shape-memory actuation was realised in the PLLA-PCL / ODLA blends. Reversible strain of shape-memory actuation was found to be a function of PLA stereocomplex crystallinity, i.e. physical cross-linking density, with a maximum of 13.4 ± 1.5% at PLA stereocomplex content of 3.1 ± 0.3 wt%. In this way, shape-memory actuation can be tuned via adjusting the composition of the PLLA-PCL / ODLA blend. This makes the developed material a valuable asset in the production of cost-effective tunable soft polymeric actuators for the applications in medicine and soft robotics. N2 - Weiche Polymer-Aktuatoren haben, dank ihrer Bedeutung bei Anwendungen wie z.B. als künstliche Muskeln in Geräten oder in Medizin und Robotik, maßgeblich Aufmerksamkeit erregt. Das Einstellen ihrer Leistung und die Erweiterung ihrer Funktionalität werden oft mittels chemischer Modifizierung durchgeführt. Die Einführung struktureller Elemente, die durch nicht-synthetische Prozesse hervorgerufene Einstellung von Eigenschaften, sowie die Kontrolle der physikalischen Parameter und die Möglichkeit, das Material erneut zu verarbeiten, sind von besonderem Interesse für das Design von intelligenten Werkstoffen. Das Ziel dieser Doktorarbeit war es einen polymeren Formgedächtnis-Aktuator zu entwickeln, der die durch nicht-synthetische Prozesse hervorgerufene Einstellung der Aktuator Parameter mit erneuter Formgebung kombiniert. Physikalisch vernetzte Polymermatrizen stellen dafür eine solide Materialbasis dar, wobei in situ Verarbeitungsmethoden zum Ändern der Zusammensetzung und der Morphologie verwendet werden können. Die Folge davon ist eine präzise Einstellung der entsprechenden mechanischen Eigenschaften und der Formgedächtnis-Aktuator-Leistung. Die morphologischen Elemente, die für die polymeren Formgedächtnis-Aktuatoren benötig werden, nämlich zwei kristallisierbare Domänen und Verankerungspunkte für die physikalischen Cross-Links, wurden in einem Multiblock-Copolymer aus Poly(ε-Caprolakton) und Poly(L-Lactid) Segmenten (PLLA-PCL) integriert. Die Cross-Links wurden durch PLA-Stereokomplexe in Blends mit Poly(D-Lactid) Oligomer (ODLA) geformt. Um die thermomechanische Beständigkeit der hergestellten physikalischen Vernetzung einzuschätzen, wurden drei Kriterien bewertet. Die Erfüllung des morphologischen Kriteriums, gleichmäßige Verteilung innerhalb des Materials, wurde aus der Mikrophasenstruktur abgeleitet. Diese bestand aus einer kontinuierlichen PCL Phase und den isolierten PLA Domänen mit einem durchschnittlichen Domänenabstand von nm Maßstab. Die Schmelzübergänge von PLA Stereokomplexen und PCL überschnitten sich nicht, womit das thermische Kriterium erfüllt wurde. Die Gehalts- und Dehnungsbereiche der strukturelle Beständigkeit der PLA Stereokomplexe wurde in einer detaillierten Untersuchung der mechanischen Eigenschaften mittels Zug-, Dehnungsrückstellungs- und Spannungsrelaxationsversuchen definiert. Indem PCL die skelettbildende und die Aktuatorfunktion zugeordnet wurde, und die PLA Stereokomplexe die Rolle des physikalischen Netzwerks übernehmen, lassen sich in den PLLA-PCL / ODLA Polymerblends Formgedächtniseffekte ausführen. Des Weiteren wurde die Formgedächtnis-Aktuation ε′rev als eine Funktion des Gehalts an PLA Stereokomplex φc mit einem extremalen Charakter festgestellt, d.h. von der Dichte der physikalischen Cross-Links abhängt. Dadurch könnte ε′rev im PLLA-PCL / ODLA System mittels Variation der Zusammensetzung eingestellt werden. Dies verschafft dem entwickelten Polymermaterial ein wertvoller Vorteil bei der Herstellung von kosteffektiven, skalierbaren polymeren Formgedächtnis-Aktuatoren für Anwendungen in der Medizin und der Robotik. KW - Actuator KW - Shape-memory KW - Multiblock copolymer KW - Thermoplastic elastomer KW - Stereocomplex KW - Polymer physics KW - Polymer chemistry KW - Aktuator KW - Multiblock Copolymer KW - Polymerchemie KW - Polymerphysik KW - Formgedächtnis KW - Stereokomplex KW - thermoplastisches Elastomer Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-518434 ER - TY - THES A1 - Nacak, Selma T1 - Synthesis and Characterization of Upconversion Nanaparticles for Applications in Life Sciences Y1 - 2021 ER - TY - THES A1 - Ebel, Kenny T1 - Quantification of low-energy electron induced single and double strand breaks in well-defined DNA sequences using DNA origami nanostructures T1 - Quantifizierung von DNA Einzel- und Doppelstrangbrüchen definierter DNA Sequenzen induziert durch niederenergetische Elektronen unter Verwendung von DNA Origami Nanostrukturen N2 - Ionizing radiation is used in cancer radiation therapy to effectively damage the DNA of tumors leading to cell death and reduction of the tumor tissue. The main damage is due to generation of highly reactive secondary species such as low-energy electrons (LEE) with the most probable energy around 10 eV through ionization of water molecules in the cells. A simulation of the dose distribution in the patient is required to optimize the irradiation modality in cancer radiation therapy, which must be based on the fundamental physical processes of high-energy radiation with the tissue. In the present work the accurate quantification of DNA radiation damage in the form of absolute cross sections for LEE-induced DNA strand breaks (SBs) between 5 and 20 eV is done by using the DNA origami technique. This method is based on the analysis of well-defined DNA target sequences attached to DNA origami triangles with atomic force microscopy (AFM) on the single molecule level. The present work focuses on poly-adenine sequences (5'-d(A4), 5'-d(A8), 5'-d(A12), 5'-d(A16), and 5'- d(A20)) irradiated with 5.0, 7.0, 8.4, and 10 eV electrons. Independent of the DNA length, the strand break cross section shows a maximum around 7.0 eV electron energy for all investigated oligonucleotides confirming that strand breakage occurs through the initial formation of negative ion resonances. Additionally, DNA double strand breaks from a DNA hairpin 5'-d(CAC)4T(Bt-dT)T2(GTG)4 are examined for the first time and are compared with those of DNA single strands 5'-d(CAC)4 and 5'- d(GTG)4. The irradiation is made in the most likely energy range of 5 to 20 eV with an anionic resonance maximum around 10 eV independently of the DNA sequence. There is a clear difference between σSSB and σDSB of DNA single and double strands, where the strand break for ssDNA are always higher in all electron energies compared to dsDNA by the factor 3. A further part of this work deals with the characterization and analysis of new types of radiosensitizers used in chemoradiotherapy, which selectively increases the DNA damage upon radiation. Fluorinated DNA sequences with 2'-fluoro-2'-deoxycytidine (dFC) show an increased sensitivity at 7 and 10 eV compared to the unmodified DNA sequences by an enhancement factor between 2.1 and 2.5. In addition, light-induced oxidative damage of 5'-d(GTG)4 and 5'-d((CAC)4T(Bt-dT)T2(GTG)4) modified DNA origami triangles by singlet oxygen 1O2 generated from three photoexcited DNA groove binders [ANT994], [ANT1083] and [Cr(ddpd)2][BF4]3 illuminated in different experiments with UV-Vis light at 430, 435 and 530 nm wavelength is demonstrated. The singlet oxygen induced generation of DNA damage could be detected in both aqueous and dry environments for [ANT1083] and [Cr(ddpd)2][BF4]3. N2 - In der Radiotherapie wird ionisierende Strahlung verwendet, um die DNA in Tumorzellen wirksam zu schädigen. Der Hauptschaden ist auf die Erzeugung hochreaktiver Sekundärspezies wie niederenergetische Elektronen (LEE) durch Ionisierung von Wassermolekülen in den Zellen mit einer wahrscheinlichsten Energie um 10 eV zurückzuführen. Die Optimierung der Bestrahlungsmodalität in der Strahlentherapie beruht auf Simulationen der Dosisverteilung im menschlichen Körper, die auf fundamentale physikalische Prozesse zwischen hochenergetischer Strahlung mit dem Gewebe basieren. Die vorliegende Arbeit beschäftigt sich mit der exakten Quantifizierung von LEE-induzierten DNA-Strahlenschäden in Form von absoluten Wirkungsquerschnitten σSB für DNA-Strangbrüche (SBs) zwischen 5 und 20 eV mit Hilfe der DNA-Origami-Technik. Diese Methode verwendet wohl definierte DNA-Zielsequenzen gebunden an DNA-Origami Nanostrukturen, dessen Schädigung durch die Rasterkraftmikroskopie auf Einzelmolekülniveau untersucht werden kann. Ein großer Fokus liegt auf den Bestrahlungsexperimenten von Polyadeninsequenzen ((5'-d(A4), 5'-d(A8), 5'-d(A12), 5'-d(A16) und 5'-d(A20) unterschiedlicher Nukleotidanzahl) bestrahlt mit 5.0, 7.0, 8.4 und 10 eV Elektronen. Unabhängig von der DNA-Nukleotidlänge zeigen die Strangbruchquerschnitte für alle untersuchten Oligonukleotide ein Maximum um 7.0 eV Elektronenenergie. Diese DNA-Strangbrüche sind durch die anfängliche Bildung negativer Ionenresonanzen bedingt. Zusätzlich werden erstmals Wirkungsquerschnitte für DNA-Doppelstrangbrüche σDSB spezifischer Sequenz (5'- d(CAC)4T(Bt-dT)T2(GTG)4) ermittelt und mit den Wirkungsquerschnitten von DNA-Einzelstrangbrüchen σSSB (5'- d(CAC)4 und 5'-d(GTG)4) verglichen. Die Bestrahlungen erfolgen im Energiebereich von 5 bis 20 eV mit einem anionischen Resonanzmaximum um 10 eV unabhängig von der DNA-Sequenz. Es wird ein deutlicher Unterschied zwischen σSSB und σDSB von DNA-Einzel- und Doppelstrangbrüchen im Verhältnis von 3 zu 1 erhalten. Des Weiteren befasst sich ein großer Forschungsbereich in der Radiochemotherapie mit der Charakterisierung und Analyse neuer Radiosensibilisatoren, die den DNA-Schaden bei Bestrahlung selektiv erhöhen können. Dafür werden DNA-Sequenzen mit 2'-Fluor-2'-desoxycytidin (dFC) modifiziert, die eine erhöhte Empfindlichkeit mit einem Verstärkungsfaktor zwischen 2.1 und 2.5 bei 7 und 10 eV im Vergleich zu den nicht modifizierten DNA-Sequenzen zeigen. Außerdem können mit der DNA-Origami-Technik lichtinduzierte oxidative DNA-Schädigungen von 5'-d(GTG)4 und 5'- d(CAC)4T(Bt-dT)T2(GTG)4 durch hochreaktivem Singulett-Sauerstoff 1O2 untersucht werden. Der Singulett-Sauerstoff wird durch photoaktive DNA-Binder [ANT994], [ANT1083] und [Cr(ddpd)2][BF4]3 mit UV-Vis Licht bei Wellenlängen von 430, 435 und 530 nm gebildet, die sich auf den DNA-Origami Nanostrukturen nahe den Zielsequenzen zufällig binden. Die Erzeugung von DNA-Schäden konnte sowohl in wässriger als auch in kondensierter Umgebung durch [ANT1083] und [Cr(ddpd)2][BF4]3 nachgewiesen werden. KW - DNA damage KW - single strand break KW - double strand break KW - ionizing radiation KW - low-energy electrons KW - DNA origami KW - DNA origami KW - Einzelstrangbruch KW - Doppelstrangbruch KW - niederenergetische Elektronen KW - DNA Schädigung KW - ionisierende Strahlung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-504499 ER - TY - THES A1 - Kar, Manaswita T1 - Energy band gap tuning of halide perovskite materials from first principles N2 - Solar cells based on hybrid perovskites materials have become significantly important among the third generation photovoltaics over the last few years. The first solid state solar cell was reported in 2012. Over the years, the power conversion efficiencies of these devices have increased at a tremendous pace and this has made the perovskite solar cell devices a serious competitor in the well-established market of thin-film and wafer technologies. Over time, a large number of articles on this topic has been published in peer-reviewed journals. The presence of lead in the most efficient hybrid perovskite materials have raised questions about the possible toxicity of these devices and the extent of their environmental impact. Therefore, a lot of research has been devoted to finding alternative perovskite materials with similar or even better opto-electronic properties. An alternative strategy to improve the efficiency of thin film solar cells is to build efficient tandem cells by combining two or more perovskite materials with specifically tailored band gaps. The first step towards the development of perovskite-only tandem solar cells is to identify complementary hybrid perovskite materials with specific band gaps that maximize the efficiency of tandem solar cells. The optimal set of optical gaps for a tandem structure made of two materials is 1.9 eV and 1.0 eV. Since the electronic properties of hybrid perovskites are known to be strongly dependent on the composition and distortion of the crystal lattice, strong focus has been made towards the structure optimisation as well as the calculation of the energy band gaps of the materials using density functional theory (DFT). In an attempt to study the structure-property relationship of these perovskite materials and to find novel perovskite materials for future applications, researchers have employed computational screening procedures to study a large range of these materials by systematic replacement of the cations and anions from the prototypical perovskite. Density functional theory in particular is used as a theoretical tool, because of it’s precision to determine the properties of materials and also it’s computational viability in dealing with complex systems. In this thesis, the main focus is to do a systematic screening of the perovskite materials, of the composition ABX3 again by replacing the A-site, B-site and the X-site elements to find novel materials with band gaps suitable for application in tandem solar cells. As a first step towards contributing to this vibrant field of research, a high-throughput computational screening has been performed by replacing the metal and the halogen in the conventional CH3NH3PbI3 perovskites with homovalent metals and halogens to find materials in the desired range of band gaps that has already been mentioned earlier. This is achieved by performing a geometry optimisation on all the simulated structures followed by calculating their energy band gaps at the semilocal and the hybrid levels of theory. However, it is well known that the rotation of the organic cation CH3NH3 hinders the stability of these devices by the formation of hydrogen bonds between the hydrogen atoms of the cation and the halogens. This causes the materials to degrade under normal temperature and pressure conditions. As an attempt to prevent these devices from being unstable, a next step has been taken where the CH3NH3 cation has been replaced by inorganic cations of similar ionic radius. This is followed by another thorough screening, similar to the previous step. The stability of the materials has been determined by using the empirical Goldschmidt tolerance factor. As a last part of the thesis, a small proportion of the inorganic cation is mixed with CH3NH3 in order to form mixed-halide perovskites. These structures are optimised and their band gaps are calculated using density functional theory in order to predict materials suitable for single junction as well as tandem solar cell devices. It is expected that the contribution made through this thesis will be helpful for the progress of perovskite solar cells in terms of efficiencies and will also allow the community to explore the different properties these materials for further progress and development. KW - Solar cells KW - Perovskites KW - Density functional theory KW - hybrid KW - inorganic Y1 - ER - TY - THES A1 - Raju, Rajarshi Roy T1 - ‘Smart’ Janus emulsions BT - preparation, characterization, and application as a template for aerogel preparation N2 - Emulsions constitute one of the most prominent and continuously evolving research areas in Colloid Chemistry, which involves the preparation of mixtures or dispersions of immiscible components in a continuous medium. Besides conventional oil-in-water or water-in-oil emulsions, other emulsions of complex droplet morphologies have recently attracted significant research interests. Especially Janus emulsions, in which each droplet is comprised of two distinct sub-regions, have shown versatile potential applications. One of their advantages is the possibility of compartmentalization, which enables to play with two different chemistries in a single droplet. Though microfluidic methods are conventionally used to prepare Janus emulsions, their industrial applications are largely hindered by low throughput and extensive instrumentations. Recently, it has been discovered that simply one-pot moderate/high energy emulsification is also capable of developing Janus morphology, although their preparation and stabilization remain rather substantially challenging. This cumulative doctoral thesis focuses on the preparation and characterization of ‘smart’ Janus emulsions, i.e. Janus emulsions with special stimuli-responsive features. One-step moderate/high energy emulsification of olive and silicone oil in an aqueous medium was carried out. Special consideration was devoted to the interfacial tensions among the components to maintain the criteria of forming characteristic droplet architectures, in addition to avoiding multiple emulsion destabilization phenomena like imminent phase separation or even separated droplet formation. A series of investigations were conducted related to the formation of complexes of charged macromolecules and role of them as stabilizers to achieve stable Janus emulsions for a realistic timeframe (more than 3 months). The correlation between the size of the stabilizer particles and the droplet size of emulsion was established. Furthermore, it was observed that Janus emulsion gels with interesting rheological properties can be fabricated in the presence of suitable polyelectrolyte complexes. Janus emulsions that could be influenced by pH, temperature or magnetic field were successfully produced in presence of characteristic stimuli-responsive stabilizers. Afterwards, the effect of these changes was studied by different characterization techniques. The size and morphology could be tuned easily by changing the pH. The incorporation of iron oxide magnetic nanoparticles (synthesized separately by a co-precipitation method) to one component of the Janus emulsion was carried out so that the movement and orientation of the complex droplets in aqueous media could be controlled by an external magnetic field. Additionally, temperature-triggered instantaneous reversible breakdown of Janus droplets was also accomplished. The responses of the Janus droplets by the stimuli were well-documented and explained. Another goal of the present contribution was to exploit this special morphological feature of emulsions as a template for producing porous materials. This was demonstrated by the preparation of ultralight magnetic responsive aerogels, utilizing Janus emulsion gels. The produced aerogels also showed the capacity to separate toxic dye from water. To the best of our knowledge, this is the first example of investigation towards batch scale production of Janus emulsion with such special stimuli-responsive properties by a simple bulk emulsification method. N2 - Emulsionen bilden eines der bekanntesten und sich ständig weiterentwickelnden Forschungsgebiete in der Kolloidchemie. Dabei werden Gemische oder Dispersionen nicht miteinander mischbarer Komponenten in einem kontinuierlichen Medium hergestellt. Neben den herkömmlichen Öl-in-Wasser- oder Wasser-in-Öl-Emulsionen gewinnen in letzter Zeit andere Emulsionen mit komplexeren Tröpfchenmorphologien zunehmend an Forschungsinteresse. Hier sind vor allem Janus-Emulsionen, zu nennen, die aus zwei nicht mischbaren Ölkomponenten, dispergiert in einem wässerigen Medium, bestehen. Da jedes Tröpfchen aus zwei unterschiedlichen Kompartimenten gebildet wird, besteht hier die Möglichkeit gezielt mit der Chemie der Tröpschenbestandteile zu spielen. Obwohl mikrofluidische Verfahren üblicherweise zur Herstellung von Janus-Emulsionen verwendet werden, finden diese nur begrenzt Anwendung in der Industrie aufgrund des geringen Durchsatzes. Kürzlich wurde entdeckt, dass mit einer einfachen Eintopf-Emulgierung bei mittlerer/hoher Energie auch die Janus-Morphologie erzeugt werden kann. Die Herstellung und Stabilisierung der Emulsionen unter Anwendung dieser Methode bleibt jedoch eine große Herausforderung. Der Fokus dieser kumulativen Doktorarbeit konzentriert sich auf die Herstellung und Charakterisierung von „smarten“ Janus-Emulsionen. Diese sind zum Beispiel Janus-Emulsionen, die auf spezielle Reize/Stimuli reagieren. Eine einstufige Emulgierung mit mittlerer/hoher Energie von Oliven- und Silikonöl wurde im wässrigen Medium durchgeführt. Besonderes Augenmerk wurde auf die Grenzflächenspannungen zwischen den Komponenten gelegt, um die Kriterien für die Bildung charakteristischer Tröpfchenarchitekturen beizubehalten und um mehrfache Emulsionsdestabilisierungsphänomene wie eine Phasentrennung oder sogar eine getrennte Tröpfchenbildung zu vermeiden. Eine Reihe von Untersuchungen bezog sich auf die Bildung von Komplexen geladener Makromoleküle und deren Rolle als Stabilisatoren, um stabile Janus-Emulsionen über einen realistischen Zeitraum (länger als 3 Monate) zu erzielen. Dabei wurde eine Korrelation zwischen der Größe der Komplexe und der Tröpfchengröße festgestellt. Weiterhin konnte gezeigt werden, dass Janus-Emulsionsgele mit interessanten rheologischen Eigenschaften in Gegenwart geeigneter Polyelektrolytkomplexe hergestellt werden können. Temperatur und pH-Wert erwiesen sich als Stimulatoren für ausgewählte polymerstabilisierte Janus Emulsionen. Anschließend wurde die Auswirkung dieser Stimuli durch verschiedene Charakterisierungsmethoden untersucht. Dabei konnten die Größe und die Morphologie durch die Änderung des pH-Wertes eingestellt werden. Durch die Einfügung von magnetischen Eisenoxid-Nanopartikeln in eine der Komponenten der Janus-Emulsion konnten die Orientierung und die Bewegung der Tröpfchen durch ein externes Magnetfeld gesteuert werden. Zusätzlich konnte ein temperaturabhängiger sofortiger reversibler Zusammenfall von Janus-Tröpfchen gezeigt werden.. Ein weiteres Ziel des vorliegenden Arbeit war es, dieses spezielle morphologische Merkmal von Emulsionen als Vorlage für die Herstellung poröser Materialien zu nutzen. Dies wurde durch die Herstellung von ultraleichten magnetischen Aerogelen unter Verwendung von Janus-Emulsionsgelen demonstriert. Die hergestellten Aerogele zeigten die Fähigkeit toxischen Farbstoff von Wasser abzutrennen. Nach unserem besten Wissen ist dies das erste Beispiel für eine Untersuchung zur Herstellung von Janus-Emulsionen im Chargenmaßstab mit solchen speziellen Reiz/Stimuli responsiven Eigenschaften durch ein einfaches Emulgierungsverfahren. KW - janus emulsion KW - emulsion KW - magnetic nanoparticles KW - aerogel KW - stimul-responsive KW - stimul-responsive emulsion KW - pH-responsive KW - temperature-responsive Y1 - 2021 ER - TY - THES A1 - Perovic, Milena T1 - Functionalization of nanoporous carbon materials for chiral separation and heterogeneous oxidation catalysis N2 - The impact that catalysis has on global economy and environment is substantial, since 85% of all chemical industrial processes are catalytic. Among those, 80% of the processes are heterogeneously catalyzed, 17% make use of homogeneous catalysts, and 3% are biocatalytic processes. Especially in the pharmaceutical and agrochemical industry, a significant part of these processes involves chiral compounds. Obtaining enantiomerically pure compounds is necessary and it is usually accomplished by asymmetric synthesis and catalysis, as well as chiral separation. The efficiency of these processes may be vastly improved if the chiral selectors are positioned on a porous solid support, thereby increasing the available surface area for chiral recognition. Similarly, the majority of commercial catalysts are also supported, usually comprising of metal nanoparticles (NPs) dispersed on highly porous oxide or nanoporous carbon material. Materials that have exceptional thermal and chemical stability, and are electrically conductive are porous carbons. Their stability in extreme pH regions and temperatures, the possibility to tailor their pore architecture and chemical functionalization, and their electric conductivity have already established these materials in the fields of separation and catalysis. However, their heterogeneous chemical structure with abundant defects make it challenging to develop reliable models for the investigation of structure-performance relationships. Therefore, there is a necessity for expanding the fundamental understanding of these robust materials under experimental conditions to allow for their further optimization for particular applications. This thesis gives a contribution to our knowledge about carbons, through different aspects, and in different applications. On the one hand, a rather exotic novel application was investigated by attempts in synthesizing porous carbon materials with an enantioselective surface. Chapter 4.1 described an approach for obtaining mesoporous carbons with an enantioselective surface by direct carbonization of a chiral precursor. Two enantiomers of chiral ionic liquids (CIL) based on amino acid tyrosine were used as carbon precursors and ordered mesoporous silica SBA-15 served as a hard template for obtaining porosity. The chiral recognition of the prepared carbons has been tested in the solution by isothermal titration calorimetry with enantiomers of Phenylalanine as probes, as well as chiral vapor adsorption with 2-butanol enantiomers. Measurements in both solution and the gas phase revealed the differences in the affinity of carbons towards two enantiomers. The atomic efficiency of the CIL precursors was increased in Chapter 4.2, and the porosity was developed independently from the development of chiral carbons, through the formation of stable composites of pristine carbon and CIL-derived coating. After the same set of experiments for the investigation of chirality, the enantiomeric ratios of the composites reported herein were even higher than in the previous chapter. On the other hand, the structure‒activity relationship of carbons as supports for gold nanoparticles in a rather traditional catalytic model reaction, on the interface between gas, liquid, and solid, was studied. In Chapter 5.1 it was shown on the series of catalysts with different porosities that the kinetics of ᴅ-glucose oxidation reaction can be enhanced by increasing the local concentration of the reactants around the active phase of the catalyst. A large amount of uniform narrow mesopores connected to the surface of the Au catalyst supported on ordered mesoporous carbon led to the water confinement, which increased the solubility of the oxygen in the proximity of the catalyst and thereby increased the apparent catalytic activity of this catalyst. After increasing the oxygen concentration in the internal area of the catalyst, in Chapter 5.2 the concentration of oxygen was increased in the external environment of the catalyst, by the introduction of less cohesive liquids that serve as efficient solvent for oxygen, perfluorinated compounds, near the active phase of the catalyst. This was achieved by a formation of catalyst particle-stabilized emulsions of perfluorocarbon in aqueous ᴅ-glucose solution, that further promoted the catalytic activity of gold-on-carbon catalyst. The findings reported within this thesis are an important step in the understanding of the structure-related properties of carbon materials. N2 - Die Auswirkungen, die die Katalyse auf die globale Wirtschaft und Umwelt hat, sind beträchtlich, da 85% aller chemischen Industrieprozesse katalytisch sind. Vor allem in der pharmazeutischen und agrochemischen Industrie ist ein bedeutender Teil dieser Prozesse mit chiralen Verbindungen verbunden, Moleküle, die als Bild und Spiegelbild dargestellt werden können. Es ist notwendig, chiral reine Verbindungen zu erhalten, und die Prozesse, um dies zu erreichen, sind effizienter, wenn poröse chirale Materialien aufgrund ihrer größeren Oberfläche verwendet werden. In ähnlicher Weise besteht die Mehrzahl der kommerziellen Katalysatoren in der Regel aus Metallnanopartikeln, die auf hochporösem Oxid- oder nanoporösem Kohlenstoffmaterial dispergiert sind. Materialien, die eine außergewöhnliche thermische und chemische Stabilität aufweisen und elektrisch leitfähig sind, sind poröse Kohlenstoffe. Ihre Anwendung ist jedoch aufgrund ihrer heterogenen, defektreichen Struktur sehr anspruchsvoll. Daher besteht die Notwendigkeit, das grundlegende Verständnis dieser Materialien unter experimentellen Bedingungen zu erweitern, um ihre weitere Optimierung für bestimmte Anwendungen zu ermöglichen. Diese Arbeit leistet einen Beitrag zu unserem Wissen über Kohlenstoffe durch eine eher exotische neue Anwendung der chiralen Trennung und eine eher traditionelle katalytische Anwendung. In Kapitel 4 wurden zwei Ansätze zur Gewinnung nanoporöser Kohlenstoffe mit chiraler Oberfläche unter Verwendung chiraler ionischer Flüssigkeitsvorläufer beschrieben. Ihre chirale Erkennung wurde in der Lösung und in der Gasphase untersucht. Kapitel 5 konzentrierte sich auf die Struktur-Aktivitäts-Beziehung von Kohlenstoffmaterialien als Träger von Goldnanopartikeln in einer katalytischen Modellreaktion der Glukoseoxidation mit molekularem Sauerstoff. Die in dieser Arbeit berichteten Ergebnisse sind ein wichtiger Schritt zum Verständnis der strukturbezogenen Eigenschaften von Kohlenstoffmaterialien. T2 - Funktionalisierung von nanoporösen Kohlenstoffmaterialien für die chirale Trennung und heterogene Oxidationskatalyse KW - Porous carbon KW - heterogeneous catalysis KW - chiral separation KW - functionalization KW - glucose oxidation KW - poröse Kohlenstoffmaterialien KW - chirale Trennung KW - Funktionalisierung KW - Glukose Oxidation KW - heterogene Katalyse Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-486594 ER - TY - THES A1 - Harmanli, İpek T1 - Towards catalytic activation of nitrogen in ionic liquid/nanoporous carbon interfaces for electrochemical ammonia synthesis N2 - Ammonia is a chemical of fundamental importance for nature`s vital nitrogen cycle. It is crucial for the growth of living organisms as well as food and energy source. Traditionally, industrial ammonia production is predominated by Haber- Bosch process (HBP) which is based on direct conversion of N2 and H2 gas under high temperature and high pressure (~500oC, 150-300 bar). However, it is not the favorite route because of its thermodynamic and kinetic limitations, and the need for the energy intense production of hydrogen gas by reforming processes. All these disfavors of HBP open a target to search for an alternative technique to perform efficient ammonia synthesis via electrochemical catalytic processes, in particular via water electrolysis, using water as the hydrogen source to save the process from gas reforming. In this study, the investigation of the interface effects between imidazolium-based ionic liquids and the surface of porous carbon materials with a special interest in the nitrogen absorption capability. As the further step, the possibility to establish this interface as the catalytically active area for the electrochemical N2 reduction to NH3 has been evaluated. This particular combination has been chosen because the porous carbon materials and ionic liquids (IL) have a significant importance in many scientific fields including catalysis and electrocatalysis due to their special structural and physicochemical properties. Primarily, the effects of the confinement of ionic liquid (EmimOAc, 1-Ethyl-3-methylimidazolium acetate) into carbon pores have been investigated. The salt-templated porous carbons, which have different porosity (microporous and mesoporous) and nitrogen species, were used as model structures for the comparison of the IL confinement at different loadings. The nitrogen uptake of EmimOAc can be increased by about 10 times by the confinement in the pores of carbon materials compared to the bulk form. In addition, the most improved nitrogen absorption was observed by IL confinement in micropores and in nitrogen-doped carbon materials as a consequence of the maximized structural changes of IL. Furthermore, the possible use of such interfaces between EmimOAc and porous carbon for the catalytic activation of dinitrogen during the kinetically challenging NRR due to the limited gas absorption in the electrolyte, was examined. An electrocatalytic NRR system based on the conversion of water and nitrogen gas to ammonia at ambient operation conditions (1 bar, 25 °C) was performed in a setup under an applied electric potential with a single chamber electrochemical cell, which consists of the combination of EmimOAc electrolyte with the porous carbon-working electrode and without a traditional electrocatalyst. Under a potential of -3 V vs. SCE for 45 minutes, a NH3 production rate of 498.37 μg h-1 cm-2 and FE of 12.14% were achieved. The experimental observations show that an electric double-layer, which serves the catalytically active area, occurs between a microporous carbon material and ions of the EmimOAc electrolyte in the presence of sufficiently high provided electric potential. Comparing with the typical NRR systems which have been reported in the literature, the presented electrochemical ammonia synthesis approach provides a significantly higher ammonia production rate with a chance to avoid the possible kinetic limitations of NRR. In terms of operating conditions, ammonia production rate and the faradic efficiency without the need for any synthetic electrocatalyst can be resulted of electrocatalytic activation of nitrogen in the double-layer formed between carbon and IL ions. N2 - Ammoniak ist eine Chemikalie von grundlegender Bedeutung für den lebenswichtigen Stickstoffkreislauf der Natur. Es ist entscheidend für das Wachstum lebender Organismen sowie von Nahrungsmitteln und Energiequellen. Traditionell wird die industrielle Ammoniakproduktion nach dem Haber-Bosch-Verfahren (HBP) dominiert, das auf der direkten Umwandlung von N2- und H2-Gas unter hoher Temperatur und hohem Druck (~ 500 ° C, 150-300 bar) basiert. Aufgrund seiner thermodynamischen und kinetischen Einschränkungen und der Notwendigkeit einer energieintensiven Erzeugung von Wasserstoffgas durch Reformierungsprozesse ist dies jedoch nicht der bevorzugte Weg. All diese Nachteile von HBP eröffnen ein Ziel für die Suche nach einer alternativen Technik zur Durchführung einer effizienten Ammoniaksynthese über elektrochemische katalytische Prozesse, insbesondere durch Wasserelektrolyse, wobei Wasser als Wasserstoffquelle verwendet wird, um den Prozess vor einer Gasreformierung zu bewahren. In dieser Studie wurde die Untersuchung der Grenzflächeneffekte zwischen ionischen Flüssigkeiten auf Imidazoliumbasis und der Oberfläche poröser Kohlenstoffmaterialien mit besonderem Interesse an der Stickstoffabsorptionsfähigkeit untersucht. Als weiterer Schritt wurde die Möglichkeit geprüft, diese Grenzfläche als katalytisch aktiven Bereich für die elektrochemische N2-Reduktion zu NH3 zu etablieren. Diese besondere Kombination wurde gewählt, weil die porösen Kohlenstoffmaterialien und ionischen Flüssigkeiten (IL) aufgrund ihrer besonderen strukturellen und physikochemischen Eigenschaften in vielen wissenschaftlichen Bereichen, einschließlich Katalyse und Elektrokatalyse, eine bedeutende Bedeutung haben. In erster Linie wurden die Auswirkungen des Einschlusses von ionischer Flüssigkeit (EmimOAc, 1-Ethyl-3-methylimidazoliumacetat) in Kohlenstoffporen untersucht. Die porösen Kohlenstoffe mit Salzschablonen, die unterschiedliche Porosität (mikroporös und mesoporös) und Stickstoffspezies aufweisen, wurden als Modellstrukturen für den Vergleich des IL-Einschlusses bei unterschiedlichen Beladungen verwendet. Die Stickstoffaufnahme von EmimOAc kann durch den Einschluss in den Poren von Kohlenstoffmaterialien im Vergleich zur Massenform um das Zehnfache erhöht werden. Zusätzlich wurde die am besten verbesserte Stickstoffabsorption durch IL-Einschluss in Mikroporen und in stickstoffdotierten Kohlenstoffmaterialien als Folge der maximierten strukturellen Änderungen von IL beobachtet. Darüber hinaus wurde die mögliche Verwendung solcher Grenzflächen zwischen EmimOAc und porösem Kohlenstoff für die katalytische Aktivierung von Distickstoff während des kinetisch herausfordernden NRR aufgrund der begrenzten Gasabsorption im Elektrolyten untersucht. Ein elektrokatalytisches NRR-System, das auf der Umwandlung von Wasser und Stickstoffgas in Ammoniak bei Umgebungsbetriebsbedingungen (1 bar, 25 ° C) basiert, wurde in einem Aufbau unter einem angelegten elektrischen Potential mit einer elektrochemischen Einkammerzelle durchgeführt, die aus der Kombination von besteht EmimOAc-Elektrolyt mit poröser Kohlenstoff-Arbeitselektrode und ohne herkömmlichen Elektrokatalysator. Bei einem Potential von -3 V gegen SCE für 45 Minuten wurde eine NH3-Produktionsrate von 498,37 ug h & supmin; ¹ cm & supmin; ² und eine FE von 12,14% erreicht. Die experimentellen Beobachtungen zeigen, dass eine elektrische Doppelschicht, die dem katalytisch aktiven Bereich dient, zwischen einem mikroporösen Kohlenstoffmaterial und Ionen des EmimOAc-Elektrolyten in Gegenwart eines ausreichend hohen bereitgestellten elektrischen Potentials auftritt. Im Vergleich zu den typischen NRR-Systemen, über die in der Literatur berichtet wurde, bietet der vorgestellte Ansatz der elektrochemischen Ammoniaksynthese eine signifikant höhere Ammoniakproduktionsrate mit der Möglichkeit, die möglichen kinetischen Einschränkungen der NRR zu vermeiden. In Bezug auf die Betriebsbedingungen können die Ammoniakproduktionsrate und die Faradic-Effizienz ohne die Notwendigkeit eines synthetischen Elektrokatalysators aus der elektrokatalytischen Aktivierung von Stickstoff in der zwischen Kohlenstoff- und IL-Ionen gebildeten Doppelschicht resultieren. KW - Electrocatalysis KW - Ammonia KW - Ionic liquids KW - Nitrogen Physisorption KW - Porous carbon KW - Ammoniak KW - Elektrokatalyse KW - Ionische Flüssigkeiten KW - Stickstoff Physisorption KW - Poröser Kohlenstoff Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-483591 ER - TY - THES A1 - Cataldo, Vincenzo Alessandro T1 - Design and synthesis of alkylating ionic liquids and their application in synthesis, materials and proteomics Y1 - 2020 ER - TY - THES A1 - Ilic, Ivan T1 - Design of sustainable cathodes for Li-ion batteries T1 - Design nachhaltiger Kathoden für Li-Ionen-Batterien BT - understanding the redox behaviour of guaiacyl and catecholic groups in lithium organic system N2 - In recent years people have realised non-renewability of our modern society which relays on spending huge amounts of energy mostly produced from fosil fuels, such as oil and coal, and the shift towards more sustainable energy sources has started. However, sustainable sources of energy, such as wind-, solar- and hydro-energy, produce primarily electrical energy and can not just be poured in canister like many fosil fuels, creating necessity for rechragable batteries. However, modern Li-ion batteries are made from toxic heavy metals and sustainable alternatives are needed. Here we show that naturally abundant catecholic and guaiacyl groups can be utilised to replace heavy metals in Li-ion batteries. Foremost vanillin, a naturally occurring food additive that can be sustainably synthesised from industrial biowaste, lignin, was utilised to synthesise materials that showed extraordinary performance as cathodes in Li-ion batteries. Furthermore, behaviour of catecholic and guiacyl groups in Li-ion system was compared, confirming usability of guiacayl containing biopolymers as cathodes in Li-ion batteries. Lastly, naturally occurring polyphenol, tannic acid, was incorporated in fully bioderived hybrid material that shows performance comparable to commercial Li-ion batteries and good stability. This thesis presents an important advancement in understanding of biowaste derived cathode materials for Li-ion batteries. Further research should be conducted to better understand behaviour of guaiacyl groups during Li-ion battery cycling. Lastly, challenges of incorporation of lignin, an industrial biowaste, have to be addressed and lignin should be incorporated as a cathode material in Li-ion batteries. N2 - Diese Dissertation untersucht, wie nachhaltige Kathoden (Kathodenmaterialien) für Lithium-Ionen-Batterien aus Holzabfällen hergestellt werden können. In den letzten Jahren hat die Menschheit erkannt, wie wenig nachhaltig unsere moderne Gesellschaft ist und große Mengen an Energie verbraucht, welche zum größten Teil aus fossilen Brennstoffen gewonnen werden. Daher versucht man jetzt die Energie aus hauptsächlich erneuerbaren Quellen wie Sonne und Wind zu gewinnen. Allerdings kann elektrische Energie nicht einfach wie Öl in einen Kanister gegossen werden, sondern muss in wieder aufladbaren Batterien gespeichert werden. In den letzten Jahren wurden Lithium-Ionen-Batterien entwickelt, die leistungsstark und allgegenwärtig sind, da sie zum Beispiel in Handys und sogar Autos Verwendung finden. Lithium-Ionen-Batterien verwenden jedoch Trägermaterialien aus giftigen Schwermetallen, die abgebaut werden müssen, was sich negativ auf die Umwelt auswirkt. In diesem Zusammenhang ist insbesondere das Schwermetall Kobalt zu erwähnen, welches in den meisten modernen Kathoden verwendet wird. Nach dem Bekanntwerden von Sklaverei und Kinderarbeit beim Kobaltabbau im Kongo, folgten große Kontroversen, da Kobalt praktisch in jedem Gerät führender Unternehmen wie zum Beispiel Apple und Microsoft zu finden ist. Idealerweise müssen wir von nicht erneuerbaren Schwermetallen zu erneuerbaren organischen Molekülen wechseln. Daher verwende ich in meiner Forschung Vanillin, ein Molekül, das hinsichtlich der Elektronenspeicherung ähnliche Eigenschaften wie Schwermetalle aufweist, jedoch viele Vorteile bietet. Erstens erkennt man Vanillin am spezifischen Geruch, da es einer der Hauptbestandteile von Vanille und daher ein natürlich vorkommendes Molekül ist. Zweitens kann es aus Holzabfällen oder aus Abfällen vieler Industrien hergestellt werden, die Holz als Rohstoff verwenden, wie beispielsweise der Papierindustrie. Durch milde chemische Reaktionen in Lösemitteln wie Wasser, Essig und Alkohol haben wir Vanillin zu einem Material modifiziert, welches hervorragende Eigenschaften zur Verwendung in Lithium-Ionen-Batterien hat und die bisher verwendeten Schwermetelle ersetzen kann. Diese Batterien wären somit erneuerbar und können uns der nachhaltigen Welt einen Schritt näher bringen. Darüber hinaus wurde Tanninsäure, ein natürlich vorkommendes Polymer in Holzrinde, verwendet, um vollständig aus Bioabfällen bestehende Batterien herzustellen. KW - biomass KW - electrochemistry KW - energy conversion KW - polymers KW - redox chemistry KW - Biomasse KW - Elektrochemie KW - Energieumwandlung KW - Polymere KW - Redoxchemie Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-483689 ER - TY - THES A1 - Cao, Qian T1 - Graphitic carbon nitride and polymer hybrid materials BT - a promising combination for advanced properties N2 - Advanced hybrid materials are recognized as one of the most significant enablers for new technologies, which holds true especially on the quest for sustainable energy sources and energy production schemes (e.g., semiconductor based photocatalytic materials). Usually, a single component is far from meeting all the demands needed for these advanced applications. Hybrid materials are composed of at least two components commonly an inorganic and an organic material on the molecular level, which feature novel properties exceeding the sum of the individual parts and might be the milestones of next-generation applications. This dissertation aims to provide novel combinations of the metal-free semiconductor graphitic carbon nitride (g-C3N4) with polymers to obtain materials with advanced properties and applications. Visible light constitutes the core of the present work as it is the only energy source utilized either in synthesis or in the application process. In the area of applications by combination of g-C3N4 and polymers, two different hybrids were thoroughly elucidated, i.e.. their design and construction as well as potential application in photocatalysis. Novel soft 3D liquid objects were formed via charge-interaction driven interfacial jamming between polyelectrolytes in aqueous environment and colloidal dispersions of g-C3N4 in edible sunflower oil. As such, stable liquid objects could be molded into specific shapes and utilized for photodegradation of organic dyes in water. Furthermore, the grafting of polymers onto g-C3N4 was investigated. Allyl-end functionalized polymers were grafted onto g-C3N4 by a photoinitiated process to yield g-C3N4 with versatile and improved properties, e.g. advanced dispersibility enabling processing via spin coating. As g-C3N4 produces radicals under visible light irradiation, which is of significant interest for polymer science, g-C3N4 containing polymer latex and macrogel beads (MGB) were synthesized by emulsion photopolymerization and inverse suspension photopolymerization, respectively. A well-controlled emulsion photopolymerization process via g-C3N4 initiation was designed, which features synthesis of well-defined and cross-linked polymer particles. Furthermore, the polymerization process was investigated thoroughly, indicating an ad-layer polymerization in early stages of the process. The utilization of functionalized g-C3N4 allowed the polymerization of various monomer types. Moreover, g-C3N4 was utilized as photoinitiator in hydrogel MGB formation. The formed MGB properties could be tailored via process design, e.g. stirring rate, cross-linker content and g-C3N4 content. Finally, MGBs were introduced as photocatalyst for waste water remediation, i.e. the degradation of Rhodamine B in aqueous solution was studied. The present thesis therefore builds a bridge between g-C3N4 and polymers and provides strategies for hybrid material formation. Furthermore, several potential applications are revealed with significant implications for photocatalysis, polymerization processes and polymer materials. KW - Graphitic carbon nitride KW - Hybrid materials synthesis KW - Polymers KW - Photopolymerization Y1 - 2020 ER - TY - THES A1 - Markushyna, Yevheniia T1 - Modern photoredox transformations applied to the needs of organic synthesis N2 - Abstract. Catalysis is one of the most effective tools for the highly efficient assembly of complex molecular structures. Nevertheless, it is mainly represented by transition metal-based catalysts and typically is an energy consuming process. Therefore, photocatalysis utilizing solar energy is one of the appealing approaches to overcome these problems. A great alternative to classic transition metal-based photocatalysts, carbon nitrides, a group of organic polymeric semiconductors, have already shown their efficiency in water splitting, CO2 reduction, and organic pollutants degradation. However, these materials have also a great potential for the use in functionalization of complex organic molecules for synthetic needs as it was shown in recent years. This work addresses the challenge to develop efficient system for heterogeneous organic photocatalysis, employing cheap and environmentally benign photocatalysts – carbon nitrides. Herein, fundamental properties of semiconductors are studied from the organic chemistry standpoint; the inherent properties of carbon nitrides, such as ability to accumulate electrons, are deeply investigated and their effect on the reaction outcome is established. Thus, understanding of the electron charging processes allowed for the synthesis of otherwise hardly-achieved diazetidines-1,3 by tetramerization of benzylamines. Furthermore, the high electron capacity of Potassium Poly(heptazine imide)s (K-PHI) made possible a multi-electron reduction of aromatic nitro compounds to bare or formylated anilines. Additionally, two deep eutectic solvents (DES) were designed as a sustainable reaction media and reducing reagent for this reaction. Eventually, the high oxidation ability of carbon nitride K-PHI is employed in a challenging reaction of halide anion oxidation (Cl―, Br―) to accomplish electrophilic substitution in aromatic ring. The possibility to utilize NaCl solution (seawater mimetic) for the chlorination of electron rich arenes was shown. Eventually, light itself is used as a tool in a chromoselective photocatalytic oxidation of aromatic thiols and thioacetatas to three different compounds, using UV, blue, and red LEDs. All in all, the work enhances understanding the mechanism of heterogeneous photocatalysis in synthetic organic reactions and therefore, is a step forward to the sustainable methods of synthesis in organic chemistry. N2 - Abstrakt. Die Katalyse ist eines der effektivsten Werkzeuge für den hocheffizienten Aufbau komplexer molekularer Strukturen. Dennoch wird sie hauptsächlich durch Katalysatoren auf der Basis von Übergangsmetallen repräsentiert und ist typischerweise ein energieaufwendiger Prozess. Daher ist die Photokatalyse unter Nutzung der Sonnenenergie einer der attraktiven Ansätze zur Überwindung dieser Probleme. Kohlenstoffnitride, eine Gruppe organischer polymerer Halbleiter, haben ihre Effizienz bei der Wasserspaltung, der CO2-Reduktion und dem Abbau organischer Schadstoffe bereits unter Beweis gestellt. Diese Materialien haben jedoch auch ein großes Potenzial für die Funktionalisierung komplexer organischer Moleküle für synthetische Zwecke, wie sich in den letzten Jahren gezeigt hat. Diese Arbeit befasst sich mit der Herausforderung, ein effizientes System für die heterogene organische Photokatalyse zu entwickeln, bei dem billige und umweltfreundliche Photokatalysatoren – Kohlenstoffnitride – zum Einsatz kommen. Dabei werden grundlegende Eigenschaften von Halbleitern aus organisch-chemischer Sicht untersucht; die inhärenten Eigenschaften von Kohlenstoffnitriden, wie die Fähigkeit zur Elektronenanreicherung, werden eingehend untersucht und ihr Einfluss auf das Reaktionsergebnis festgestellt. So ermöglichte das Verständnis der Elektronenladungsvorgänge die Synthese von sonst kaum erreichten Diazetidinen-1,3 durch Tetramerisierung von Benzylaminen. Darüber hinaus ermöglichte die hohe Elektronenkapazität von Kalium-Polyheptazinimid (K-PHI) eine Mehrelektronenreduktion von aromatischen Nitroverbindungen zu „nackten“ oder formylierten Anilinen. Zudem wird die hohe Oxidationsfähigkeit von Kohlenstoffnitrid, K-PHI, in einer herausfordernden Reaktion der Oxidation von Halogenidanionen genutzt, um eine elektrophile Substitution im aromatischen Ring zu erreichen. Schließlich wird das Licht selbst als Werkzeug in einer chromoselektiven photokatalytischen Oxidation von aromatischen Thiolen und Thioacetaten verwendet, um drei verschiedene Verbindungen unter Verwendung von UV-, blauen und roten LEDs zu syntetisieren. Alles in allem verbessert die Arbeit das Verständnis des Mechanismus der heterogenen Photokatalyse in synthetischen organischen Reaktionen und ist daher ein Schritt vorwärts zu nachhaltigen Synthesemethoden in der organischen Chemie. KW - photocatalysis KW - carbon nitride KW - organic chemistry KW - photoredox catalysis KW - Photochemie KW - Photokatalyse Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-477661 ER - TY - THES A1 - Phung, Thi Thuy Nga T1 - Defect chemistry in halide perovskites BT - material characterisation and device integration N2 - Metallhalogenid-Perowskite haben sich aufgrund ihrer hervorragenden optoelektronischen Eigenschaften zu einer attraktiven Materialklasse für die Photovoltaikindustrie entwickelt. Die Langzeitstabilität ist jedoch noch immer ein Hindernis für die industrielle Realisierung dieser Materialklasse. Zunehmend zeigen sich Hinweise dafür, dass intrinsische Defekte im Perowskit die Material-Degradation fördern. Das Verständnis der Defekte im Perowskit ist wichtig, um seine Stabilität und optoelektronische Qualität weiter zu verbessern. Diese Dissertation konzentriert sich daher auf das Thema Defektchemie im Perowskit. Der erste Teil der Dissertation gibt einen kurzen Überblick über die Defekteigenschaften von Halogenid-Perowskiten. Anschließend zeigt der zweite Teil, dass das Dotieren von Methylammoniumbleiiodid mit einer kleinen Menge von Erdalkalimetallen (Sr und Mg) ein höherwertiges, weniger fehlerhaftes Material erzeugt, was zu hohen Leerlaufspannungen sowohl in der n-i-p als auch in der p-i-n Architektur von Solarzellen führt. Es wurde beobachtet, dass die Dotierung in zwei Domänen stattfindet: eine niedrige Dotierungskonzentration führt zum Einschluss der entsprechenden Elemente in das Kristallgitter ermöglicht, während eine hohe Dotierungskonzentration zu einer Phasentrennung führt. Das Material kann im Niedrigdotierungsbereich mehr n-dotiert sein, während es im Hochdotierungsbereich weniger n-dotiert ist. Die Schwelle dieser beiden Regime hängt von der Atomgröße der Dotierelemente ab. Der nächste Teil der Dissertation untersucht die photoinduzierte Degradation von Methylammonium-Bleiiodid. Dieser Abbaumechanismus hängt eng mit der Bildung und Migration von defekten zusammen. Nach der Bildung können sich diese in Abhängigkeit von der Defektdichte und ihrer Verteilung bewegen. Demnach kann eine hohe Defektdichte wie an den Korngrenzen eines Perowskitfilms die Beweglichkeit von ionischen Punktdefekten hemmen. Diese Erkenntnis ließe sich auf das zukünftige Materialdesign in der Photovoltaikindustrie anwenden, da die Perowskit-Solarzellen normalerweise einen polykristallinen Dünnfilm mit hoher Korngrenzendichte verwenden. Die abschließende Studie, die in dieser Dissertation vorgestellt wird, konzentriert sich auf die Stabilität der neuesten „dreifach-kationen“ Perowskit-basierten Solarzellen unter dem Einfluss einer permanent angelegten elektrischen Spannung. Eine längere Betriebsdauer (mehr als drei Stunden permanente Spannung) fördert die Amorphisierung im Halogenid-Perowskiten. Es wird hierbei vermutet, dass sich eine amorphe Phase an den Grenzflächen bildet, insbesondere zwischen der lochselektiven Schicht und dem Perowskit. Diese amorphe Phase hemmt den Ladungstransport und beeinträchtigt die Leistung der Perowskit-Solarzelle erheblich. Sobald jedoch keine Spannung mehr anliegt können sich die Perowskitschichten im Dunkeln bereits nach einer kurzen Pause regenerieren. Die Amorphisierung wird auf die Migration von ionischen Fehlordnungen zurückgeführt, höchstwahrscheinlich auf die Migration von Halogeniden. Dieser Ansatz zeigt ein neues Verständnis des Abbau-Mechanismus in Perowskit-Solarzellen unter Betriebsbedingungen. N2 - Metal halide perovskites have merged as an attractive class of materials for photovoltaic applications due to their excellent optoelectronic properties. However, the long term stability is a roadblock for this class of material’s industrial pathway. Increasing evidence shows that intrinsic defects in perovskite promote material degradation. Consequently, understanding defect behaviours in perovskite materials is essential to further improve device stability and performance. This dissertation, hence, focuses on the topic of defect chemistry in halide perovskites. The first part of the dissertation gives a brief overview of the defect properties in halide perovskite. Subsequently, the second part shows that doping methylammonium lead iodide with a small amount of alkaline earth metals (Sr and Mg) creates a higher quality, less defective material resulted in high open circuit voltages in both n-i-p and p-i-n architecture. It has been found that the mechanism of doping has two distinct regimes in which a low doping concentration enables the inclusion of the dopants into the lattice whereas higher doping concentrations lead to phase segregation. The material can be more n-doped in the low doping regime while being less n-doped in the high doping regime. The threshold of these two regimes is based on the atomic size of the dopants. The next part of the dissertation examines the photo-induced degradation in methylammonium lead iodide. This degradation mechanism links closely to the formation and migration of ionic defects. After they are formed, these ionic defects can migrate, however, not freely depending on the defect concentration and their distribution. In fact, a highly concentrated defect region such as the grain boundaries can inhibit the migration of ionic defects. This has implications for material design as perovskite solar cells normally employ a polycrystalline thin-film which has a high density of grain boundary. The final study presented in this PhD dissertation focuses on the stability of the state-of-the-art triple cation perovskite-based solar devices under external bias. Prolonged bias (more than three hours) is found to promote amorphization in halide perovskite. The amorphous phase is suspected to accumulate at the interfaces especially between the hole selective layer and perovskite. This amorphous phase inhibits the charge collection and severely affects the device performance. Nonetheless, the devices can recover after resting without bias in the dark. This amorphization is attributed to ionic defect migration most likely halides. This provides a new understanding of the potential degradation mechanisms in perovskite solar cells under operational conditions. KW - halide perovskite KW - solar cells KW - defect chemistry KW - ionic defects KW - Defektchemie KW - Halogenid-Perowskite KW - Defekte KW - Solarzellen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-476529 ER -