TY - GEN A1 - Stiegler, Jonas A1 - von Hoermann, Christian A1 - Müller, Jörg A1 - Benbow, Mark Eric A1 - Heurich, Marco T1 - Carcass provisioning for scavenger conservation in a temperate forest ecosystem T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Carrion plays an essential role in shaping the structure and functioning of ecosystems and has far‐reaching implications for biodiversity conservation. The change in availability and type of carcasses throughout ecosystems can involve negative effects for scavenging communities. To address this issue, there have been recent conservation management measures of carrion provision in natural systems. However, the optimal conditions under which exposing carcasses to optimize conservation outcomes are still limited. Here, we used camera traps throughout elevational and vegetational gradients to monitor the consumption of 48 deer carcasses over a study period of six years by evaluating 270,279 photographs resulting out of 15,373 trap nights. We detected 17 species visiting carcass deployments, including five endangered species. Our results show that large carcasses, the winter season, and a heterogeneous surrounding habitat enhanced the frequency of carcass visits and the species richness of scavenger assemblages. Contrary to our expectations, carcass species, condition (fresh/frozen), and provision schedule (continuous vs single exposure) did not influence scavenging frequency or diversity. The carcass visitation frequency increased with carcass mass and lower temperatures. The effect of large carcasses was especially pronounced for mesopredators and the Eurasian lynx (Lynx lynx ). Lynx were not too influenced in its carrion acquisition by the season, but exclusively preferred remote habitats containing higher forest cover. Birds of prey, mesopredators, and top predators were also positively influenced by the visiting rate of ravens (Corvus corax ), whereas no biotic or abiotic preferences were found for wild boars (Sus scrofa ). This study provides evidence that any ungulate species of carrion, either in a fresh or in previously frozen condition, attracts a high diversity of scavengers especially during winter, thereby supporting earlier work that carcass provisions may support scavenger communities and endangered species. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 955 KW - anthropogenic food subsidies KW - carrion ecology KW - diversity KW - nature conservation KW - necrobiome KW - vertebrate scavenger KW - wildlife management Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-471099 SN - 1866-8372 IS - 955 ER - TY - GEN A1 - Reeg, Jette A1 - Heine, Simon A1 - Mihan, Christine A1 - McGee, Sean A1 - Preuss, Thomas G. A1 - Jeltsch, Florian T1 - Herbicide risk assessments of non-target terrestrial plant communities BT - A graphical user interface for the plant community model IBC-grass T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Plants located adjacent to agricultural fields are important for maintaining biodiversity in semi-natural landscapes. To avoid undesired impacts on these plants due to herbicide application on the arable fields, regulatory risk assessments are conducted prior to registration to ensure proposed uses of plant protection products do not present an unacceptable risk. The current risk assessment approach for these non-target terrestrial plants (NTTPs) examines impacts at the individual-level as a surrogate approach for protecting the plant community due to the inherent difficulties of directly assessing population or community level impacts. However, modelling approaches are suitable higher tier tools to upscale individual-level effects to community level. IBC-grass is a sophisticated plant community model, which has already been applied in several studies. However, as it is a console application software, it was not deemed sufficiently user-friendly for risk managers and assessors to be conveniently operated without prior expertise in ecological models. Here, we present a user-friendly and open source graphical user interface (GUI) for the application of IBC-grass in regulatory herbicide risk assessment. It facilitates the use of the plant community model for predicting long-term impacts of herbicide applications on NTTP communities. The GUI offers two options to integrate herbicide impacts: (1) dose responses based on current standard experiments (acc. to testing guidelines) and (2) based on specific effect intensities. Both options represent suitable higher tier options for future risk assessments of NTTPs as well as for research on the ecological relevance of effects. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 874 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459997 SN - 1866-8372 IS - 874 ER -