TY - JOUR A1 - Hundecha, Yeshewatesfa A1 - Sunyer, Maria A. A1 - Lawrence, Deborah A1 - Madsen, Henrik A1 - Willems, Patrick A1 - Bürger, Gerd A1 - Kriauciuniene, Jurate A1 - Loukas, Athanasios A1 - Martinkova, Marta A1 - Osuch, Marzena A1 - Vasiliades, Lampros A1 - von Christierson, Birgitte A1 - Vormoor, Klaus Josef A1 - Yuecel, Ismail T1 - Inter-comparison of statistical downscaling methods for projection of extreme flow indices across Europe JF - Journal of hydrology N2 - The effect of methods of statistical downscaling of daily precipitation on changes in extreme flow indices under a plausible future climate change scenario was investigated in 11 catchments selected from 9 countries in different parts of Europe. The catchments vary from 67 to 6171 km(2) in size and cover different climate zones. 15 regional climate model outputs and 8 different statistical downscaling methods, which are broadly categorized as change factor and bias correction based methods, were used for the comparative analyses. Different hydrological models were implemented in different catchments to simulate daily runoff. A set of flood indices were derived from daily flows and their changes have been evaluated by comparing their values derived from simulations corresponding to the current and future climate. Most of the implemented downscaling methods project an increase in the extreme flow indices in most of the catchments. The catchments where the extremes are expected to increase have a rainfall dominated flood regime. In these catchments, the downscaling methods also project an increase in the extreme precipitation in the seasons when the extreme flows occur. In catchments where the flooding is mainly caused by spring/summer snowmelt, the downscaling methods project a decrease in the extreme flows in three of the four catchments considered. A major portion of the variability in the projected changes in the extreme flow indices is attributable to the variability of the climate model ensemble, although the statistical downscaling methods contribute 35-60% of the total variance. (C) 2016 Elsevier B.V. All rights reserved. KW - Flooding KW - Statistical downscaling KW - Regional climate models KW - Climate change KW - Europe Y1 - 2016 U6 - https://doi.org/10.1016/j.jhydrol.2016.08.033 SN - 0022-1694 SN - 1879-2707 VL - 541 SP - 1273 EP - 1286 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kotz, Maximilian A1 - Wenz, Leonie A1 - Stechemesser, Annika A1 - Kalkuhl, Matthias A1 - Levermann, Anders T1 - Day-to-day temperature variability reduces economic growth JF - Nature climate change N2 - Elevated annual average temperature has been found to impact macro-economic growth. However, various fundamental elements of the economy are affected by deviations of daily temperature from seasonal expectations which are not well reflected in annual averages. Here we show that increases in seasonally adjusted day-to-day temperature variability reduce macro-economic growth independent of and in addition to changes in annual average temperature. Combining observed day-to-day temperature variability with subnational economic data for 1,537 regions worldwide over 40 years in fixed-effects panel models, we find that an extra degree of variability results in a five percentage-point reduction in regional growth rates on average. The impact of day-to-day variability is modulated by seasonal temperature difference and income, resulting in highest vulnerability in low-latitude, low-income regions (12 percentage-point reduction). These findings illuminate a new, global-impact channel in the climate–economy relationship that demands a more comprehensive assessment in both climate and integrated assessment models. KW - Climate change KW - Climate-change impacts KW - Economics KW - Environmental economics KW - Environmental impact Y1 - 2021 U6 - https://doi.org/10.1038/s41558-020-00985-5 SN - 1758-678X SN - 1758-6798 VL - 11 IS - 4 SP - 319 EP - 325 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Lawrence, Mark A1 - Schäfer, Stefan A1 - Muri, Helene A1 - Scott, Vivian A1 - Oschlies, Andreas A1 - Vaughan, Naomi E. A1 - Boucher, Olivier A1 - Schmidt, Hauke A1 - Haywood, Jim A1 - Scheffran, Jürgen T1 - Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals JF - Nature Communications N2 - Current mitigation efforts and existing future commitments are inadequate to accomplish the Paris Agreement temperature goals. In light of this, research and debate are intensifying on the possibilities of additionally employing proposed climate geoengineering technologies, either through atmospheric carbon dioxide removal or farther-reaching interventions altering the Earth’s radiative energy budget. Although research indicates that several techniques may eventually have the physical potential to contribute to limiting climate change, all are in early stages of development, involve substantial uncertainties and risks, and raise ethical and governance dilemmas. Based on present knowledge, climate geoengineering techniques cannot be relied on to significantly contribute to meeting the Paris Agreement temperature goals. KW - Atmospheric chemistry KW - Atmospheric dynamics KW - Atmospheric science KW - Climate change KW - Environmental impact Y1 - 2018 U6 - https://doi.org/10.1038/s41467-018-05938-3 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Leins, Johannes A. A1 - Banitz, Thomas A1 - Grimm, Volker A1 - Drechsler, Martin T1 - High-resolution PVA along large environmental gradients to model the combined effects of climate change and land use timing BT - lessons from the large marsh grasshopper JF - Ecological modelling : international journal on ecological modelling and systems ecology N2 - Both climate change and land use regimes affect the viability of populations, but they are often studied separately. Moreover, population viability analyses (PVAs) often ignore the effects of large environmental gradients and use temporal resolutions that are too coarse to take into account that different stages of a population's life cycle may be affected differently by climate change. Here, we present the High-resolution Large Environmental Gradient (HiLEG) model and apply it in a PVA with daily resolution based on daily climate projections for Northwest Germany. We used the large marsh grasshopper (LMG) as the target species and investigated (1) the effects of climate change on the viability and spatial distribution of the species, (2) the influence of the timing of grassland mowing on the species and (3) the interaction between the effects of climate change and grassland mowing. The stageand cohort-based model was run for the spatially differentiated environmental conditions temperature and soil moisture across the whole study region. We implemented three climate change scenarios and analyzed the population dynamics for four consecutive 20-year periods. Climate change alone would lead to an expansion of the regions suitable for the LMG, as warming accelerates development and due to reduced drought stress. However, in combination with land use, the timing of mowing was crucial, as this disturbance causes a high mortality rate in the aboveground life stages. Assuming the same date of mowing throughout the region, the impact on viability varied greatly between regions due to the different climate conditions. The regional negative effects of the mowing date can be divided into five phases: (1) In early spring, the populations were largely unaffected in all the regions; (2) between late spring and early summer, they were severely affected only in warm regions; (3) in summer, all the populations were severely affected so that they could hardly survive; (4) between late summer and early autumn, they were severely affected in cold regions; and (5) in autumn, the populations were equally affected across all regions. The duration and start of each phase differed slightly depending on the climate change scenario and simulation period, but overall, they showed the same pattern. Our model can be used to identify regions of concern and devise management recommendations. The model can be adapted to the life cycle of different target species, climate projections and disturbance regimes. We show with our adaption of the HiLEG model that high-resolution PVAs and applications on large environmental gradients can be reconciled to develop conservation strategies capable of dealing with multiple stressors. KW - Climate change KW - Land use KW - Population viability analysis KW - Stage-based model KW - High resolution KW - Environmental gradients Y1 - 2020 U6 - https://doi.org/10.1016/j.ecolmodel.2020.109355 SN - 0304-3800 SN - 1872-7026 VL - 440 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Lemke, Isgard H. A1 - Kolb, Annette A1 - Graae, Bente J. A1 - De Frenne, Pieter A1 - Acharya, Kamal P. A1 - Blandino, Cristina A1 - Brunet, Jorg A1 - Chabrerie, Olivier A1 - Cousins, Sara A. O. A1 - Decocq, Guillaume A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Liira, Jaan A1 - Schmucki, Reto A1 - Shevtsova, Anna A1 - Verheyen, Kris A1 - Diekmann, Martin T1 - Patterns of phenotypic trait variation in two temperate forest herbs along a broad climatic gradient JF - Plant ecology : an international journal N2 - Phenotypic trait variation plays a major role in the response of plants to global environmental change, particularly in species with low migration capabilities and recruitment success. However, little is known about the variation of functional traits within populations and about differences in this variation on larger spatial scales. In a first approach, we therefore related trait expression to climate and local environmental conditions, studying two temperate forest herbs, Milium effusum and Stachys sylvatica, along a similar to 1800-2500 km latitudinal gradient. Within each of 9-10 regions in six European countries, we collected data from six populations of each species and recorded several variables in each region (temperature, precipitation) and population (light availability, soil parameters). For each plant, we measured height, leaf area, specific leaf area, seed mass and the number of seeds and examined environmental effects on within-population trait variation as well as on trait means. Most importantly, trait variation differed both between and within populations. Species, however, differed in their response. Intrapopulation variation in Milium was consistently positively affected by higher mean temperatures and precipitation as well as by more fertile local soil conditions, suggesting that more productive conditions may select for larger phenotypic variation. In Stachys, particularly light availability positively influenced trait variation, whereas local soil conditions had no consistent effects. Generally, our study emphasises that intra-population variation may differ considerably across larger scales-due to phenotypic plasticity and/or underlying genetic diversity-possibly affecting species response to global environmental change. KW - Climate change KW - Global environmental change KW - Milium effusum KW - Phenotypic plasticity KW - Intraspecific variation KW - Stachys sylvatica Y1 - 2015 U6 - https://doi.org/10.1007/s11258-015-0534-0 SN - 1385-0237 SN - 1573-5052 VL - 216 IS - 11 SP - 1523 EP - 1536 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Luis Horreo, Jose A1 - Luisa Pelaez, Maria A1 - Breedveld, Merel Cathelijne A1 - Suarez, Teresa A1 - Urieta, Maria A1 - Fitze, Patrick S. T1 - Population structure of the oviparous South-West European common lizard JF - European journal of wildlife research N2 - Gene flow is an important factor determining the evolution of a species, since it directly affects population structure and species’ adaptation. Here, we investigated population structure, population history, and migration among populations covering the entire distribution of the geographically isolated South-West European common lizard (Zootoca vivipara louislantzi) using 34 newly developed polymorphic microsatellite markers. The analyses unravelled the presence of isolation by distance, inbreeding, recent bottlenecks, genetic differentiation, and low levels of migration among most populations, suggesting that Z. vivipara louislantzi is threatened. The results point to discontinuous populations and are in line with physical barriers hindering longitudinal migration south to the central Pyrenean cordillera and latitudinal migration in the central Pyrenees. In contrast, evidence for longitudinal migration exists from the lowlands north to the central Pyrenean cordillera and the Cantabrian Mountains. The locations of the populations south to the central Pyrenean cordillera were identified as the first to be affected by global warming; thus, management actions aimed at avoiding population declines should start in this area. KW - Climate change KW - Conservation KW - First-generation migrant KW - gene flow KW - IBD KW - Zootoca vivipara Y1 - 2019 U6 - https://doi.org/10.1007/s10344-018-1242-6 SN - 1612-4642 SN - 1439-0574 VL - 65 IS - 1 PB - Springer CY - New York ER - TY - GEN A1 - Nathan, Ran A1 - Horvitz, Nir A1 - He, Yanping A1 - Kuparinen, Anna A1 - Schurr, Frank Martin A1 - Katul, Gabriel G. T1 - Spread of North American wind-dispersed trees in future environments T2 - Ecology letters N2 - P>Despite ample research, understanding plant spread and predicting their ability to track projected climate changes remain a formidable challenge to be confronted. We modelled the spread of North American wind-dispersed trees in current and future (c. 2060) conditions, accounting for variation in 10 key dispersal, demographic and environmental factors affecting population spread. Predicted spread rates vary substantially among 12 study species, primarily due to inter-specific variation in maturation age, fecundity and seed terminal velocity. Future spread is predicted to be faster if atmospheric CO2 enrichment would increase fecundity and advance maturation, irrespective of the projected changes in mean surface windspeed. Yet, for only a few species, predicted wind-driven spread will match future climate changes, conditioned on seed abscission occurring only in strong winds and environmental conditions favouring high survival of the farthest-dispersed seeds. Because such conditions are unlikely, North American wind-dispersed trees are expected to lag behind the projected climate range shift. KW - Climate change KW - demography KW - dispersal KW - fat-tailed dispersal kernels KW - forecasting KW - forests KW - invasion by extremes KW - long-distance dispersal KW - mechanistic models KW - plant migration KW - population spread KW - range expansion KW - survival KW - wind dispersal Y1 - 2011 U6 - https://doi.org/10.1111/j.1461-0248.2010.01573.x SN - 1461-023X VL - 14 IS - 3 SP - 211 EP - 219 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Norris, Jesse A1 - Carvalho, Leila M. V. A1 - Jones, Charles A1 - Cannon, Forest A1 - Bookhagen, Bodo A1 - Palazzi, Elisa A1 - Tahir, Adnan Ahmad T1 - The spatiotemporal variability of precipitation over the Himalaya: evaluation of one-year WRF model simulation JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - The Weather Research and Forecasting (WRF) model is used to simulate the spatiotemporal distribution of precipitation over central Asia over the year April 2005 through March 2006. Experiments are performed at 6.7 km horizontal grid spacing, with an emphasis on winter and summer precipitation over the Himalaya. The model and the Tropical Rainfall Measuring Mission show a similar inter-seasonal cycle of precipitation, from extratropical cyclones to monsoon precipitation, with agreement also in the diurnal cycle of monsoon precipitation. In winter months, WRF compares better in timeseries of daily precipitation to stations below than above 3-km elevation, likely due to inferior measurement of snow than rain by the stations, highlighting the need for reliable snowfall measurements at high elevations in winter. In summer months, the nocturnal precipitation cycle in the foothills and valleys of the Himalaya is captured by this 6.7-km WRF simulation, while coarser simulations with convective parameterization show near zero nocturnal precipitation. In winter months, higher resolution is less important, serving only to slightly increase precipitation magnitudes due to steeper slopes. However, even in the 6.7-km simulation, afternoon precipitation is overestimated at high elevations, which can be reduced by even higher-resolution (2.2-km) simulations. These results indicate that WRF provides skillful simulations of precipitation relevant for studies of water resources over the complex terrain in the Himalaya. KW - WRF KW - Himalayas KW - Mesoscale KW - Precipitation KW - Climate change KW - Orographicprecipitation KW - Water resources Y1 - 2017 U6 - https://doi.org/10.1007/s00382-016-3414-y SN - 0930-7575 SN - 1432-0894 VL - 49 SP - 2179 EP - 2204 PB - Springer CY - New York ER - TY - JOUR A1 - Oguntunde, Philip G. A1 - Abiodun, Babatunde Joseph A1 - Lischeid, Gunnar T1 - Impacts of climate change on hydro-meteorological drought over the Volta Basin, West Africa JF - Global and planetary change N2 - This study examines the characteristics of drought in the Volta River Basin (VRB), investigates the influence of drought on the streamflow, and projects the impacts of future climate change on the drought. A combination of observation data and regional climate simulations of past and future climates (1970-2013, 2046-2065, and 2081-2100) were analyzed for the study. The Standardized Precipitation Index (SPI) and Standardized Precipitation and Evapotranspiration (SPEI) were used to characterize drought while the Standardized Runoff Index (SRI) were used to quantify runoff. Results of the study show that the historical pattern of drought is generally consistent with previous studies over the Basin and most part of West Africa. RCA ensemble medians (RMED) give realistic simulations of drought characteristics and area extent over the Basin and the sub-catchments in the past climate. Generally, an increase in drought intensity and spatial extent are projected over VRB for SPEI and SPI, but the magnitude of increase is higher with SPEI than with SPI. Drought frequency (events per decade) may be magnified by a factor of 1.2, (2046-2065) to 1.6 (2081-2100) compared to the present day episodes in the basin. The coupling between streamflow and drought episodes was very strong (P < 0.05) for the 1-16-year band before the 1970 but showed strong correlation all through the time series period for the 4-8 -years band. Runoff was highly sensitive to precipitation in the VRB and a 2-3 month time lag was found between drought indices and streamflow in the Volta River Basin. Results of this study may guide policymakers in planning how to minimize the negative impacts of future climate change that could have consequences on agriculture, water resources and energy supply. KW - Drought indices KW - Water management KW - Climate change KW - Streamfiow KW - Volta Basin Y1 - 2017 U6 - https://doi.org/10.1016/j.gloplacha.2017.07.003 SN - 0921-8181 SN - 1872-6364 VL - 155 SP - 121 EP - 132 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Oguntunde, Philip G. A1 - Lischeid, Gunnar A1 - Abiodun, Babatunde Joseph T1 - Impacts of climate variability and change on drought characteristics in the Niger River Basin, West Africa JF - Stochastic Environmental Research and Risk Assessment N2 - West Africa has been afflicted by droughts since the declining rains of the 1970s. Therefore, this study examines the characteristics of drought over the Niger River Basin (NRB), investigates the influence of the drought on the river flow, and projects the impacts of future climate change on drought. A combination of observation data and regional climate simulations of past (1986-2005) and future climates (2046-2065 and 2081-2100) were analyzed. The standardized precipitation index (SPI) and standardized precipitation and evapotranspiration index (SPEI) were used to characterize drought while the standardized runoff index (SRI) was used to quantify river flow. Results of the study show that the historical pattern of drought is consistent with previous studies over the Basin and most part of West Africa. RCA4 ensemble gives realistic simulations of the climatology of the Basin in the past climate. Generally, an increase in drought intensity and frequency are projected over NRB. The coupling between SRI and drought indices was very strong (P < 0.05). The dominant peaks can be classified into three distinct drought cycles with periods 1-2, 2-4, 4-8 years. These cycles may be associated with Quasi-Biennial Oscillation (QBO) and El-Nino Southern Oscillation (ENSO). River flow was highly sensitive to precipitation in the NRB and a 1-3 month lead time was found between drought indices and SRI. Under RCP4.5, changes in the SPEI drought frequency range from 1.8 (2046-2065) to 2.4 (2081-2100) month year(-1) while under RCP8.5, the change ranges from 2.2 (2046-2065) to 3.0 month year(-1) (2081-2100). Niger Middle sub-basin is likely to be mostly impacted in the future while the Upper Niger was projected to be least impacted. Results of this study may guide policymakers to evolve strategies to facilitate vulnerability assessment and adaptive capacity of the basin in order to minimize the negative impacts of climate change. KW - Drought indices KW - Water management KW - Climate change KW - River flow KW - Niger River Basin Y1 - 2018 U6 - https://doi.org/10.1007/s00477-017-1484-y SN - 1436-3240 SN - 1436-3259 VL - 32 IS - 4 SP - 1017 EP - 1034 PB - Springer CY - New York ER - TY - JOUR A1 - Olonscheck, Mady A1 - Walther, Carsten A1 - Lüdeke, Matthias K. B. A1 - Kropp, Jürgen T1 - Feasibility of energy reduction targets under climate change: The case of the residential heating energy sector of the Netherlands JF - Energy N2 - In order to achieve meaningful climate protection targets at the global scale, each country is called to set national energy policies aimed at reducing energy consumption and carbon emissions. By calculating the monthly heating energy demand of dwellings in the Netherlands, our case study country, we contrast the results with the corresponding aspired national targets. Considering different future population scenarios, renovation measures and temperature variations, we show that a near zero energy demand in 2050 could only be reached with very ambitious renovation measures. While the goal of reducing the energy demand of the building sector by 50% until 2030 compared to 1990 seems feasible for most provinces and months in the minimum scenario, it is impossible in our scenario with more pessimistic yet still realistic assumptions regarding future developments. Compared to the current value, the annual renovation rate per province would need to be at least doubled in order to reach the 2030 target independent of reasonable climatic and population changes in the future. Our findings also underline the importance of policy measures as the annual renovation rate is a key influencing factor regarding the reduction of the heating energy demand in dwellings. (C) 2015 Elsevier Ltd. All rights reserved. KW - Climate change KW - Heating energy demand KW - Reduction targets KW - Residential building stock KW - Renovation KW - The Netherlands Y1 - 2015 U6 - https://doi.org/10.1016/j.energy.2015.07.080 SN - 0360-5442 SN - 1873-6785 VL - 90 SP - 560 EP - 569 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Piontek, Franziska A1 - Kalkuhl, Matthias A1 - Kriegler, Elmar A1 - Schultes, Anselm A1 - Leimbach, Marian A1 - Edenhofer, Ottmar A1 - Bauer, Nico T1 - Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling JF - Environmental & resource economics : the official journal of the European Association of Environmental and Resource Economists N2 - Despite increasing empirical evidence of strong links between climate and economic growth, there is no established model to describe the dynamics of how different types of climate shocks affect growth patterns. Here we present the first comprehensive, comparative analysis of the long-term dynamics of one-time, temporary climate shocks on production factors, and factor productivity, respectively, in a Ramsey-type growth model. Damages acting directly on production factors allow us to study dynamic effects on factor allocation, savings and economic growth. We find that the persistence of impacts on economic activity is smallest for climate shocks directly impacting output, and successively increases for direct damages on capital, loss of labor and productivity shocks, related to different responses in savings rates and factor-specific growth. Recurring shocks lead to large welfare effects and long-term growth effects, directly linked to the persistence of individual shocks. Endogenous savings and shock anticipation both have adaptive effects but do not eliminate differences between impact channels or significantly lower the dissipation time. Accounting for endogenous growth mechanisms increases the effects. We also find strong effects on income shares, important for distributional implications. This work fosters conceptual understanding of impact dynamics in growth models, opening options for links to empirics. KW - Climate change KW - Damages KW - Economic growth KW - Impact channels KW - Production factors KW - Persistence Y1 - 2018 U6 - https://doi.org/10.1007/s10640-018-00306-7 SN - 0924-6460 SN - 1573-1502 VL - 73 IS - 4 SP - 1357 EP - 1385 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Plue, Jan A1 - De Frenne, Pieter A1 - Acharya, Kamal P. A1 - Brunet, Jorg A1 - Chabrerie, Olivier A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Graae, Bente J. A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Kolb, Annette A1 - Lemke, Isgard A1 - Liira, Jaan A1 - Naaf, Tobias A1 - Shevtsova, Anna A1 - Verheyen, Kris A1 - Wulf, Monika A1 - Cousins, Sara A. O. T1 - Climatic control of forest herb seed banks along a latitudinal gradient JF - Global ecology and biogeography : a journal of macroecology N2 - Aim Seed banks are central to the regeneration strategy of many plant species. Any factor altering seed bank density thus affects plant regeneration and population dynamics. Although seed banks are dynamic entities controlled by multiple environmental drivers, climatic factors are the most comprehensive, but still poorly understood. This study investigates how climatic variation structures seed production and resulting seed bank patterns. Location Temperate forests along a 1900km latitudinal gradient in north-western (NW) Europe. Methods Seed production and seed bank density were quantified in 153 plots along the gradient for four forest herbs with different seed longevity: Geum urbanum, Milium effusum, Poa nemoralis and Stachys sylvatica. We tested the importance of climatic and local environmental factors in shaping seed production and seed bank density. Results Seed production was determined by population size, and not by climatic factors. G.urbanum and M.effusum seed bank density declined with decreasing temperature (growing degree days) and/or increasing temperature range (maximum-minimum temperature). P.nemoralis and S.sylvatica seed bank density were limited by population size and not by climatic variables. Seed bank density was also influenced by other, local environmental factors such as soil pH or light availability. Different seed bank patterns emerged due to differential seed longevities. Species with long-lived seeds maintained constant seed bank densities by counteracting the reduced chance of regular years with high seed production at colder northern latitudes. Main conclusions Seed bank patterns show clear interspecific variation in response to climate across the distribution range. Not all seed banking species may be as well equipped to buffer climate change via their seed bank, notably in short-term persistent species. Since the buffering capacity of seed banks is key to species persistence, these results provide crucial information to advance climatic change predictions on range shifts, community and biodiversity responses. KW - Climate change KW - interspecific variation KW - plant-climate interaction KW - seed longevity KW - seed production KW - temperate deciduous forest KW - temperature Y1 - 2013 U6 - https://doi.org/10.1111/geb.12068 SN - 1466-822X SN - 1466-8238 VL - 22 IS - 10 SP - 1106 EP - 1117 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Schaldach, Rüdiger A1 - Wimmer, Florian A1 - Koch, Jennifer A1 - Volland, Jan A1 - Geissler, Katja A1 - Köchy, Martin T1 - Model-based analysis of the environmental impacts of grazing management on Eastern Mediterranean ecosystems in Jordan JF - Journal of environmental management N2 - Eastern Mediterranean ecosystems are prone to desertification when under grazing pressure. Therefore, management of grazing intensity plays a crucial role to avoid or to diminish land degradation and to sustain both livelihoods and ecosystem functioning. The dynamic land-use model LandSHIFT was applied to a case study on the country level for Jordan. The impacts of different stocking densities on the environment were assessed through a set of simulation experiments for various combinations of climate input and assumptions about the development of livestock numbers. Indicators used for the analysis include a set of landscape metrics to account for habitat fragmentation and the "Human Appropriation of Net Primary Production" (HANPP), i.e., the difference between the amount of net primary production (NPP) that would be available in a natural ecosystem and the amount of NPP that remains under human management. Additionally, the potential of the economic valuation of ecosystem services, including landscape and grazing services, as an analysis concept was explored. We found that lower management intensities had a positive effect on HANPP but at the same time resulted in a strong increase of grazing area. This effect was even more pronounced under climate change due to a predominantly negative effect on the biomass productivity of grazing land. Also Landscape metrics tend to indicate decreasing habitat fragmentation as a consequence of lower grazing pressure. The valuation of ecosystem services revealed that low grazing intensity can lead to a comparatively higher economic value on the country level average. The results from our study underline the importance of considering grazing management as an important factor to manage dry-land ecosystems in a sustainable manner. KW - Sustainable management of Mediterranean grazing land KW - Land-use modeling KW - Climate change KW - Landscape metrics KW - Ecosystem service value KW - Human Appropriation of Net Primary Production (HANPP) Y1 - 2013 U6 - https://doi.org/10.1016/j.jenvman.2012.11.024 SN - 0301-4797 SN - 1095-8630 VL - 127 IS - 9 SP - S84 EP - S95 PB - Elsevier CY - London ER - TY - JOUR A1 - Sommer, Robert S. A1 - Kalbe, Johannes A1 - Ekstrom, Jonas A1 - Benecke, Norbert A1 - Liljegren, Ronnie T1 - Range dynamics of the reindeer in Europe during the last 25,000 years JF - Journal of biogeography N2 - Aim To understand the role and significance of the reindeer, Rangifer tarandus (Linnaeus, 1758), as a specific indicator in terms of late Quaternary biogeography and to determine the effects of global climate change on its range and local extinction dynamics at the end of the Ice Age. Location Late Pleistocene/early Holocene range of reindeer over all of central and western Europe, including southern Scandinavia and northern Iberia, but excluding Russia, Belarus and the Ukraine. Methods Radiocarbon-dated subfossil records of R. tarandus from both archaeological and natural deposits younger than 25,000 years were assembled in a database. The distribution area was divided into six representative regions. The C-14 dates were calibrated and plotted chronologically in maps in order to compare presence and absence and regional extinction patterns from one region to another. Main conclusions The late Quaternary record for reindeer in Europe during the last 25 kyr shows a climate-driven dispersal and retreat in response to climate change, with regional variations. The collapse of the mammoth steppe biome did not lead to the local extinction in Europe, as in the case of other megafaunal species. Rangifer tarandus co-existed for about 3000 years during the Late Glacial and early Holocene with typical temperate species such as red deer and roe deer in non-analogue faunal communities. The regional extinction at the end of the Pleistocene coincides with the transition from light open birch/pine forests to pine/deciduous forests. KW - Climate change KW - environmental change KW - extinction KW - global change KW - late Quaternary KW - Pleistocene/Holocene transition KW - Rangifer tarandus KW - reindeer Y1 - 2014 U6 - https://doi.org/10.1111/jbi.12193 SN - 0305-0270 SN - 1365-2699 VL - 41 IS - 2 SP - 298 EP - 306 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Tekken, Vera A1 - Costa, Luís Fílípe Carvalho da A1 - Kropp, Jürgen T1 - Increasing pressure, declining water and climate change in north-eastern Morocco JF - Journal of coastal conservation : planning and management N2 - The coastal stretch of north-eastern Mediterranean Morocco holds vitally important ecological, social, and economic functions. The implementation of large-scale luxury tourism resorts shall push socio-economic development and facilitate the shift from a mainly agrarian to a service economy. Sufficient water availability and intact beaches are among the key requirements for the successful realization of regional development plans. The water situation is already critical, additional water-intense sectors could overstrain the capacity of water resources. Further, coastal erosion caused by sea-level rise is projected. Regional climate change is observable, and must be included in regional water management. Long-term climate trends are assessed for the larger region (Moulouya basin) and for the near-coastal zone at Saidia. The amount of additional water demand is assessed for the large-dimensioned Saidia resort; including the monthly, seasonal and annual tourist per capita water need under inclusion of irrigated golf courses and garden areas. A shift of climate patterns is observed, a lengthening of the dry summer season, and as well a significant decline of annual precipitation. Thus, current water scarcity is mainly human-induced; however, climate change will aggravate the situation. As a consequence, severe environmental damage due to water scarcity is likely and could impinge on the quality of local tourism. The re-adjustment of current management routines is therefore essential. Possible adjustments are discussed and the analysis concludes with management recommendations for innovative regional water management of tourism facilities. KW - North-eastern Morocco KW - Climate change KW - Coastal zone KW - Luxury tourism KW - Water demand KW - Adaptation Y1 - 2013 U6 - https://doi.org/10.1007/s11852-013-0234-7 SN - 1400-0350 VL - 17 IS - 3 SP - 379 EP - 388 PB - Springer CY - New York ER - TY - JOUR A1 - Unterberger, Christian A1 - Hudson, Paul A1 - Botzen, W. J. Wouter A1 - Schroeer, Katharina A1 - Steininger, Karl W. T1 - Future public sector flood risk and risk sharing arrangements BT - An Assessment for Austria JF - Ecological economics N2 - Climate change, along with socio-economic development, will increase the economic impacts of floods. While the factors that influence flood risk to private property have been extensively studied, the risk that natural disasters pose to public infrastructure and the resulting implications on public sector budgets, have received less attention. We address this gap by developing a two-staged model framework, which first assesses the flood risk to public infrastructure in Austria. Combining exposure and vulnerability information at the building level with inundation maps, we project an increase in riverine flood damage, which progressively burdens public budgets. Second, the risk estimates are integrated into an insurance model, which analyzes three different compensation arrangements in terms of the monetary burden they place on future governments' budgets and the respective volatility of payments. Formalized insurance compensation arrangements offer incentives for risk reduction measures, which lower the burden on public budgets by reducing the vulnerability of buildings that are exposed to flooding. They also significantly reduce the volatility of payments and thereby improve the predictability of flood damage expenditures. These features indicate that more formalized insurance arrangements are an improvement over the purely public compensation arrangement currently in place in Austria. KW - Climate change KW - Adaptation KW - Flood risk KW - Insurance KW - Public sector KW - Risk reduction Y1 - 2018 U6 - https://doi.org/10.1016/j.ecolecon.2018.09.019 SN - 0921-8009 SN - 1873-6106 VL - 156 SP - 153 EP - 163 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Veh, Georg A1 - Korup, Oliver A1 - von Specht, Sebastian A1 - Rößner, Sigrid A1 - Walz, Ariane T1 - Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya JF - Nature climate change N2 - Shrinking glaciers in the Hindu Kush-Karakoram-Himalaya-Nyainqentanglha (HKKHN) region have formed several thousand moraine-dammed glacial lakes(1-3), some of these having grown rapidly in past decades(3,4). This growth may promote more frequent and potentially destructive glacial lake outburst floods (GLOFs)(5-7). Testing this hypothesis, however, is confounded by incomplete databases of the few reliable, though selective, case studies. Here we present a consistent Himalayan GLOF inventory derived automatically from all available Landsat imagery since the late 1980s. We more than double the known GLOF count and identify the southern Himalayas as a hotspot region, compared to the more rarely affected Hindu Kush-Karakoram ranges. Nevertheless, the average annual frequency of 1.3 GLOFs has no credible posterior trend despite reported increases in glacial lake areas in most of the HKKHN3,8, so that GLOF activity per unit lake area has decreased since the late 1980s. We conclude that learning more about the frequency and magnitude of outburst triggers, rather than focusing solely on rapidly growing glacial lakes, might improve the appraisal of GLOF hazards. KW - Climate change KW - Cryospheric science KW - Environmental impact KW - Geomorphology Y1 - 2019 U6 - https://doi.org/10.1038/s41558-019-0437-5 SN - 1758-678X SN - 1758-6798 VL - 9 IS - 5 SP - 379 EP - 383 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Verweij, Marco A1 - Ney, Steven A1 - Thompson, Michael T1 - Cultural Theory’s contributions to climate science BT - reply to Hansson JF - European journal for philosophy of science N2 - In his article, 'Social constructionism and climate science denial', Hansson claims to present empirical evidence that the cultural theory developed by Dame Mary Douglas, Aaron Wildavsky and ourselves (among others) leads to (climate) science denial. In this reply, we show that there is no validity to these claims. First, we show that Hansson's empirical evidence that cultural theory has led to climate science denial falls apart under closer inspection. Contrary to Hansson's claims, cultural theory has made significant contributions to understanding and addressing climate change. Second, we discuss various features of Douglas' cultural theory that differentiate it from other constructivist approaches and make it compatible with the scientific method. Thus, we also demonstrate that cultural theory cannot be accused of epistemic relativism. KW - Mary Douglas KW - Aaron Wildavsky KW - Cultural theory KW - Climate change Y1 - 2022 U6 - https://doi.org/10.1007/s13194-022-00464-y SN - 1879-4912 SN - 1879-4920 VL - 12 IS - 2 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Vogel, Johannes T1 - Drivers of phenological changes in southern Europe JF - International Journal of Biometeorology N2 - The life cycle of plants is largely determined by climate, which renders phenological responses to climate change a highly suitable bioindicator of climate change. Yet, it remains unclear, which are the key drivers of phenological patterns at certain life stages. Furthermore, the varying responses of species belonging to different plant functional types are not fully understood. In this study, the role of temperature and precipitation as environmental drivers of phenological changes in southern Europe is assessed. The trends of the phenophases leaf unfolding, flowering, fruiting, and senescence are quantified, and the corresponding main environmental drivers are identified. A clear trend towards an earlier onset of leaf unfolding, flowering, and fruiting is detected, while there is no clear pattern for senescence. In general, the advancement of leaf unfolding, flowering and fruiting is smaller for deciduous broadleaf trees in comparison to deciduous shrubs and crops. Many broadleaf trees are photoperiod-sensitive; therefore, their comparatively small phenological advancements are likely the effect of photoperiod counterbalancing the impact of increasing temperatures. While temperature is identified as the main driver of phenological changes, precipitation also plays a crucial role in determining the onset of leaf unfolding and flowering. Phenological phases advance under dry conditions, which can be linked to the lack of transpirational cooling leading to rising temperatures, which subsequently accelerate plant growth. KW - Phenology KW - Southern Europe KW - Plant functional types KW - Linear mixed effect model KW - Climate change Y1 - 2022 U6 - https://doi.org/10.1007/s00484-022-02331-0 SN - 0020-7128 SN - 1432-1254 VL - 66 IS - 9 SP - 1903 EP - 1914 PB - Springer CY - New York ER -