TY - JOUR A1 - Rauf, Mamoona A1 - Arif, Muhammad A1 - Fisahn, Joachim A1 - Xue, Gang-Ping A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd T1 - NAC transcription factor speedy hyponastic growth regulates flooding-induced leaf movement in arabidopsis JF - The plant cell N2 - In rosette plants, root flooding (waterlogging) triggers rapid upward (hyponastic) leaf movement representing an important architectural stress response that critically determines plant performance in natural habitats. The directional growth is based on localized longitudinal cell expansion at the lower (abaxial) side of the leaf petiole and involves the volatile phytohormone ethylene (ET). We report the existence of a transcriptional core unit underlying directional petiole growth in Arabidopsis thaliana, governed by the NAC transcription factor SPEEDY HYPONASTIC GROWTH (SHYG). Overexpression of SHYG in transgenic Arabidopsis thaliana enhances waterlogging-triggered hyponastic leaf movement and cell expansion in abaxial cells of the basal petiole region, while both responses are largely diminished in shyg knockout mutants. Expression of several EXPANSIN and XYLOGLUCAN ENDOTRANSGLYCOSYLASE/HYDROLASE genes encoding cell wall-loosening proteins was enhanced in SHYG overexpressors but lowered in shyg. We identified ACC OXIDASE5 (ACO5), encoding a key enzyme of ET biosynthesis, as a direct transcriptional output gene of SHYG and found a significantly reduced leaf movement in response to root flooding in aco5 T-DNA insertion mutants. Expression of SHYG in shoot tissue is triggered by root flooding and treatment with ET, constituting an intrinsic ET-SHYG-ACO5 activator loop for rapid petiole cell expansion upon waterlogging. Y1 - 2013 U6 - https://doi.org/10.1105/tpc.113.117861 SN - 1040-4651 SN - 1532-298X VL - 25 IS - 12 SP - 4941 EP - 4955 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Alshareef, Nouf Owdah A1 - Otterbach, Sophie L. A1 - Allu, Annapurna Devi A1 - Woo, Yong H. A1 - de Werk, Tobias A1 - Kamranfar, Iman A1 - Müller-Röber, Bernd A1 - Tester, Mark A1 - Balazadeh, Salma A1 - Schmöckel, Sandra M. T1 - NAC transcription factors ATAF1 and ANAC055 affect the heat stress response in Arabidopsis JF - Scientific reports N2 - Pre-exposing (priming) plants to mild, non-lethal elevated temperature improves their tolerance to a later higher-temperature stress (triggering stimulus), which is of great ecological importance. 'Thermomemory' is maintaining this tolerance for an extended period of time. NAM/ATAF1/2/ CUC2 (NAC) proteins are plant-specific transcription factors (TFs) that modulate responses to abiotic stresses, including heat stress (HS). Here, we investigated the potential role of NACs for thermomemory. We determined the expression of 104 Ara bidopsis NAC genes after priming and triggering heat stimuli, and found ATAF1 expression is strongly induced right after priming and declines below control levels thereafter during thermorecovery. Knockout mutants of ATAF1 show better thermomemory than wild type, revealing a negative regulatory role. Differential expression analyses of RNA-seq data from ATAF1 overexpressor, ataf1 mutant and wild-type plants after heat priming revealed five genes that might be priming-associated direct targets of ATAF1: AT2G31260 (ATG9), AT2G41640 (GT61), AT3G44990 (XTH31), AT4G27720 and AT3G23540. Based on co-expression analyses applied to the aforementioned RNA-seq profiles, we identified ANAC055 to be transcriptionally co-regulated with ATAF1. Like atafl, anac055 mutants show improved thermomemory, revealing a potential co-control of both NACTFs over thermomemory. Our data reveals a core importance of two NAC transcription factors, ATAF1 and ANAC055, for thermomemory. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-14429-x SN - 2045-2322 VL - 12 IS - 1 PB - Nature Research CY - Berlin ER - TY - JOUR A1 - Omranian, Nooshin A1 - Klie, Sebastian A1 - Müller-Röber, Bernd A1 - Nikoloski, Zoran T1 - Network-based segmentation of biological multivariate time series JF - PLoS one N2 - Molecular phenotyping technologies (e.g., transcriptomics, proteomics, and metabolomics) offer the possibility to simultaneously obtain multivariate time series (MTS) data from different levels of information processing and metabolic conversions in biological systems. As a result, MTS data capture the dynamics of biochemical processes and components whose couplings may involve different scales and exhibit temporal changes. Therefore, it is important to develop methods for determining the time segments in MTS data, which may correspond to critical biochemical events reflected in the coupling of the system's components. Here we provide a novel network-based formalization of the MTS segmentation problem based on temporal dependencies and the covariance structure of the data. We demonstrate that the problem of partitioning MTS data into k segments to maximize a distance function, operating on polynomially computable network properties, often used in analysis of biological network, can be efficiently solved. To enable biological interpretation, we also propose a breakpoint-penalty (BP-penalty) formulation for determining MTS segmentation which combines a distance function with the number/length of segments. Our empirical analyses of synthetic benchmark data as well as time-resolved transcriptomics data from the metabolic and cell cycles of Saccharomyces cerevisiae demonstrate that the proposed method accurately infers the phases in the temporal compartmentalization of biological processes. In addition, through comparison on the same data sets, we show that the results from the proposed formalization of the MTS segmentation problem match biological knowledge and provide more rigorous statistical support in comparison to the contending state-of-the-art methods. Y1 - 2013 U6 - https://doi.org/10.1371/journal.pone.0062974 SN - 1932-6203 VL - 8 IS - 5 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Rauf, Mamoona A1 - Arif, Muhammad A1 - Dortay, Hakan A1 - Matallana-Ramirez, Lilian P. A1 - Waters, Mark T. A1 - Nam, Hong Gil A1 - Lim, Pyung-Ok A1 - Müller-Röber, Bernd A1 - Balazadeh, Salma T1 - ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription JF - EMBO reports N2 - Leaf senescence is a key physiological process in all plants. Its onset is tightly controlled by transcription factors, of which NAC factor ORE1 (ANAC092) is crucial in Arabidopsis thaliana. Enhanced expression of ORE1 triggers early senescence by controlling a downstream gene network that includes various senescence-associated genes. Here, we report that unexpectedly ORE1 interacts with the G2-like transcription factors GLK1 and GLK2, which are important for chloroplast development and maintenance, and thereby for leaf maintenance. ORE1 antagonizes GLK transcriptional activity, shifting the balance from chloroplast maintenance towards deterioration. Our finding identifies a new mechanism important for the control of senescence by ORE1. KW - transcription factor KW - senescence KW - chloroplast KW - protein-protein interaction Y1 - 2013 U6 - https://doi.org/10.1038/embor.2013.24 SN - 1469-221X VL - 14 IS - 4 SP - 382 EP - 388 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Riano-Pachon, Diego Mauricio A1 - Dreyer, Ingo A1 - Müller-Röber, Bernd T1 - Orphan transcripts in Arabidopsis thaliana : identification of several hundred previously unrecognized genes N2 - Expressed sequence tags (ESTs) represent a huge resource for the discovery of previously unknown genetic information and functional genome assignment. In this study we screened a collection of 178 292 ESTs from Arabidopsis thaliana by testing them against previously annotated genes of the Arabidopsis genome. We identified several hundreds of new transcripts that match the Arabidopsis genome at so far unassigned loci. The transcriptional activity of these loci was independently confirmed by comparison with the Salk Whole Genome Array Data. To a large extent, the newly identified transcriptionally active genomic regions do not encode 'classic' proteins, but instead generate non-coding RNAs and/or small peptide-coding RNAs of presently unknown biological function. More than 560 transcripts identified in this study are not represented by the Affymetrix GeneChip arrays currently widely used for expression profiling in A. thaliana. Our data strongly support the hypothesis that numerous previously unknown genes exist in the Arabidopsis genome Y1 - 2005 SN - 0960-7412 ER - TY - JOUR A1 - Balazadeh, Salma A1 - Kwasniewski, Miroslaw A1 - Caldana, Camila A1 - Mehrnia, Mohammad A1 - Zanor, Maria Ines A1 - Xue, Gang-Ping A1 - Müller-Röber, Bernd T1 - ORS1, an H2O2-Responsive NAC Transcription Factor, Controls Senescence in Arabidopsis thaliana JF - Molecular plant N2 - We report here that ORS1, a previously uncharacterized member of the NAC transcription factor family, controls leaf senescence in Arabidopsis thaliana. Overexpression of ORS1 accelerates senescence in transgenic plants, whereas its inhibition delays it. Genes acting downstream of ORS1 were identified by global expression analysis using transgenic plants producing dexamethasone-inducible ORS1-GR fusion protein. Of the 42 up-regulated genes, 30 (similar to 70%) were previously shown to be up-regulated during age-dependent senescence. We also observed that 32 (similar to 76%) of the ORS1-dependent genes were induced by long-term (4 d), but not short-term (6 h) salinity stress (150 mM NaCl). Furthermore, expression of 16 and 24 genes, respectively, was induced after 1 and 5 h of treatment with hydrogen peroxide (H2O2), a reactive oxygen species known to accumulate during salinity stress. ORS1 itself was found to be rapidly and strongly induced by H2O2 treatment in both leaves and roots. Using in vitro binding site selection, we determined the preferred binding motif of ORS1 and found it to be present in half of the ORS1-dependent genes. ORS1 is a paralog of ORE1/ANAC092/AtNAC2, a previously reported regulator of leaf senescence. Phylogenetic footprinting revealed evolutionary conservation of the ORS1 and ORE1 promoter sequences in different Brassicaceae species, indicating strong positive selection acting on both genes. We conclude that ORS1, similarly to ORE1, triggers expression of senescence-associated genes through a regulatory network that may involve cross-talk with salt- and H2O2-dependent signaling pathways. KW - NAC transcription factor KW - leaf senescence KW - gene expression KW - gene regulatory network KW - hydrogen peroxide Y1 - 2011 U6 - https://doi.org/10.1093/mp/ssq080 SN - 1674-2052 VL - 4 IS - 2 SP - 346 EP - 360 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Mehterov, Nikolay A1 - Balazadeh, Salma A1 - Hille, Jacques A1 - Toneva, Valentina A1 - Müller-Röber, Bernd A1 - Gechev, Tsanko S. T1 - Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes JF - Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology N2 - The Arabidopsis thaliana atr7 mutant is tolerant to oxidative stress induced by paraquat (PQ) or the catalase inhibitor aminotriazole (AT), while its original background loh2 and wild-type plants are sensitive. Both, AT and PQ which stimulate the intracellular formation of H2O2 or superoxide anions, respectively, trigger cell death in loh2 but do not lead to visible damage in atr7. To study gene expression during oxidative stress and ROS-induced programmed cell death, two platforms for multi-parallel quantitative real-time PCR (qRT-PCR) analysis of 217 antioxidant and 180 ROS marker genes were employed. The qRT-PCR analyses revealed AT- and PQ-induced expression of many ROS-responsive genes mainly in loh2, confirming that an oxidative burst plays a role in the activation of the cell death in this mutant. Some of the genes were specifically regulated by either AT or PQ serving as markers for particular types of ROS. Genes significantly induced by both AT and PQ in loh2 included transcription factors (ANAC042/JUB1, ANAC102, DREB19, HSFA2, RRTF1, ZAT10, ZAT12, ethylene-responsive factors), signaling compounds, ferritins, alternative oxidases, and antioxidant enzymes. Many of these genes were upregulated in atr7 compared to loh2 under non-stress conditions at the first time point, indicating that higher basal levels of ROS and higher antioxidant capacity in atr7 are responsible for the enhanced tolerance to oxidative stress and suggesting a possible tolerance against multiple stresses of this mutant. KW - Antioxidant genes KW - Reactive oxygen species KW - Stress tolerance KW - Transcription analysis Y1 - 2012 U6 - https://doi.org/10.1016/j.plaphy.2012.05.024 SN - 0981-9428 VL - 59 SP - 20 EP - 29 PB - Elsevier CY - Paris ER - TY - JOUR A1 - Omranian, Nooshin A1 - Müller-Röber, Bernd A1 - Nikoloski, Zoran T1 - PageRank-based identification of signaling crosstalk from transcriptomics data the case of Arabidopsis thaliana JF - Molecular BioSystems N2 - The levels of cellular organization, from gene transcription to translation to protein-protein interaction and metabolism, operate via tightly regulated mutual interactions, facilitating organismal adaptability and various stress responses. Characterizing the mutual interactions between genes, transcription factors, and proteins involved in signaling, termed crosstalk, is therefore crucial for understanding and controlling cells' functionality. We aim at using high-throughput transcriptomics data to discover previously unknown links between signaling networks. We propose and analyze a novel method for crosstalk identification which relies on transcriptomics data and overcomes the lack of complete information for signaling pathways in Arabidopsis thaliana. Our method first employs a network-based transformation of the results from the statistical analysis of differential gene expression in given groups of experiments under different signal-inducing conditions. The stationary distribution of a random walk (similar to the PageRank algorithm) on the constructed network is then used to determine the putative transcripts interrelating different signaling pathways. With the help of the proposed method, we analyze a transcriptomics data set including experiments from four different stresses/signals: nitrate, sulfur, iron, and hormones. We identified promising gene candidates, downstream of the transcription factors (TFs), associated to signaling crosstalk, which were validated through literature mining. In addition, we conduct a comparative analysis with the only other available method in this field which used a biclustering-based approach. Surprisingly, the biclustering-based approach fails to robustly identify any candidate genes involved in the crosstalk of the analyzed signals. We demonstrate that our proposed method is more robust in identifying gene candidates involved downstream of the signaling crosstalk for species for which large transcriptomics data sets, normalized with the same techniques, are available. Moreover, unlike approaches based on biclustering, our approach does not rely on any hidden parameters. Y1 - 2012 U6 - https://doi.org/10.1039/c2mb05365a SN - 1742-206X VL - 8 IS - 4 SP - 1121 EP - 1127 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Read, Betsy A. A1 - Kegel, Jessica A1 - Klute, Mary J. A1 - Kuo, Alan A1 - Lefebvre, Stephane C. A1 - Maumus, Florian A1 - Mayer, Christoph A1 - Miller, John A1 - Monier, Adam A1 - Salamov, Asaf A1 - Young, Jeremy A1 - Aguilar, Maria A1 - Claverie, Jean-Michel A1 - Frickenhaus, Stephan A1 - Gonzalez, Karina A1 - Herman, Emily K. A1 - Lin, Yao-Cheng A1 - Napier, Johnathan A1 - Ogata, Hiroyuki A1 - Sarno, Analissa F. A1 - Shmutz, Jeremy A1 - Schroeder, Declan A1 - de Vargas, Colomban A1 - Verret, Frederic A1 - von Dassow, Peter A1 - Valentin, Klaus A1 - Van de Peer, Yves A1 - Wheeler, Glen A1 - Dacks, Joel B. A1 - Delwiche, Charles F. A1 - Dyhrman, Sonya T. A1 - Glöckner, Gernot A1 - John, Uwe A1 - Richards, Thomas A1 - Worden, Alexandra Z. A1 - Zhang, Xiaoyu A1 - Grigoriev, Igor V. A1 - Allen, Andrew E. A1 - Bidle, Kay A1 - Borodovsky, M. A1 - Bowler, C. A1 - Brownlee, Colin A1 - Cock, J. Mark A1 - Elias, Marek A1 - Gladyshev, Vadim N. A1 - Groth, Marco A1 - Guda, Chittibabu A1 - Hadaegh, Ahmad A1 - Iglesias-Rodriguez, Maria Debora A1 - Jenkins, J. A1 - Jones, Bethan M. A1 - Lawson, Tracy A1 - Leese, Florian A1 - Lindquist, Erika A1 - Lobanov, Alexei A1 - Lomsadze, Alexandre A1 - Malik, Shehre-Banoo A1 - Marsh, Mary E. A1 - Mackinder, Luke A1 - Mock, Thomas A1 - Müller-Röber, Bernd A1 - Pagarete, Antonio A1 - Parker, Micaela A1 - Probert, Ian A1 - Quesneville, Hadi A1 - Raines, Christine A1 - Rensing, Stefan A. A1 - Riano-Pachon, Diego Mauricio A1 - Richier, Sophie A1 - Rokitta, Sebastian A1 - Shiraiwa, Yoshihiro A1 - Soanes, Darren M. A1 - van der Giezen, Mark A1 - Wahlund, Thomas M. A1 - Williams, Bryony A1 - Wilson, Willie A1 - Wolfe, Gordon A1 - Wurch, Louie L. T1 - Pan genome of the phytoplankton Emiliania underpins its global distribution JF - Nature : the international weekly journal of science N2 - Coccolithophores have influenced the global climate for over 200 million years(1). These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems(2). They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space(3). Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean(4). Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions. Y1 - 2013 U6 - https://doi.org/10.1038/nature12221 SN - 0028-0836 SN - 1476-4687 VL - 499 IS - 7457 SP - 209 EP - 213 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Moreno Curtidor, Catalina A1 - Annunziata, Maria Grazia A1 - Gupta, Saurabh A1 - Apelt, Federico A1 - Richard, Sarah Isabel A1 - Kragler, Friedrich A1 - Müller-Röber, Bernd A1 - Olas, Justyna Jadwiga T1 - Physiological profiling of embryos and dormant seeds in two Arabidopsis accessions reveals a metabolic switch in carbon reserve accumulation JF - Frontiers in plant science N2 - In flowering plants, sugars act as carbon sources providing energy for developing embryos and seeds. Although most studies focus on carbon metabolism in whole seeds, knowledge about how particular sugars contribute to the developmental transitions during embryogenesis is scarce. To develop a quantitative understanding of how carbon composition changes during embryo development, and to determine how sugar status contributes to final seed or embryo size, we performed metabolic profiling of hand-dissected embryos at late torpedo and mature stages, and dormant seeds, in two Arabidopsis thaliana accessions with medium [Columbia-0 (Col-0)] and large [Burren-0 (Bur-0)] seed sizes, respectively. Our results show that, in both accessions, metabolite profiles of embryos largely differ from those of dormant seeds. We found that developmental transitions from torpedo to mature embryos, and further to dormant seeds, are associated with major metabolic switches in carbon reserve accumulation. While glucose, sucrose, and starch predominantly accumulated during seed dormancy, fructose levels were strongly elevated in mature embryos. Interestingly, Bur-0 seeds contain larger mature embryos than Col-0 seeds. Fructose and starch were accumulated to significantly higher levels in mature Bur-0 than Col-0 embryos, suggesting that they contribute to the enlarged mature Bur-0 embryos. Furthermore, we found that Bur-0 embryos accumulated a higher level of sucrose compared to hexose sugars and that changes in sucrose metabolism are mediated by sucrose synthase (SUS), with SUS genes acting non-redundantly, and in a tissue-specific manner to utilize sucrose during late embryogenesis. KW - carbon KW - embryo development KW - hexoses KW - metabolites KW - sucrose KW - synthase Y1 - 2020 U6 - https://doi.org/10.3389/fpls.2020.588433 SN - 1664-462X VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Sree, K. Sowjanya A1 - Keresztes, Aron A1 - Müller-Röber, Bernd A1 - Brandt, Ronny A1 - Eberius, Matthias A1 - Fischer, Wolfgang A1 - Appenroth, Klaus-J. T1 - Phytotoxicity of cobalt ions on the duckweed Lemna minor - Morphology, ion uptake, and starch accumulation JF - Chemosphere : chemistry, biology and toxicology as related to environmental problems N2 - Cobalt (Co2+) inhibits vegetative growth of Lemna minor gradually from 1 mu M to 100 mu M. Fronds accumulated up to 21 mg Co2+ g(-1) dry weight at 10 mu M external Co2+ indicating hyperaccumulation. Interestingly, accumulation of Co2+ did not decrease the iron (Fe) content in fronds, highlighting L. minor as a suitable system for studying effects of Co2+ undisturbed by Fe deficiency symptoms unlike most other plants. Digital image analysis revealed the size distribution of fronds after Co2+ treatment and also a reduction in pigmentation of newly formed daughter fronds unlike the mother fronds during the 7-day treatment. Neither chlorophyll nor photosystem II fluorescence changed significantly during the initial 4 d, indicating effective photosynthesis. During the later phase of the 7-day treatment, however, chlorophyll content and photosynthetic efficiency decreased in the Co2+-treated daughter fronds, indicating that Co2+ inhibits the biosynthesis of chlorophyll rather than leading to the destruction of pre-existing pigment molecules. In addition, during the first 4 d of Co2+ treatment starch accumulated in the fronds and led to the transition of chloroplasts to chloro-amyloplasts and amylo-chloroplasts, while starch levels strongly decreased thereafter. (C) 2015 Elsevier Ltd. All rights reserved. KW - Chloroplast KW - Cobalt KW - Lemnaceae KW - Lemna minor KW - Phytotoxicity KW - Starch accumulation Y1 - 2015 U6 - https://doi.org/10.1016/j.chemosphere.2015.03.008 SN - 0045-6535 SN - 1879-1298 VL - 131 SP - 149 EP - 156 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Ralevski, Alexandra A1 - Apelt, Federico A1 - Olas, Justyna Jadwiga A1 - Müller-Röber, Bernd A1 - Rugarli, Elena I. A1 - Kragler, Friedrich A1 - Horvath, Tamas L. T1 - Plant mitochondrial FMT and its mammalian homolog CLUH controls development and behavior in Arabidopsis and locomotion in mice JF - Cellular and molecular life sciences N2 - Mitochondria in animals are associated with development, as well as physiological and pathological behaviors. Several conserved mitochondrial genes exist between plants and higher eukaryotes. Yet, the similarities in mitochondrial function between plant and animal species is poorly understood. Here, we show that FMT (FRIENDLY MITOCHONDRIA) from Arabidopsis thaliana, a highly conserved homolog of the mammalian CLUH (CLUSTERED MITOCHONDRIA) gene family encoding mitochondrial proteins associated with developmental alterations and adult physiological and pathological behaviors, affects whole plant morphology and development under both stressed and normal growth conditions. FMT was found to regulate mitochondrial morphology and dynamics, germination, and flowering time. It also affects leaf expansion growth, salt stress responses and hyponastic behavior, including changes in speed of hyponastic movements. Strikingly, Cluh(+/-) heterozygous knockout mice also displayed altered locomotive movements, traveling for shorter distances and had slower average and maximum speeds in the open field test. These observations indicate that homologous mitochondrial genes may play similar roles and affect homologous functions in both plants and animals. KW - Arabidopsis thaliana KW - Mitochondria KW - FMT KW - Hyponasty KW - Mice KW - CLUH; KW - Locomotion Y1 - 2022 U6 - https://doi.org/10.1007/s00018-022-04382-3 SN - 1420-682X SN - 1420-9071 VL - 79 IS - 6 PB - Springer International Publishing AG CY - Cham (ZG) ER - TY - JOUR A1 - Naseri, Gita A1 - Balazadeh, Salma A1 - Machens, Fabian A1 - Kamranfar, Iman A1 - Messerschmidt, Katrin A1 - Müller-Röber, Bernd T1 - Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae JF - ACS synthetic biology N2 - Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast. KW - Arabidopsis thaliana KW - artificial transcription factor KW - NAC transcription factor KW - synthetic biology KW - plant Y1 - 2017 U6 - https://doi.org/10.1021/acssynbio.7b00094 SN - 2161-5063 VL - 6 SP - 1742 EP - 1756 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Proost, Sebastian A1 - Van Bel, Michiel A1 - Vaneechoutte, Dries A1 - Van de Peer, Yves A1 - Inze, Dirk A1 - Müller-Röber, Bernd A1 - Vandepoele, Klaas T1 - PLAZA 3.0: an access point for plant comparative genomics JF - Nucleic acids research N2 - Comparative sequence analysis has significantly altered our view on the complexity of genome organization and gene functions in different kingdoms. PLAZA 3.0 is designed to make comparative genomics data for plants available through a user-friendly web interface. Structural and functional annotation, gene families, protein domains, phylogenetic trees and detailed information about genome organization can easily be queried and visualized. Compared with the first version released in 2009, which featured nine organisms, the number of integrated genomes is more than four times higher, and now covers 37 plant species. The new species provide a wider phylogenetic range as well as a more in-depth sampling of specific clades, and genomes of additional crop species are present. The functional annotation has been expanded and now comprises data from Gene Ontology, MapMan, UniProtKB/Swiss-Prot, PlnTFDB and PlantTFDB. Furthermore, we improved the algorithms to transfer functional annotation from well-characterized plant genomes to other species. The additional data and new features make PLAZA 3.0 (http://bioinformatics.psb.ugent.be/plaza/) a versatile and comprehensible resource for users wanting to explore genome information to study different aspects of plant biology, both in model and non-model organisms. Y1 - 2015 U6 - https://doi.org/10.1093/nar/gku986 SN - 0305-1048 SN - 1362-4962 VL - 43 IS - D1 SP - D974 EP - D981 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Lai, Alvina G. A1 - Denton-Giles, Matthew A1 - Müller-Röber, Bernd A1 - Schippers, Jos H. M. A1 - Dijkwel, Paul P. T1 - Positional information resolves structural variations and uncovers an evolutionarily divergent genetic locus in accessions of arabidopsis thaliana JF - Genome biology and evolution N2 - Genome sequencing of closely related individuals has yielded valuable insights that link genome evolution to phenotypic variations. However, advancement in sequencing technology has also led to an escalation in the number of poor quality-drafted genomes assembled based on reference genomes that can have highly divergent or haplotypic regions. The self-fertilizing nature of Arabidopsis thaliana poses an advantage to sequencing projects because its genome is mostly homozygous. To determine the accuracy of an Arabidopsis drafted genome in less conserved regions, we performed a resequencing experiment on a similar to 371-kb genomic interval in the Landsberg erecta (Ler-0) accession. We identified novel structural variations (SVs) between Ler-0 and the reference accession Col-0 using a long-range polymerase chain reaction approach to generate an Illumina data set that has positional information, that is, a data set with reads that map to a known location. Positional information is important for accurate genome assembly and the resolution of SVs particularly in highly duplicated or repetitive regions. Sixty-one regions with misassembly signatures were identified from the Ler-0 draft, suggesting the presence of novel SVs that are not represented in the draft sequence. Sixty of those were resolved by iterative mapping using our data set. Fifteen large indels (> 100 bp) identified from this study were found to be located either within protein-coding regions or upstream regulatory regions, suggesting the formation of novel alleles or altered regulation of existing genes in Ler-0. We propose future genome-sequencing experiments to follow a clone-based approach that incorporates positional information to ultimately reveal haplotype-specific differences between accessions. KW - haplotype KW - allelic variants KW - drafted genomes KW - genome partitioning KW - comparative genomics Y1 - 2011 U6 - https://doi.org/10.1093/gbe/evr038 SN - 1759-6653 VL - 3 IS - 1-2 SP - 627 EP - 640 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Shubchynskyy, Volodymyr A1 - Boniecka, Justyna A1 - Schweighofer, Alois A1 - Simulis, Justinas A1 - Kvederaviciute, Kotryna A1 - Stumpe, Michael A1 - Mauch, Felix A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Boutrot, Freddy A1 - Zipfel, Cyril A1 - Meskiene, Irute T1 - Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae JF - Journal of experimental botany N2 - Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen-induced MAPK activities, increased callose deposition in response to pathogen-associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid-independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto. This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance. KW - Callose KW - defense genes KW - MAPK KW - MAPK phosphatase KW - PAMP KW - PP2C phosphatase KW - Pseudomonas syringae KW - salicylic acid KW - transcription factors Y1 - 2017 U6 - https://doi.org/10.1093/jxb/erw485 SN - 0022-0957 SN - 1460-2431 VL - 68 IS - 5 SP - 1169 EP - 1183 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Faisal, Muhammad B. A1 - Gechev, Tsanko S. A1 - Müller-Röber, Bernd A1 - Dijkwel, Paul P. T1 - Putative alternative translation start site-encoding nucleotides of CPR5 regulate growth and resistance JF - BMC plant biology N2 - Background The Arabidopsis CONSTITUTIVE EXPRESSER of PATHOGENESIS-RELATED GENES 5 (CPR5) has recently been shown to play a role in gating as part of the nuclear pore complex (NPC). Mutations in CPR5 cause multiple defects, including aberrant trichomes, reduced ploidy levels, reduced growth and enhanced resistance to bacterial and fungal pathogens. The pleiotropic nature of cpr5 mutations implicates that the CPR5 protein affects multiple pathways. However, little is known about the structural features that allow CPR5 to affect the different pathways. Results Our in silico studies suggest that in addition to three clusters of putative nuclear localization signals and four or five transmembrane domains, CPR5 contains two putative alternative translation start sites. To test the role of the methionine-encoding nucleotides implicated in those sites, metCPR5 cDNAs, in which the relevant nucleotides were changed to encode glutamine, were fused to the CPR5 native promoter and the constructs transformed to cpr5-2 plants to complement cpr5-compromised phenotypes. The control and metCPR5 constructs were able to complement all cpr5 phenotypes, although the extent of complementation depended on the specific complementing plant lines. Remarkably, plants transformed with metCPR5 constructs showed larger leaves and displayed reduced resistance when challenged to Pseudomonas syringae pv Pst DC3000, as compared to control plants. Thus, the methionine-encoding nucleotides regulate growth and resistance. We propose that structural features of the CPR5 N-terminus are implicated in selective gating of proteins involved in regulating the balance between growth and resistance. Conclusion Plants need to carefully balance the amount of resources used for growth and resistance. The Arabidopsis CPR5 protein regulates plant growth and immunity. Here we show that N-terminal features of CPR5 are involved in the regulation of the balance between growth and resistance. These findings may benefit efforts to improve plant yield, while maintaining optimal levels of disease resistance. KW - CPR5 KW - plant growth KW - disease resistance KW - cell death KW - arabidopsis thaliana KW - endoreduplication Y1 - 2020 U6 - https://doi.org/10.1186/s12870-020-02485-2 SN - 1471-2229 VL - 20 IS - 1 PB - BMC CY - London ER - TY - JOUR A1 - Kreft, Oliver A1 - Georgieva, Radostina A1 - Bäumler, Hans A1 - Steup, Martin A1 - Müller-Röber, Bernd A1 - Sukhorukov, Gleb B. A1 - Möhwald, Helmuth T1 - Red blood cell templated polyelectrolyte capsules : a novel vehicle for the stable encapsulation of DNA and proteins N2 - A novel method for the encapsulation of biomacromolecules, such as nucleic acids and proteins, into polyelectrolyte microcapsules is described. Fluorescence-labelled double-stranded DNA and human serum albumin (HSA) are used as model substances for encapsulation in hollow microcapsules templated on human erythrocytes. The encapsulation procedure involves an intermediate drying C, step. The accumulation of DNA and HSA in the capsules is observed by confocal laser scanning microscopy, UV spectroscopy, and flourimetry. The mechanism of encapsulation is discussed Y1 - 2006 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/10003270 U6 - https://doi.org/10.1002/marc.200500777 SN - 1022-1336 ER - TY - JOUR A1 - John, Sheeba A1 - Olas, Justyna Jadwiga A1 - Müller-Röber, Bernd T1 - Regulation of alternative splicing in response to temperature variation in plants JF - Journal of experimental botany N2 - Plants have evolved numerous molecular strategies to cope with perturbations in environmental temperature, and to adjust growth and physiology to limit the negative effects of extreme temperature. One of the strategies involves alternative splicing of primary transcripts to encode alternative protein products or transcript variants destined for degradation by nonsense-mediated decay. Here, we review how changes in environmental temperature-cold, heat, and moderate alterations in temperature-affect alternative splicing in plants, including crops. We present examples of the mode of action of various temperature-induced splice variants and discuss how these alternative splicing events enable favourable plant responses to altered temperatures. Finally, we point out unanswered questions that should be addressed to fully utilize the endogenous mechanisms in plants to adjust their growth to environmental temperature. We also indicate how this knowledge might be used to enhance crop productivity in the future. KW - alternative splicing KW - ambient temperature KW - cold KW - heat KW - plants KW - stress KW - adaptation Y1 - 2021 U6 - https://doi.org/10.1093/jxb/erab232 SN - 0022-0957 SN - 1460-2431 VL - 72 IS - 18 SP - 6150 EP - 6163 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Parlitz, Steffi A1 - Kunze, Reinhard A1 - Müller-Röber, Bernd A1 - Balazadeh, Salma T1 - Regulation of photosynthesis and transcription factor expression by leaf shading and re-illumination in Arabidopsis thaliana leaves JF - Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants N2 - Leaf senescence of annual plants is a genetically programmed developmental phase. The onset of leaf senescence is however not exclusively determined by tissue age but is modulated by various environmental factors. Shading of individual attached leaves evokes dark-induced senescence. The initiation and progression of dark-induced senescence depend on the plant and the age of the affected leaf, however. In several plant species dark-induced senescence is fully reversible upon re-illumination and the leaves can regreen, but the regreening ability depends on the duration of dark incubation. We studied the ability of Arabidopsis thaliana leaves to regreen after dark-incubation with the aim to identify transcription factors (TFs) that are involved in the regulation of early dark-induced senescence and regreening. Two days shading of individual attached leaves triggers the transition into a pre-senescence state from which the leaves can largely recover. Longer periods of darkness result in irreversible senescence. Large scale qRT-PCR analysis of 1872 TF genes revealed that 649 of them are regulated in leaves during normal development, upon shading or re-illumination. Leaf shading triggered upregulation of 150 TF genes, some of which are involved in controlling senescence. Of those, 39 TF genes were upregulated after two days in the dark and regained pre-shading expression level after two days of re-illumination. Furthermore, a larger number of 422 TF genes were down regulated upon shading. In TF gene clusters with different expression patterns certain TF families are over-represented. KW - Arabidopsis thaliana KW - Dark-induced senescence KW - Expression profiling KW - Regreening KW - Transcription factor Y1 - 2011 U6 - https://doi.org/10.1016/j.jplph.2011.02.001 SN - 0176-1617 VL - 168 IS - 12 SP - 1311 EP - 1319 PB - Elsevier CY - Jena ER -