TY - JOUR A1 - Wiemann, Dirk T1 - George, Rosemary Marangoly, Indian English and the Fiction of National Literature / [rezensiert von] Dirk Wiemann JF - Zeitschrift für Anglistik und Amerikanistik : ZAA ; a quarterly of language, literature and culture N2 - Rezensiertes Werk George, Rosemary Marangoly, Indian English and the Fiction of National Literature - Cambridge: Cambridge University Press, 2013. - Hb. viii, 285 pp. - (Zeitschrift für Anglistik und Amerikanistik ; 62(4)) ISBN 978-1-107-04000-7. Y1 - 2014 U6 - https://doi.org/10.1515/zaa-2014-0039 SN - 0044-2305 SN - 2196-4726 VL - 62 IS - 4 SP - 385 EP - 388 PB - DeGruyter CY - Tübingen ER - TY - JOUR A1 - Arlt, Olga A1 - Schwiebs, Anja A1 - Japtok, Lukasz A1 - Rueger, Katja A1 - Katzy, Elisabeth A1 - Kleuser, Burkhard A1 - Radeke, Heinfried H. T1 - Sphingosine-1-Phosphate modulates dendritic cell function: focus on non-migratory effects in vitro and in vivo JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology N2 - Dendritic cells (DCs) are the cutting edge in innate and adaptive immunity. The major functions of these antigen presenting cells are the capture, endosomal processing and presentation of antigens, providing them an exclusive ability to provoke adaptive immune responses and to induce and control tolerance. Immature DCs capture and process antigens, migrate towards secondary lymphoid organs where they present antigens to naive T cells in a well synchronized sequence of procedures referred to as maturation. Indeed, recent research indicated that sphingolipids are modulators of essential steps in DC homeostasis. It has been recognized that sphingolipids not only modulate the development of DC subtypes from precursor cells but also influence functional activities of DCs such as antigen capture, and cytokine profiling. Thus, it is not astonishing that sphingolipids and sphingolipid metabolism play a substantial role in inflammatory diseases that are modulated by DCs. Here we highlight the function of sphingosine 1-phosphate (S1P) on DC homeostasis and the role of SIP and SW metabolism in inflammatory diseases. KW - Sphingosine-1-phosphate KW - Dendritic cells KW - Fingolimod KW - IL-12 KW - Inflammation Y1 - 2014 U6 - https://doi.org/10.1159/000362982 SN - 1015-8987 SN - 1421-9778 VL - 34 IS - 1 SP - 27 EP - 44 PB - Karger CY - Basel ER - TY - JOUR A1 - Fayyaz, Susann A1 - Japtok, Lukasz A1 - Kleuser, Burkhard T1 - Divergent role of sphingosine 1-Phosphate on insulin resistance JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology N2 - Insulin resistance is a complex metabolic disorder in which insulin-sensitive tissues fail to respond to the physiological action of insulin. There is a strong correlation of insulin resistance and the development of type 2 diabetes both reaching epidemic proportions. Dysfunctional lipid metabolism is a hallmark of insulin resistance and a risk factor for several cardiovascular and metabolic disorders. Numerous studies in humans and rodents have shown that insulin resistance is associated with elevations of non-esterified fatty acids (NEFA) in the plasma. Moreover, bioactive lipid intermediates such as diacylglycerol (DAG) and ceramides appear to accumulate in response to NEFA, which may interact with insulin signaling. However, recent work has also indicated that sphingosine 1-phosphate (S1P), a breakdown product of ceramide, modulate insulin signaling in different cell types. In this review, we summarize the current state of knowledge about S1P and insulin signaling in insulin sensitive cells. A specific focus is put on the action of S1P on hepatocytes, pancreatic beta-cells and skeletal muscle cells. In particular, modulation of S1P-signaling can be considered as a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes. KW - Sphingosine 1-phosphate (S1P) KW - Insulin resistance KW - Ceramides KW - Diacylglycerol (DAG) KW - Non-esterified fatty acids (NEFA) KW - Hepatocytes KW - Pancreatic cells KW - Skeletal muscle cells Y1 - 2014 U6 - https://doi.org/10.1159/000362990 SN - 1015-8987 SN - 1421-9778 VL - 34 IS - 1 SP - 134 EP - 147 PB - Karger CY - Basel ER - TY - JOUR A1 - Krahé, Barbara A1 - Tomaszewska, Paulina A1 - Kuyper, Lisette A1 - Vanwesenbeeck, Ine T1 - Prevalence of sexual aggression among young people in Europe: a review of the evidence from 27 EU countries JF - Aggression and violent behavior : a review journa N2 - Sexual aggression poses a serious threat to the sexual well-being of young people. This paper documents the available evidence on the prevalence of sexual aggression perpetration and victimization from 27 EU countries, established as part of the Youth Sexual Aggression and Victimization (Y-SAV) project. A total of N = 113 studies were identified through a systematic review of the literature and consultations with experts in each country. Despite differences in the number of available studies, methodology, and sample composition, the review shows substantial prevalence rates of sexual aggression perpetration and victimization across Europe. A wide variation was found, both within and between countries. The lifetime prevalence rates of female sexual victimization, excluding childhood sexual abuse, ranged from 9 to 83%, the rates of male sexual victimization ranged from 2 to 66%, the rates of male sexual aggression ranged from 0 to 80%, and the range of female sexual aggression ranged from 0.8 to 40%. One-year prevalence rates showed a similar variability. Conceptual and methodological problems in the database are discussed, and an outline is presented for a more harmonized approach to studying the scale of sexual aggression among young people in Europe. (c) 2014 Elsevier Ltd. All rights reserved. KW - Sexual aggression KW - Sexual victimization KW - Adolescence KW - European Union Y1 - 2014 U6 - https://doi.org/10.1016/j.avb.2014.07.005 SN - 1359-1789 SN - 1873-6335 VL - 19 IS - 5 SP - 545 EP - 558 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Lesinski, Melanie A1 - Mühlbauer, Thomas A1 - Buesch, Dirk A1 - Granacher, Urs T1 - Effects of complex training on strength and speed performance in athletes: A systematic review effects of complex training on athletic performance JF - Sportverletzung, Sportschaden : Grundlagen, Prävention, Rehabilitation N2 - Background: Post-activation potentiation (PAP) can elicit acute performance enhancements in variables of strength, power, and speed. However, it is unresolved whether the frequent integration of PAP eliciting conditioning activities in training (i.e., complex training) results in long-term adaptations. In this regard, it is of interest to know whether complex training results in larger performance enhancements as compared to more traditional and isolated training regimens (e. g., resistance training). Thus, this systematic literature review summarises the current state of the art regarding the effects of complex training on measures of strength, power, and speed in recreational, subelite, and elite athletes. Further, it provides information on training volume and intensities that proved to be effective. Methods: Our literature search included the electronic databases Pubmed, SportDiscus, and Web of Science (1995 to September 2013). In total, 17 studies met the inclusionary criteria for review. Ten studies examined alternating complex training and 7 studies sequenced complex training. Results: Our findings indicated small to large effects for both alternating complex training (countermovement jump height: +7.4 % [ESd = -0.43]; squat jump height: +9.8 % [ESd = -0.66]; sprint time: -2.4% [ESd = 0.63]) and sequenced complex training (countermovement jump height: +6.0 % [ESd = -0.83]; squat jump height: +11.9% [ESd = -0.97], sprint time: -0.7% [ESd = 0.52]) in measures of power and speed. As compared to more traditional training regimens, alternating and sequenced complex training showed only small effects in measures of strength, power, and speed. A more detailed analysis of alternating complex training revealed larger effects in countermovement jump height in recreational athletes (+9.7% [ESd = -0.57]) as compared to subelite and elite athletes (+2.7% [ESd = -0.15]). Based on the relevant and currently available literature, missing data (e.g., time for rest interval) and diverse information regarding training volume and intensity do not allow us to establish evidence-based dose-response relations for complex training. Conclusion: Complex training represents an effective training regimen for athletes if the goal is to enhance strength, power, and speed. Studies with high methodological quality have to be conducted in the future to elucidate whether complex training is less, similar, or even more effective compared to more traditional training regimens. Finally, it should be clarified whether alternated and/or sequenced conditioning activities implemented in complex training actually elicit acute PAP effects. KW - resistance training KW - plyometric training KW - dose-response relation KW - athletic performance KW - elite sport Y1 - 2014 U6 - https://doi.org/10.1055/s-0034-1366145 SN - 0932-0555 SN - 1439-1236 VL - 28 IS - 2 SP - 85 EP - 107 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Moule, Adam J. A1 - Neher, Dieter A1 - Turner, Sarah T. ED - Ludwigs, S T1 - P3HT-Based solar cells: structural properties and photovoltaic performance JF - Advances in Polymer Science JF - Advances in Polymer Science N2 - Each year we are bombarded with B.Sc. and Ph.D. applications from students that want to improve the world. They have learned that their future depends on changing the type of fuel we use and that solar energy is our future. The hope and energy of these young people will transform future energy technologies, but it will not happen quickly. Organic photovoltaic devices are easy to sketch, but the materials, processing steps, and ways of measuring the properties of the materials are very complicated. It is not trivial to make a systematic measurement that will change the way other research groups think or practice. In approaching this chapter, we thought about what a new researcher would need to know about organic photovoltaic devices and materials in order to have a good start in the subject. Then, we simplified that to focus on what a new researcher would need to know about poly-3-hexylthiophene: phenyl-C61-butyric acid methyl ester blends (P3HT: PCBM) to make research progress with these materials. This chapter is by no means authoritative or a compendium of all things on P3HT: PCBM. We have selected to explain how the sample fabrication techniques lead to control of morphology and structural features and how these morphological features have specific optical and electronic consequences for organic photovoltaic device applications. KW - Free carrier generation KW - Non-geminate recombination KW - Organic solar cells Y1 - 2014 SN - 978-3-662-45145-8; 978-3-662-45144-1 U6 - https://doi.org/10.1007/12_2014_289 SN - 0065-3195 VL - 265 SP - 181 EP - 232 PB - Springer CY - Berlin ER - TY - JOUR A1 - Bald, Ilko A1 - Keller, Adrian T1 - Molecular processes studied at a single-molecule level using DNA origami nanostructures and atomic force microscopy JF - Molecules N2 - DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM) which enables the study of molecular processes at a single-molecular level. Examples comprise the investigation of chemical reactions, electron-induced bond breaking, enzymatic binding and cleavage events, and conformational transitions in DNA. In this paper, we provide an overview of the advances achieved in the field of single-molecule investigations by applying atomic force microscopy to functionalized DNA origami substrates. KW - DNA origami KW - atomic force microscopy KW - single-molecule analysis KW - DNA radiation damage KW - protein binding KW - enzyme reactions KW - G quadruplexes Y1 - 2014 U6 - https://doi.org/10.3390/molecules190913803 SN - 1420-3049 VL - 19 IS - 9 SP - 13803 EP - 13823 PB - MDPI CY - Basel ER - TY - JOUR A1 - Uestuen, Suayib A1 - Börnke, Frederik T1 - Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways JF - Frontiers in plant science N2 - In eukaryotes, regulated protein turnover is required during many cellular processes, including defense against pathogens. Ubiquitination and degradation of ubiquitinated proteins via the ubiquitin proteasome system (UPS) is the main pathway for the turnover of intracellular proteins in eukaryotes. The extensive utilization of the UPS in host cells makes it an ideal pivot for the manipulation of cellular processes by pathogens. Like many other Gram-negative bacteria, Xanthomonas species secrete a suite of type-III effector proteins (T3Es) into their host cells to promote virulence. Some of these T3Es exploit the plant UPS to interfere with immunity. This review summarizes T3E examples from the genus Xanthomonas with a proven or suggested interaction with the host UPS or UPS-like systems and also discusses the apparent paradox that arises from the presence of T3Es that inhibit the UPS in general while others rely on its activity for their function. KW - Xanthomonas KW - type-III effector KW - ubiquitin KW - proteasome KW - plant defense Y1 - 2014 U6 - https://doi.org/10.3389/fpls.2014.00736 SN - 1664-462X VL - 5 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Unuabonah, Emmanuel Iyayi A1 - Taubert, Andreas T1 - Clay-polymer nanocomposites (CPNs): Adsorbents of the future for water treatment JF - Applied clay science : an international journal on the application and technology of clays and clay minerals N2 - A class of adsorbents currently receiving growing attention is the clay-polymer nanocomposite (CPN) adsorbents. CPNs effectively treat water by adsorption and flocculation of both inorganic and organic micropollutants from aqueous solutions. Some of these CPNs - when modified with biocides - also have the ability to efficiently remove microorganisms such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans from water. CPNs are far more easily recovered from aqueous media than neat clay. They also exhibit far better treatment times than either polymer or clay adsorbents. They have higher adsorption capacity and better life cycles compared with clay alone. CPNs therefore show an excellent potential as highly efficient water and waste treatment agents. This article reviews the various CPNs that have been prepared recently and used as adsorbents in the removal of micropollutants (inorganic, organic and biological) from aqueous solutions. A special focus is placed on CPNs that are not only interesting from an academic point of view but also effectively reduce the concentration of micropollutants in water to safe limits and also on new developments bordering on CPN use as water treatment agent that have not yet realized their full potential. (C) 2014 Elsevier B.V. All rights reserved. KW - Clay-polymer nanocomposite - CPN KW - Micropollutants KW - Adsorbent KW - Water treatment KW - Microorganism KW - Desorption Y1 - 2014 U6 - https://doi.org/10.1016/j.clay.2014.06.016 SN - 0169-1317 SN - 1872-9053 VL - 99 SP - 83 EP - 92 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kleinpeter, Erich ED - Webb, GA T1 - Quantification and visualization of the anisotropy effect in NMR spectroscopy by through-space NMR shieldings JF - Annual reports on NMR spectroscopy JF - Annual Reports on NMR Spectroscopy N2 - The anisotropy effect of functional groups (respectively the ring-current effect of aryl moieties) in H-1 NMR spectra has been computed as spatial NICS (through-space NMR chemical shieldings) and visualized by iso-chemical-shielding surfaces of various size and low(high) field direction. Hereby, the anisotropy/ring-current effect, which proves to be the molecular response property of spatial NICS, can be quantified and can be readily employed for assignment purposes in proton NMR spectroscopy-characteristic examples of stereochemistry and position assignments (the latter in supramolecular structures) will be given. In addition, anisotropy/ring-current effects in H-1 NMR spectra can be quantitatively separated from the second dominant structural effect in proton NMR spectra, the steric compression effect, pointing into the reverse direction, and the ring-current effect, by far the strongest anisotropy effect, can be impressively employed to visualize and quantify (anti) aromaticity and to clear up standing physical-organic phenomena as are pseudo-, spherical, captodative, homo-and chelatoaromaticity, to characterize the pi-electronic structure of, for example, fulvenes, fulvalenes, annulenes or fullerenes and to differentiate aromatic and quinonoid structures. KW - Through-space NMR shielding (TSNMRS) KW - Anisotropy effect KW - Stereochemistry KW - Ring-current effect KW - Aromatic or quinonoid KW - Aromaticity KW - Chelatoaromaticity KW - Binding pocket position KW - Supramolecular compounds KW - Diastereomers assignment Y1 - 2014 SN - 978-0-12-800184-4 U6 - https://doi.org/10.1016/B978-0-12-800184-4.00003-5 SN - 0066-4103 VL - 82 SP - 115 EP - 166 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Gechev, Tsanko S. A1 - Hille, Jacques A1 - Woerdenbag, Herman J. A1 - Benina, Maria A1 - Mehterov, Nikolay A1 - Toneva, Valentina A1 - Fernie, Alisdair R. A1 - Müller-Röber, Bernd T1 - Natural products from resurrection plants: Potential for medical applications JF - Biotechnology advances : an international review journal ; research reviews and patent abstracts N2 - Resurrection species are a group of land plants that can tolerate extreme desiccation of their vegetative tissues during harsh drought stress, and still quickly often within hours regain normal physiological and metabolic functions following rehydration. At the molecular level, this desiccation tolerance is attributed to basal cellular mechanisms including the constitutive expression of stress-associated genes and high levels of protective metabolites present already in the absence of stress, as well as to transcriptome and metabolome reconfigurations rapidly occurring during the initial phases of drought stress. Parts of this response are conferred by unique metabolites, including a diverse array of sugars, phenolic compounds, and polyols, some of which accumulate to high concentrations within the plant cell. In addition to drought stress, these metabolites are proposed to contribute to the protection against other abiotic stresses and to an increased oxidative stress tolerance. Recently, extracts of resurrection species and particular secondary metabolites therein were reported to display biological activities of importance to medicine, with e.g. antibacterial, anticancer, antifungal, and antiviral activities, rendering them possible candidates for the development of novel drug substances as well as for cosmetics. Herein, we provide an overview of the metabolite composition of resurrection species, summarize the latest reports related to the use of natural products from resurrection plants, and outline their potential for medical applications. (C) 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). KW - Antibacterial KW - Anticancer KW - Antifungal KW - Antiviral KW - Natural product KW - Resurrection plant KW - Secondary metabolite KW - Synthetic biology Y1 - 2014 U6 - https://doi.org/10.1016/j.biotechadv.2014.03.005 SN - 0734-9750 SN - 1873-1899 VL - 32 IS - 6 SP - 1091 EP - 1101 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Hepworth, Jo A1 - Lenhard, Michael T1 - Regulation of plant lateral-organ growth by modulating cell number and size JF - Current opinion in plant biology N2 - Leaves and floral organs grow to distinct, species-specific sizes and shapes. Research over the last few years has increased our understanding of how genetic pathways modulate cell proliferation and cell expansion to determine these sizes and shapes. In particular, the timing of proliferation arrest is an important point of control for organ size, and work on the regulators involved is showing how this control is achieved mechanistically and integrates environmental information. We are also beginning to understand how growth differs in different organs to produce their characteristic shapes, and how growth is integrated between different tissues that make up plant organs. Lastly, components of the general machinery in eukaryotic cells have been identified as having important roles in growth control. Y1 - 2014 U6 - https://doi.org/10.1016/j.pbi.2013.11.005 SN - 1369-5266 SN - 1879-0356 VL - 17 SP - 36 EP - 42 PB - Elsevier CY - London ER - TY - JOUR A1 - Krause, Sascha A1 - Le Roux, Xavier A1 - Niklaus, Pascal A. A1 - Van Bodegom, Peter M. A1 - Lennon, Jay T. A1 - Bertilsson, Stefan A1 - Grossart, Hans-Peter A1 - Philippot, Laurent A1 - Bodelier, Paul L. E. T1 - Trait-based approaches for understanding microbial biodiversity and ecosystem functioning JF - Frontiers in microbiology N2 - In ecology, biodiversity-ecosystem functioning (BEE) research has seen a shift in perspective from taxonomy to function in the last two decades, with successful application of trait-based approaches. This shift offers opportunities for a deeper mechanistic understanding of the role of biodiversity in maintaining multiple ecosystem processes and services. In this paper, we highlight studies that have focused on BEE of microbial communities with an emphasis on integrating trait-based approaches to microbial ecology. In doing so, we explore some of the inherent challenges and opportunities of understanding BEE using microbial systems. For example, microbial biologists characterize communities using gene phylogenies that are often unable to resolve functional traits. Additionally, experimental designs of existing microbial BEE studies are often inadequate to unravel BEE relationships. We argue that combining eco-physiological studies with contemporary molecular tools in a trait-based framework can reinforce our ability to link microbial diversity to ecosystem processes. We conclude that such trait-based approaches are a promising framework to increase the understanding of microbial BEE relationships and thus generating systematic principles in microbial ecology and more generally ecology. KW - functional traits KW - ecosystem function KW - ecological theory KW - study designs KW - microbial diversity Y1 - 2014 U6 - https://doi.org/10.3389/fmicb.2014.00251 SN - 1664-302X VL - 5 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Tang, Kam W. A1 - Gladyshev, Michail I. A1 - Dubovskaya, Olga P. A1 - Kirillin, Georgiy A1 - Grossart, Hans-Peter T1 - Zooplankton carcasses and non-predatory mortality in freshwater and inland sea environments JF - Journal of plankton research N2 - Zooplankton carcasses are ubiquitous in marine and freshwater systems, implicating the importance of non-predatory mortality, but both are often overlooked in ecological studies compared with predatory mortality. The development of several microscopic methods allows the distinction between live and dead zooplankton in field samples, and the reported percentages of dead zooplankton average 11.6 (minimum) to 59.8 (maximum) in marine environments, and 7.4 (minimum) to 47.6 (maximum) in fresh and inland waters. Common causes of non-predatory mortality among zooplankton include senescence, temperature change, physical and chemical stresses, parasitism and food-related factors. Carcasses resulting from non-predatory mortality may undergo decomposition leading to an increase in microbial production and a shift in microbial composition in the water column. Alternatively, sinking carcasses may contribute significantly to vertical carbon flux especially outside the phytoplankton growth seasons, and become a food source for the benthos. Global climate change is already altering freshwater ecosystems on multiple levels, and likely will have significant positive or negative effects on zooplankton non-predatory mortality. Better spatial and temporal studies of zooplankton carcasses and non-predatory mortality rates will improve our understanding of this important but under-appreciated topic. KW - carbon flux KW - inland waters KW - lakes KW - live KW - dead sorting KW - non-predatory mortality KW - zooplankton carcasses Y1 - 2014 U6 - https://doi.org/10.1093/plankt/fbu014 SN - 0142-7873 SN - 1464-3774 VL - 36 IS - 3 SP - 597 EP - 612 PB - Oxford Univ. Press CY - Oxford ER -