TY - CHAP A1 - Gronau, Norbert A1 - Weber, Edzard A1 - Wander, Paul A1 - Ullrich, André ED - Plapper, Peter T1 - A regional remanufacturing network approach BT - modeling and simulation of circular economy processes in the era of industry 4.0 T2 - Digitization of the work environment for sustainable production N2 - Manufacturing companies still have relatively few points of contact with the circular economy. Especially, extending life time of whole products or parts via remanufacturing is an promising approach to reduce waste. However, necessary cost-efficient assessment of the condition of the individual parts is challenging and assessment procedures are technically complex (e.g., scanning and testing procedures). Furthermore, these assessment procedures are usually only available after the disassembly process has been completed. This is where conceptualization, data acquisition and simulation of remanufacturing processes can help. One major constraining aspect of remanufacturing is reducing logistic efforts, since these also have negative external effects on the environment. Thus regionalization is an additional but in the end consequential challenge for remanufacturing. This article aims to fill a gap by providing an regional remanufacturing approach, in particular the design of local remanufacturing chains. Thereby, further focus lies on modeling and simulating alternative courses of action, including feasibility study and eco-nomic assessment. KW - regional network KW - remanufacturing KW - scenario modeling Y1 - 2022 SN - 978-3-95545-407-4 U6 - https://doi.org/10.30844/WGAB_2022_8 SP - 145 EP - 170 PB - GITO Verlag CY - Berlin ER - TY - CHAP A1 - Grum, Marcus A1 - Thim, Christof A1 - Gronau, Norbert ED - Andersen, Ann-Louise ED - Andersen, Rasmus ED - Brunoe, Thomas Ditlev ED - Larsen, Maria Stoettrup Schioenning ED - Nielsen, Kjeld ED - Napoleone, Alessia ED - Kjeldgaard, Stefan T1 - Aiming for knowledge-transfer-optimizing intelligent cyber-physical systems T2 - Towards sustainable customization : cridging smart products and manufacturing systems N2 - Since more and more production tasks are enabled by Industry 4.0 techniques, the number of knowledge-intensive production tasks increases as trivial tasks can be automated and only non-trivial tasks demand human-machine interactions. With this, challenges regarding the competence of production workers, the complexity of tasks and stickiness of required knowledge occur [1]. Furthermore, workers experience time pressure which can lead to a decrease in output quality. Cyber-Physical Systems (CPS) have the potential to assist workers in knowledge-intensive work grounded on quantitative insights about knowledge transfer activities [2]. By providing contextual and situational awareness as well as complex classification and selection algorithms, CPS are able to ease knowledge transfer in a way that production time and quality is improved significantly. CPS have only been used for direct production and process optimization, knowledge transfers have only been regarded in assistance systems with little contextual awareness. Embedding production and knowledge transfer optimization thus show potential for further improvements. This contribution outlines the requirements and a framework to design these systems. It accounts for the relevant factors. KW - smart automation KW - smart production KW - human-machine-interaction Y1 - 2021 SN - 978-3-030-90699-3 SN - 978-3-030-90700-6 SN - 978-3-030-90702-0 U6 - https://doi.org/10.1007/978-3-030-90700-6_16 SP - 149 EP - 157 PB - Springer CY - Cham ER - TY - CHAP A1 - Langemeyer, Ines A1 - Gronau, Norbert A1 - Schmid-Walz, Sabrina A1 - Kotarski, David A1 - Reimann, Daniela A1 - Teichmann, Malte T1 - From employee to expert BT - towards a corona-sensitive approach for data collection T2 - 2021 Crossing Boundaries Muttenz/Basel and Bern : 4th International VET Conference Crossing Boundaries 8 to 9 April 2021, online, Muttenz and Bern, Switzerland N2 - In the context of the collaborative project Ageing-appropriate, process-oriented and interactive further training in SME (API-KMU), innovative solutions for the challenges of demographic change and digitalisation are being developed for SMEs. To this end, an approach to age-appropriate training will be designed with the help of AR technology. In times of the corona pandemic, a special research design is necessary for the initial survey of the current state in the companies, which will be systematically elaborated in this paper. The results of the previous methodological considerations illustrate the necessity of a mix of methods to generate a deeper insight into the work processes. Video-based retrospective interviews seem to be a suitable instrument to adequately capture the employees' interpretative perspectives on their work activities. In conclusion, the paper identifies specific challenges, such as creating acceptance among employees, open questions, e.g., how a transfer or generalization of the results can succeed, and hypotheses that will have to be tested in the further course of the research process. KW - cross self-confrontation KW - recording of workplaces KW - corona-sensitive data collection KW - age-appropriate vocational training KW - augmented reality Y1 - 2021 U6 - https://doi.org/10.5281/zenodo.4590196 SP - 226 EP - 231 ER - TY - CHAP A1 - Gronau, Norbert A1 - Teichmann, Malte A1 - Weber, Edzard ED - Shishkov, Boris T1 - Serious game-based haptic modeling BT - an application-oriented approach for sequentially developing new business models from tacit knowledge T2 - Business modeling and software design N2 - The authors propose that while tacit knowledge is a valuable resource for developing new business models, its externalization presents several challenges. One major challenge is that individuals often don’t recognize their tacit knowledge resources, while another is the reluctance to share one’s knowledge with others. Addressing these challenges, the authors present an application-oriented serious game-based haptic modeling approach for externalize tacit knowledge, which can be used to develop the first versions of business models based on tacit knowledge. Both conceptual and practical design fundamentals are presented based on elaborated theoretical approaches, which were developed with the help of a design science approach. The development of the research process is presented step by step, whereby we focused on the high accessibility of the presented research. Practitioners are presented with guidelines for implementing their serious game projects. Scientists benefit from starting points for their research topics of externalization, internalization, and socialization of tacit knowledge, development of business models, and serious games or gamification. The paper concludes with open research desiderata and questions from the presented research process. KW - serious game KW - tacit knowledge KW - business model KW - SECI-model KW - conversion sequences KW - design science Y1 - 2023 SN - 978-3-031-36756-4 U6 - https://doi.org/10.1007/978-3-031-36757-1_3 SP - 32 EP - 55 PB - Springer Nature CY - Cham ER - TY - CHAP A1 - Thim, Christof A1 - Gronau, Norbert A1 - Haase, Jennifer A1 - Grum, Marcus A1 - Schüffler, Arnulf A1 - Roling, Wiebke A1 - Kluge, Annette ED - Shishkov, Boris T1 - Modeling change in business processes T2 - Business modeling and software design N2 - Business processes are regularly modified either to capture requirements from the organization’s environment or due to internal optimization and restructuring. Implementing the changes into the individual work routines is aided by change management tools. These tools aim at the acceptance of the process by and empowerment of the process executor. They cover a wide range of general factors and seldom accurately address the changes in task execution and sequence. Furthermore, change is only framed as a learning activity, while most obstacles to change arise from the inability to unlearn or forget behavioural patterns one is acquainted with. Therefore, this paper aims to develop and demonstrate a notation to capture changes in business processes and identify elements that are likely to present obstacles during change. It connects existing research from changes in work routines and psychological insights from unlearning and intentional forgetting to the BPM domain. The results contribute to more transparency in business process models regarding knowledge changes. They provide better means to understand the dynamics and barriers of change processes. KW - intentional forgetting KW - routines KW - business processes KW - unlearning Y1 - 2023 SN - 978-3-031-36756-4 SN - 978-3-031-36757-1 U6 - https://doi.org/10.1007/978-3-031-36757-1_1 SP - 3 EP - 17 PB - Springer Nature CY - Cham ER - TY - CHAP A1 - Gronau, Norbert A1 - Rojahn, Marcel ED - Leupold, Andreas ED - Wiebe, Andreas ED - Glossner, Silke T1 - Das Industrial Internet of Things (IIOT) T2 - IT-Recht : Recht, Wirtschaft und Technik der digitalen Transformation Y1 - 2021 UR - https://beck-online.beck.de/Bcid/Y-400-W-LeupoldGlossnerHdbITR-GL-Teil10-1 SN - 978-3-406-74458-7 SP - 1115 EP - 1124 PB - C.H. Beck CY - München ET - 4., überarbeitet und erweitert ER - TY - CHAP A1 - Gronau, Norbert ED - Freitag, Michael T1 - Modellieren des Umgangs mit Wissen für Industrie 4.0 T2 - Mensch-Technik-Interaktion in der digitalisierten Arbeitswelt Y1 - 2020 SN - 978-3-95545-353-4 U6 - https://doi.org/10.30844/wgab_2020 SP - 79 EP - 101 PB - GITO mbH Verlag CY - Berlin ER - TY - CHAP A1 - Gonnermann, Jana A1 - Brandenburger, Bonny A1 - Vladova, Gergana A1 - Gronau, Norbert ED - Bui, Tung X. T1 - To what extent can individualisation in terms of different types of mode improve learning outcomes and learner satisfaction? BT - A pre-study T2 - Proceedings of the 56th Annual Hawaii International Conference on System Sciences January 3-6, 2023 N2 - With the latest technological developments and associated new possibilities in teaching, the personalisation of learning is gaining more and more importance. It assumes that individual learning experiences and results could generally be improved when personal learning preferences are considered. To do justice to the complexity of the personalisation possibilities of teaching and learning processes, we illustrate the components of learning and teaching in the digital environment and their interdependencies in an initial model. Furthermore, in a pre-study, we investigate the relationships between the learner's ability to (digital) self-organise, the learner’s prior- knowledge learning in different variants of mode and learning outcomes as one part of this model. With this pre-study, we are taking the first step towards a holistic model of teaching and learning in digital environments. KW - advances in teaching and learning technologies KW - digital learning KW - digital teaching KW - experimental design KW - personalised learning KW - teaching and learning model Y1 - 2023 SN - 978-0-9981331-6-4 SP - 123 EP - 132 PB - Department of IT Management Shidler College of Business University of Hawaii CY - Honolulu, HI ER - TY - CHAP A1 - Thim, Christof A1 - Grum, Marcus A1 - Schüffler, Arnulf A1 - Roling, Wiebke A1 - Kluge, Annette A1 - Gronau, Norbert ED - Andersen, Ann-Louise ED - Andersen, Rasmus ED - Brunoe, Thomas Ditlev ED - Larsen, Maria Stoettrup Schioenning ED - Nielsen, Kjeld ED - Napoleone, Alessia ED - Kjeldgaard, Stefan T1 - A concept for a distributed Interchangeable knowledge base in CPPS T2 - Towards sustainable customization: cridging smart products and manufacturing systems N2 - As AI technology is increasingly used in production systems, different approaches have emerged from highly decentralized small-scale AI at the edge level to centralized, cloud-based services used for higher-order optimizations. Each direction has disadvantages ranging from the lack of computational power at the edge level to the reliance on stable network connections with the centralized approach. Thus, a hybrid approach with centralized and decentralized components that possess specific abilities and interact is preferred. However, the distribution of AI capabilities leads to problems in self-adapting learning systems, as knowledgebases can diverge when no central coordination is present. Edge components will specialize in distinctive patterns (overlearn), which hampers their adaptability for different cases. Therefore, this paper aims to present a concept for a distributed interchangeable knowledge base in CPPS. The approach is based on various AI components and concepts for each participating node. A service-oriented infrastructure allows a decentralized, loosely coupled architecture of the CPPS. By exchanging knowledge bases between nodes, the overall system should become more adaptive, as each node can “forget” their present specialization. KW - learning KW - distributed knowledge base KW - artificial intelligence KW - CPPS Y1 - 2021 SN - 978-3-030-90699-3 SN - 978-3-030-90702-0 SN - 978-3-030-90700-6 U6 - https://doi.org/10.1007/978-3-030-90700-6_35 SP - 314 EP - 321 PB - Springer CY - Cham ER - TY - CHAP A1 - Ullrich, André A1 - Gronau, Norbert ED - Panetto, Hervé ED - Madani, Kurosh ED - Smirnov, Alexander T1 - Time to change BT - considering the 4th Industrial Revolution from three sustainability perspectives T2 - Proceedings of the International Conference on Innovative Intelligent Industrial Production and Logistics N2 - Industry 4.0 leads to a radical change that is progressing incrementally. The new information and communication technologies provide many conceivable opportunities for their application in the context of sustainable corporate management. The combination of new digital technologies with the ecological and social goals of companies offers a multitude of unimagined potentials and challenges. Although companies already see the need for action, there was in the past and currently still is a lack of concrete measures that lever the potential of Industry 4.0 for sustainability management. During the course of this position paper we develop six theses (two from each sustainability perspective) against the background of the current situation in research and practice, and policy. KW - industry 4.0 KW - sustainability KW - triple bottom line Y1 - 2020 SN - 978-989-758-476-3 U6 - https://doi.org/10.5220/0010148601090116 SP - 109 EP - 116 PB - SciTePress CY - [Erscheinungsort nicht ermittelbar] ER -