TY - JOUR A1 - Kleinpeter, Erich A1 - Schulenburg, A. T1 - Quantification of the push-pull effect in substituted alkenes N2 - The quotient of the occupation numbers of pi bonding and pi* antibonding orbitals of the central C=C partial double bond, pi*(C=C)/pi(C=C), proved to be a useful parameter to quantify the push-pull effect completely for the first time in substituted alkenes by examination of a comprehensive set of compounds. (c) 2005 Elsevier Ltd. All rights reserved Y1 - 2005 SN - 0040-4039 ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas A1 - Pihlaja, Kalevi T1 - Application of (1)J(C,H) coupling constants in conformational analysis N2 - Conformational equilibria for a number of methyl substituted 1,3-dioxanes 1, 1,3-oxathianes 2 and 1,3-dithianes 3 were calculated at the HF and DFT levels of theory. In addition to the chair conformers also the energetically adjacent twist conformers were considered and the positions of the corresponding conformational equilibria estimated. On the basis of the global energy minima of conformers, participating in the conformational equilibria, the 1J(C,Hax,equ) coupling constants were calculated using the GIAO method and compared with the experimental values obtained from C-13, H- 1 coupled C-13 NMR spectra. The Perlin effect, the influence of the solvent and the suitability of this NMR parameter for assigning the conformational equilibria present are critically discussed. (c) 2005 Elsevier Ltd. All rights reserved Y1 - 2005 SN - 0040-4020 ER - TY - JOUR A1 - Klinka, Karel D. A1 - Imrich, Jan A1 - Danihel, I. A1 - Bohm, Stanislav A1 - Kristian, Pavol A1 - Harnul'akova, S. A1 - Pihlaja, Kalevi A1 - Koch, Andreas A1 - Kleinpeter, Erich T1 - Configuration and E/Z interconversion mechanism of O(S)-allyl-S(O)-methyl-N-(acridin-9-yl)iminothiocarbonate N2 - The configuration and dynamic behavior of O-allyl-S-methyl-N-(acridin-9-yl)iminothiocarbonate (1) and its S- allyl-O-methyl regioisomer (2) were studied using quantum chemical calculations and by applying a novel graphical method to scatter maps obtained from MD simulations for evaluation of an NOE-weighted internuclear distance (r(NOE)). Energy calculations indicated that the Z configuration was predominant for each compound and, further, this was supported both by the calculated chemical shifts and the rNOE. Both N-inversion- and rotation-type transition-state structures were also calculated for the E/Z isomerization process, the results indicating that the preferred interconversion mechanism for 1 is N-inversion, but contrastingly, interconversion via rotation is equally as probable as N-inversion for 2. This supports the notion that one or the other or both pathways can be active and each system needs to be assessed on a case- by-case basis. Copyright (c) 2005 John Wiley & Sons, Ltd Y1 - 2005 SN - 0749-1581 ER - TY - JOUR A1 - Heydenreich, Matthias A1 - Koch, Andreas A1 - Sarodnick, Gerhard A1 - Kleinpeter, Erich T1 - Quinoxalines XIV : Synthesis, H-1, C-13, N-15 NMR spectroscopic, and quantum chemical study of 1H-pyrazolo[3,4- b]quinoxalines (flavazoles) N2 - The synthesis of a series of 1H-pyrazolo[3,4-b]quinoxalines (flavazoles) by acylation, alkylation, halogenation, and aminomethylation of the parent compound is reported and their structure is investigated by H-1, C-13 and N-15 NMR spectroscopy. The restricted rotation about the partial C, N double bond of the N-acyl derivatives 7-10 is studied by dynamic NMR spectroscopy and the barriers to rotation are determined. In order to assign unequivocally the 15 N chemical shifts of N-4 and N-9, in case of 3-substituted flavazoles, exemplary the H-1, C-13, and N-15 NMR chemical shifts of 34, 35, and 39 are also theoretically calculated by quantum chemical methods [ab initio at different levels of theory (HF/6-3G* and B3LYP/6-31G*)]. (C) 2005 Elsevier Ltd. All rights reserved Y1 - 2005 SN - 0040-4020 ER - TY - JOUR A1 - Markovic, Rade A1 - Baranac-Stojanovic, Marija A1 - Steel, Peter J. A1 - Kleinpeter, Erich T1 - Stereocontrolled synthesis of new tetrahydrofuro[2,3-d]thiazole derivatives via activated vinylogous iminium ions N2 - Heterocyclization of (Z)-5-(2-hydroxyethyl)-3-methyl-4-oxothiazolidines, bearing electron-withdrawing groups conjugated to an exocyclic double bond at C(2)-position, afforded under reductive conditions, cis-tetrahydroftiro[2,3- d]thiazole derivatives. The reactions of these functionalized push-pull beta-enamines occur in a stereocontrolled fashion via activated vinylogous N-methyliminium ions, which are trapped by an internal hydroxyethyl group Y1 - 2005 SN - 0385-5414 ER - TY - JOUR A1 - Neuvonen, Kari A1 - Fulop, Ferenc A1 - Neuvonen, Helmi A1 - Koch, Andreas A1 - Kleinpeter, Erich A1 - Pihlaja, Kalevi T1 - Propagation of polar substituent effects in 1-(substituted phenyl)-6,7-dimethoxy-3,4-dihydro- and -1,2,3,4- tetrahydroisoquinolines as explained by resonance polarization concept N2 - Propagation of inductive and resonance effects of phenyl substituents within 1-(substituted phenyl)-6,7- dimethoxy-3,4-dihydro- and -1,2,3,4-tetrahydroisoquinolines were studied with the aid of C-13 and N-15 NMR chemical shifts and ab initio calculations. The substituent-induced changes in the chemical shift (SCS) were correlated with a dual substituent parameter equation. The contributions of conjugative (rho(R)) and nonconjugative effects (rho(F)) were analyzed, and mapping of the substituent-induced changes is given over the entire isoquinoline moiety for both series. The experimental results can be rationalized with the aid of the resonance polarization concept. This means the consideration of the substituent-sensitive balance of different resonance structures, i.e., electron delocalization, and the effect of the aromatic ring substituents on their relative contributions. With tetrahydroisoquinolines, the delocalization of the nitrogen lone pair (stereoelectronic effect) particularly contributes. Correlation analysis of the Mulliken atomic charges for the dihydroisoquinoline derivatives was also performed. The results support the concept of the substituent-sensitive polarization of the isoquinoline moiety even if the polarization pattern achieved via the NMR approach is not quite the same as that predicted by the computational charges. Previously the concepts of localized pi- polarization and extended polarization have been used to explain polar substituent effects within aromatic side-chain derivatives. We consider that the resonance polarization model effectively contributes to the understanding of the polar substituent effects Y1 - 2005 ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Seidl, Peter Rudolf T1 - The gamma- and the delta-effects in C-13 NMR spectroscopy in terms of nuclear chemical shielding (NCS) analysis Y1 - 2005 SN - 0894-3230 ER - TY - JOUR A1 - Klinka, Karel D. A1 - Balentova, Eva A1 - Bernát, Juraj A1 - Imrich, Ján A1 - Vavrusová, Martina A1 - Pihlaja, Kalevi A1 - Koch, Andreas A1 - Kleinpeter, Erich A1 - Kelling, Alexandra A1 - Schilde, Uwe T1 - Structural revision of products resulting from the reaction of methylhydrazine with acridin-9-yl isothiocyanate due to unexpected acridinyl migration And further reactions N2 - The reaction of methyl acridin-9-ylthiosemicarbazide under basic conditions with methyl bromoacetate resulted in a 1,3-thiazolin-4-one structure as provided by X-ray crystallography. The structure forced a re-evaluation of the reactant methyl acridin-9-ylthiosemicarbazide, originally thought to be 2-methyl 4-acridin-9-ylthiosemicarbazide based on synthetic expectations, but which when examined by X-ray crystallography was found to be in fact the isomeric 2- methyl 1-acridin-9-ylthiosemicarbazide resulting from rearrangement via a spiro form which it is in equilibrium with in solution. The product resulting from reaction with methyl iodide was also studied and the previously reported semicarbazide produced by reaction with MNO was re-examined. In both cases, the 1,2 isomer rather than the 2,4 isomer was found to be present based on the sign of the 3JCH3,N11 coupling. Full characterization of the compounds was rendered by 1H, 13C, and 15N solution-state NMR, and in the solid state, by both 13C and 15N NMR. Y1 - 2006 UR - http://arkat-usa.org/home.aspx?VIEW=BROWSE&MENU=ARKIVOC SN - 1551-7004 ER - TY - JOUR A1 - Kleinpeter, Erich T1 - Push-pull alkenes : structure and pi-electron distribution N2 - Push-pull alkenes are substituted alkenes with one or two electron-donating substituents on one end of C=C double bond and with one or two electron-accepting substituents at the other end. Allowance for pi-electron delocalization leads to the central C=C double bond becoming ever more polarized and with rising push-pull character, the pi-bond order of this double bond is reduced and, conversely, the corresponding pi-bond orders of the C-Don and C- Ace bonds are accordingly increased. This push-pull effect is of decisive influence on both the dynamic behavior and the chemical reactivity of this class of compounds and thus it is Of Considerable interest to both determine and to quantify the inherent push-pull effect. previously, the barriers to rotation about the C=C, C-Don and/or C-Acc partial double bonds (Delta G(not equal), as determined by dynamic NMR spectroscopy) or the C-13 chemical shift difference of the polarized C=C partial double bond (Delta delta(C=C)) were employed for this purpose, However, these parameters can have serious limitations, viz. the barriers can be immeasurable on the NMR timescale (either by being too high or too low-, heavily-biased conformers are present, etc.) or Delta delta(C=C) behaves in a non-additive manner with respect to the combination of the four substituents. Hence, a general parameter to quantify the push-pull effect is not yet available. Ab initio MO calculations on a collection of compounds, together with NBO analysis, provided valuable information on the structure, bond energies, electron occupancies and bonding/antibonding interactions. In addition to Delta G(C=C)(not equal) (either experimentally determined or theoretically calculated) and Delta delta(C=C), the bond length of the C=C partial double bond was also examined and it proved to be a reliable parameter to quantify the push-pull effect. Equally so, the quotient of the occupation numbers of the antibonding and bonding pi orbitals of the central C=C partial double bond ( pi*(C=C)/pi(C=C) ) could also be employed for this purpose Y1 - 2006 UR - http://www.shd.org.rs/JSCS/ U6 - https://doi.org/10.2298/Jsc0601001k ER - TY - JOUR A1 - Kleinpeter, Erich T1 - Quantification of the (Anti)Aromaticity of Fulvalenes Subjected to -Electron Cross-Delocalization N2 - Fulvalenes 3-12 were theoretically studied at the ab initio level of theory. For the global minima structures, the occupation of the bonding (pi)C=C orbital of the interring C=C double bond obtained by NBO analysis quantitatively proves pi-electron cross-delocalization resulting in, at least partially, 2- or 6pi-electron aromaticity and 8pi- electron antiaromaticity for appropriate moieties. The cross-conjugation was quantified by the corresponding occupation numbers and lengths of the interring C=C double bonds, while the aromaticity or antiaromaticity due to cross- delocalization of the pi-electrons was visualized and quantified by through-space NMR shielding surfaces. Y1 - 2008 UR - http://pubs.acs.org/doi/full/10.1021/jo701520j U6 - https://doi.org/10.1021/Jo701520j ER -