TY - JOUR A1 - Sander, Andreas Alexander Christoph A1 - Fürst, F. A1 - Kretschmar, P. A1 - Oskinova, Lidia M. A1 - Todt, Helge Tobias A1 - Hainich, Rainer A1 - Shenar, Tomer A1 - Hamann, Wolf-Rainer T1 - Coupling hydrodynamics with comoving frame radiative transfer BT - Stellar wind stratification in the high-mass X-ray binary Vela X-1 JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. To gain a realistic picture of the donor star in Vela X-1, we constructed a hydrodynamically consistent atmosphere model describing the wind stratification while properly reproducing the observed donor spectrum. To investigate how X-ray illumination affects the stellar wind, we calculated additional models for different X-ray luminosity regimes. Methods. We used the recently updated version of the Potsdam Wolf-Rayet code to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer. Results. The wind flow in Vela X-1 is driven by ions from various elements, with Fe III and S III leading in the outer wind. The model-predicted mass-loss rate is in line with earlier empirical studies. The mass-loss rate is almost unaffected by the presence of the accreting NS in the wind. The terminal wind velocity is confirmed at u(infinity) approximate to 600 km s(-1). On the other hand, the wind velocity in the inner region where the NS is located is only approximate to 100 km s(-1), which is not expected on the basis of a standard beta-velocity law. In models with an enhanced level of X-rays, the velocity field in the outer wind can be altered. If the X-ray flux is too high, the acceleration breaks down because the ionization increases. Conclusions. Accounting for radiation hydrodynamics, our Vela X-1 donor atmosphere model reveals a low wind speed at the NS location, and it provides quantitative information on wind driving in this important HMXB. KW - stars: mass-loss KW - stars: winds, outflows KW - stars: early-type KW - stars: atmospheres KW - stars: massive KW - X-rays: binaries Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201731575 SN - 1432-0746 VL - 610 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Massa, Derck A1 - Oskinova, Lidia M. A1 - Prinja, Raman A1 - Ignace, Richard T1 - Coordinated UV and X-Ray Spectroscopic Observations of the O-type Giant xi Per BT - the Connection between X-Rays and Large-scale Wind Structure JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present new, contemporaneous Hubble Space Telescope STIS and XMM-Newton observations of the O7. III(n) ((f)) star xi Per. We supplement the new data with archival IUE spectra, to analyze the variability of the wind lines and X-ray flux of xi Per. The variable wind of this star is known to have a 2.086-day periodicity. We use a simple, heuristic spot model that fits the low-velocity (near-surface) IUE wind line variability very well, to demonstrate that the low-velocity absorption in the new STIS spectra of N IV lambda 1718 and Si IV lambda 1402 vary with the same 2.086-day period. It is remarkable that the period and amplitude of the STIS data agree with those of the IUE spectra obtained 22 yr earlier. We also show that the time variability of the new XMM-Newton fluxes is also consistent with the 2.086-day period. Thus, our new, multiwavelength coordinated observations demonstrate that the mechanism that causes the UV wind line variability is also responsible for a significant fraction of the X-rays in single O stars. The sequence of events for the multiwavelength light-curve minima is Si IV lambda 1402, N IV lambda 1718, and X-ray flux, each separated by a phase of about 0.06 relative to the 2.086-day period. Analysis of the X-ray fluxes shows that they become softer as they weaken. This is contrary to expectations if the variability is caused by periodic excess absorption. Furthermore, the high-resolution X-ray spectra suggest that the individual emission lines at maximum are more strongly blueshifted. If we interpret the low-velocity wind line light curves in terms of our model, it implies that there are two bright regions, i.e., regions with less absorption, separated by 180 degrees, on the surface of the star. We note that the presence and persistence of two spots separated by 180 degrees suggest that a weak dipole magnetic field is responsible for the variability of the UV wind line absorption and X-ray flux in xi Per. KW - stars: activity KW - stars: early-type KW - stars: winds, outflows KW - ultraviolet: stars KW - X-rays: stars Y1 - 2019 U6 - https://doi.org/10.3847/1538-4357/ab0283 SN - 0004-637X SN - 1538-4357 VL - 873 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Massa, D. A1 - Oskinova, Lidia M. A1 - Fullerton, A. W. A1 - Prinja, R. K. A1 - Bohlender, D. A. A1 - Morrison, N. D. A1 - Blake, M. A1 - Pych, W. T1 - CIR modulation of the X-ray flux from the O7.5 III(n)((f)) star xi Persei(a similar to...)? JF - Monthly notices of the Royal Astronomical Society N2 - We analyse a 162 ks high energy transmission grating Chandra observation of the O7.5 III(n)((f)) star xi Per, together with contemporaneous H alpha observations. The X-ray spectrum of this star is similar to other single O stars, and not pathological in any way. Its UV wind lines are known to display cyclical time variability, with a period of 2.086 d, which is thought to be associated with corotating interaction regions (CIRs). We examine the Chandra and H alpha data for variability on this time-scale. We find that the X-rays vary by similar to 15 per cent over the course of the observations and that this variability is out of phase with variable absorption on the blue wing of the H alpha profiles (assumed to be a surrogate for the UV absorption associated with CIRs). While not conclusive, both sets of data are consistent with models where the CIRs are either a source of X-rays or modulate them. KW - stars: early-type KW - stars: individual: xi Persei KW - stars: mass loss KW - stars: winds, outflows KW - X-rays: stars Y1 - 2014 U6 - https://doi.org/10.1093/mnras/stu565 SN - 0035-8711 SN - 1365-2966 VL - 441 IS - 3 SP - 2173 EP - 2180 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Ramiaramanantsoa, Tahina A1 - Moffat, Anthony F. J. A1 - Harmon, Robert A1 - Ignace, R. A1 - St-Louis, Nicole A1 - Vanbeveren, Dany A1 - Shenar, Tomer A1 - Pablo, Herbert A1 - Richardson, Noel D. A1 - Howarth, Ian D. A1 - Stevens, Ian R. A1 - Piaulet, Caroline A1 - St-Jean, Lucas A1 - Eversberg, Thomas A1 - Pigulski, Andrzej A1 - Popowicz, Adam A1 - Kuschnig, Rainer A1 - Zoclonska, Elzbieta A1 - Buysschaert, Bram A1 - Handler, Gerald A1 - Weiss, Werner W. A1 - Wade, Gregg A. A1 - Rucinski, Slavek M. A1 - Zwintz, Konstanze A1 - Luckas, Paul A1 - Heathcote, Bernard A1 - Cacella, Paulo A1 - Powles, Jonathan A1 - Locke, Malcolm A1 - Bohlsen, Terry A1 - Chené, André-Nicolas A1 - Miszalski, Brent A1 - Waldron, Wayne L. A1 - Kotze, Marissa M. A1 - Kotze, Enrico J. A1 - Böhm, Torsten T1 - BRITE-Constellation high-precision time-dependent photometry of the early O-type supergiant zeta Puppis unveils the photospheric drivers of its small- and large-scale wind structures JF - Monthly notices of the Royal Astronomical Society N2 - From 5.5 months of dual-band optical photometric monitoring at the 1 mmag level, BRITE-Constellation has revealed two simultaneous types of variability in the O4I(n)fp star ζ Puppis: one single periodic non-sinusoidal component superimposed on a stochastic component. The monoperiodic component is the 1.78-d signal previously detected by Coriolis/Solar Mass Ejection Imager, but this time along with a prominent first harmonic. The shape of this signal changes over time, a behaviour that is incompatible with stellar oscillations but consistent with rotational modulation arising from evolving bright surface inhomogeneities. By means of a constrained non-linear light-curve inversion algorithm, we mapped the locations of the bright surface spots and traced their evolution. Our simultaneous ground-based multisite spectroscopic monitoring of the star unveiled cyclical modulation of its He ii λ4686 wind emission line with the 1.78-d rotation period, showing signatures of corotating interaction regions that turn out to be driven by the bright photospheric spots observed by BRITE. Traces of wind clumps are also observed in the He ii λ4686 line and are correlated with the amplitudes of the stochastic component of the light variations probed by BRITE at the photosphere, suggesting that the BRITE observations additionally unveiled the photospheric drivers of wind clumps in ζ Pup and that the clumping phenomenon starts at the very base of the wind. The origins of both the bright surface inhomogeneities and the stochastic light variations remain unknown, but a subsurface convective zone might play an important role in the generation of these two types of photospheric variability. KW - techniques: photometric KW - techniques: spectroscopic KW - stars: massive KW - stars: rotation KW - starspots KW - supergiants KW - stars: winds, outflows Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx2671 SN - 0035-8711 SN - 1365-2966 VL - 473 IS - 4 SP - 5532 EP - 5569 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Gimenez-Garcia, Angel A1 - Torrejon, Jose Miguel A1 - Eikmann, Wiebke A1 - Martinez-Nunez, Silvia A1 - Oskinova, Lidia M. A1 - Rodes-Roca, Jose Joaquin A1 - Bernabeu, Guillermo T1 - An XMM-Newton view of FeK alpha in high-mass X-ray binaries JF - Astronomy and astrophysics : an international weekly journal N2 - We present a comprehensive analysis of the whole sample of available XMM-Newton observations of high-mass X-ray binaries (HMXBs) until August 2013, focusing on the FeK alpha emission line. This line is key to better understanding the physical properties of the material surrounding the X-ray source within a few stellar radii (the circumstellar medium). We collected observations from 46 HMXBs and detected FeK alpha in 21 of them. We used the standard classification of HMXBs to divide the sample into different groups. We find that (1) different classes of HMXBs display different qualitative behaviours in the FeK alpha spectral region. This is visible especially in SGXBs (showing ubiquitous Fe fluorescence but not recombination Fe lines) and in gamma Cass analogues (showing both fluorescent and recombination Fe lines). (2) FeK alpha is centred at a mean value of 6.42 keV. Considering the instrumental and fits uncertainties, this value is compatible with ionization states that are lower than Fe xviii. (3) The flux of the continuum is well correlated with the flux of the line, as expected. Eclipse observations show that the Fe fluorescence emission comes from an extended region surrounding the X-ray source. (4) We observe an inverse correlation between the X-ray luminosity and the equivalent width of FeK alpha (EW). This phenomenon is known as the X-ray Baldwin effect. (5) FeK alpha is narrow (sigma(line) < 0.15 keV), reflecting that the reprocessing material does not move at high speeds. We attempt to explain the broadness of the line in terms of three possible broadening phenomena: line blending, Compton scattering, and Doppler shifts (with velocities of the reprocessing material V similar to 1000 km s(-1)). (6) The equivalent hydrogen column (N-H) directly correlates to the EW of FeK alpha, displaying clear similarities to numerical simulations. It highlights the strong link between the absorbing and the fluorescent matter. (7) The observed NH in supergiant X-ray binaries (SGXBs) is in general higher than in supergiant fast X-ray transients (SFXTs). We suggest two possible explanations: different orbital configurations or a different interaction compact object - wind. (8) Finally, we analysed the sources IGR J16320-4751 and 4U 1700-37 in more detail, covering several orbital phases. The observed variation in NH between phases is compatible with the absorption produced by the wind of their optical companions. The results clearly point to a very important contribution of the donor's wind in the FeK alpha emission and the absorption when the donor is a supergiant massive star. KW - surveys KW - X-rays: binaries KW - binaries: general KW - circumstellar matter KW - stars: winds, outflows KW - stars: early-type Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201425004 SN - 0004-6361 SN - 1432-0746 VL - 576 PB - EDP Sciences CY - Les Ulis ER -