TY - JOUR A1 - Tomovski, Zivorad A1 - Sandev, Trifce A1 - Metzler, Ralf A1 - Dubbeldam, Johan T1 - Generalized space-time fractional diffusion equation with composite fractional time derivative JF - Physica : europhysics journal ; A, Statistical mechanics and its applications N2 - We investigate the solution of space-time fractional diffusion equations with a generalized Riemann-Liouville time fractional derivative and Riesz-Feller space fractional derivative. The Laplace and Fourier transform methods are applied to solve the proposed fractional diffusion equation. The results are represented by using the Mittag-Leffler functions and the Fox H-function. Special cases of the initial and boundary conditions are considered. Numerical scheme and Grunwald-Letnikov approximation are also used to solve the space-time fractional diffusion equation. The fractional moments of the fundamental solution of the considered space-time fractional diffusion equation are obtained. Many known results are special cases of those obtained in this paper. We investigate also the solution of a space-time fractional diffusion equations with a singular term of the form delta(x). t-beta/Gamma(1-beta) (beta > 0). KW - Fractional diffusion equation KW - Composite fractional derivative KW - Riesz-Feller fractional derivative KW - Mittag-Leffler functions KW - Fox H-function KW - Fractional moments KW - Asymptotic expansions KW - Grunwald-Letnikov approximation Y1 - 2012 U6 - https://doi.org/10.1016/j.physa.2011.12.035 SN - 0378-4371 SN - 1873-2119 VL - 391 IS - 8 SP - 2527 EP - 2542 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Tonita, Aaryn T1 - Distributional sources for black hole initial data JF - Classical and quantum gravit N2 - Black hole initial data are usually produced using Bowen-York-type puncture initial data or by applying an excision boundary condition. The benefits of the Bowen-York initial data are the ability to specify the spin and momentum of the system as parameters of the initial data. In an attempt to extend these benefits to other formulations of the Einstein constraints, the puncture method is reformulated using distributions as source terms. It is shown how the Bowen-York puncture black hole initial data and the trumpet variation are generated by distributional sources. A heuristic argument is presented to argue that these sources are the general sources of spin and momentum. In order to clarify the meaning of other distributional sources, an exact family of initial data with generalized sources to the Hamiltonian constraint are studied; spinning trumpet black hole initial data and black hole initial data with higher order momentum sources are also studied. Y1 - 2012 U6 - https://doi.org/10.1088/0264-9381/29/1/015001 SN - 0264-9381 VL - 29 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Trotzky, S. A1 - Chen, Y-A. A1 - Flesch, A. A1 - McCulloch, I. P. A1 - Schollwöck, U. A1 - Eisert, J. A1 - Bloch, I. T1 - Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas JF - Nature physics N2 - The problem of how complex quantum systems eventually come to rest lies at the heart of statistical mechanics. The maximum-entropy principle describes which quantum states can be expected in equilibrium, but not how closed quantum many-body systems dynamically equilibrate. Here, we report the experimental observation of the non-equilibrium dynamics of a density wave of ultracold bosonic atoms in an optical lattice in the regime of strong correlations. Using an optical superlattice, we follow its dynamics in terms of quasi-local densities, currents and coherences-all showing a fast relaxation towards equilibrium values. Numerical calculations based on matrix-product states are in an excellent quantitative agreement with the experimental data. The system fulfills the promise of being a dynamical quantum simulator, in that the controlled dynamics runs for longer times than present classical algorithms can keep track of. Y1 - 2012 U6 - https://doi.org/10.1038/NPHYS2232 SN - 1745-2473 VL - 8 IS - 4 SP - 325 EP - 330 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Turhan, Metehan C. A1 - Sarac, A. Sezai A1 - Gencturk, Asli A1 - Gilsing, Hans-Detlev A1 - Faltz, Heike A1 - Schulz, Burkhard T1 - Electrochemical impedance characterization and potential dependence of poly[3,4-(2,2-dibutylpropylenedioxy)thiophene] nanostructures on single carbon fiber microelectrode JF - Synthetic metals : the journal of electronic polymers and electronic molecular materials N2 - The electropolymerization of 3,4-(2,2-dibutylpropylenedioxy)thiophene (ProDOT-Bu-2) onto single carbon fiber microelectrode (SCFME) was conducted in acetonitrile (ACN) containing sodium perchlorate (NaClO4) as electrolyte and investigated by cyclic voltammetry (CV). The nanostructured films of poly[3,4-(2,2-dibutyl-propyleneclioxy)thiophene] (PProDOT-Bu-2) which were depositing showed complete reversible redox behavior in monomer-free electrolyte solution. The capacitive behavior of the films was investigated by electrochemical impedance spectroscopy (EIS) at applied potentials from 0.1 V to 1.3 V. The analysis by equivalent circuit modeling revealed an applied potential around 0.4V to be most suitable for the system PProDOT-Bu-2/SCFME as a double layer supercapacitor component inducing a double layer capacitance C-d, value of 62 mFcm(-2). KW - Nanostructure KW - Electrochemical impedance spectroscopy KW - Conjugated polymeric thin film KW - Carbon fiber Y1 - 2012 U6 - https://doi.org/10.1016/j.synthmet.2012.01.012 SN - 0379-6779 VL - 162 IS - 5-6 SP - 511 EP - 515 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Valori, Gherardo A1 - Demoulin, Pascal A1 - Pariat, E. T1 - Comparing values of the relative magnetic helicity in finite volumes JF - Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics N2 - Relative magnetic helicity, as a conserved quantity of ideal magnetohydrodynamics, has been highlighted as an important quantity to study in plasma physics. Due to its nonlocal nature, its estimation is not straightforward in both observational and numerical data. In this study we derive expressions for the practical computation of the gauge-independent relative magnetic helicity in three-dimensional finite domains. The derived expressions are easy to implement and rapid to compute. They are derived in Cartesian coordinates, but can be easily written in other coordinate systems. We apply our method to a numerical model of a force-free equilibrium containing a flux rope, and compare the results with those obtained employing known half-space equations. We find that our method requires a much smaller volume than half-space expressions to derive the full helicity content. We also prove that values of relative magnetic helicity of different magnetic fields can be compared with each other in the same sense as free-energy values can. Therefore, relative magnetic helicity can be meaningfully and directly compared between different datasets, such as those from different active regions, but also within the same dataset at different times. Typical applications of our formulae include the helicity computation in three-dimensional models of the solar atmosphere, e.g., coronal-field reconstructions by force-free extrapolation and discretized magnetic fields of numerical simulations. KW - Active regions, magnetic fields KW - Magnetic field, photosphere, corona Y1 - 2012 U6 - https://doi.org/10.1007/s11207-012-9951-6 SN - 0038-0938 VL - 278 IS - 2 SP - 347 EP - 366 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Valori, Gherardo A1 - Green, Lucie M. A1 - Demoulin, Pascal A1 - Vargas Dominguez, S. A1 - van Driel-Gesztelyi, L. A1 - Wallace, A. A1 - Baker, Daniel N. A1 - Fuhrmann, Marcel T1 - Nonlinear force-free extrapolation of emerging flux with a global twist and serpentine fine structures JF - Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics N2 - We study the flux emergence process in NOAA active region 11024, between 29 June and 7 July 2009, by means of multi-wavelength observations and nonlinear force-free extrapolation. The main aim is to extend previous investigations by combining, as much as possible, high spatial resolution observations to test our present understanding of small-scale (undulatory) flux emergence, whilst putting these small-scale events in the context of the global evolution of the active region. The combination of these techniques allows us to follow the whole process, from the first appearance of the bipolar axial field on the east limb, until the buoyancy instability could set in and raise the main body of the twisted flux tube through the photosphere, forming magnetic tongues and signatures of serpentine field, until the simplification of the magnetic structure into a main bipole by the time the active region reaches the west limb. At the crucial time of the main emergence phase high spatial resolution spectropolarimetric measurements of the photospheric field are employed to reconstruct the three-dimensional structure of the nonlinear force-free coronal field, which is then used to test the current understanding of flux emergence processes. In particular, knowledge of the coronal connectivity confirms the identity of the magnetic tongues as seen in their photospheric signatures, and it exemplifies how the twisted flux, which is emerging on small scales in the form of a sea-serpent, is subsequently rearranged by reconnection into the large-scale field of the active region. In this way, the multi-wavelength observations combined with a nonlinear force-free extrapolation provide a coherent picture of the emergence process of small-scale magnetic bipoles, which subsequently reconnect to form a large-scale structure in the corona. KW - Active regions, magnetic fields KW - Magnetic field, photosphere, corona Y1 - 2012 U6 - https://doi.org/10.1007/s11207-011-9865-8 SN - 0038-0938 VL - 278 IS - 1 SP - 73 EP - 97 PB - Springer CY - Dordrecht ER - TY - THES A1 - Vocks, Christian T1 - Electron kinetic processes in the solar corona and wind T1 - Elektronenkinetische Prozesse in der Korona der Sonne und im Sonnenwind N2 - The Sun is surrounded by a 10^6 K hot atmosphere, the corona. The corona and the solar wind are fully ionized, and therefore in the plasma state. Magnetic fields play an important role in a plasma, since they bind electrically charged particles to their field lines. EUV spectroscopes, like the SUMER instrument on-board the SOHO spacecraft, reveal a preferred heating of coronal ions and strong temperature anisotropies. Velocity distributions of electrons can be measured directly in the solar wind, e.g. with the 3DPlasma instrument on-board the WIND satellite. They show a thermal core, an anisotropic suprathermal halo, and an anti-solar, magnetic-field-aligned, beam or "strahl". For an understanding of the physical processes in the corona, an adequate description of the plasma is needed. Magnetohydrodynamics (MHD) treats the plasma simply as an electrically conductive fluid. Multi-fluid models consider e.g. protons and electrons as separate fluids. They enable a description of many macroscopic plasma processes. However, fluid models are based on the assumption of a plasma near thermodynamic equilibrium. But the solar corona is far away from this. Furthermore, fluid models cannot describe processes like the interaction with electromagnetic waves on a microscopic scale. Kinetic models, which are based on particle velocity distributions, do not show these limitations, and are therefore well-suited for an explanation of the observations listed above. For the simplest kinetic models, the mirror force in the interplanetary magnetic field focuses solar wind electrons into an extremely narrow beam, which is contradicted by observations. Therefore, a scattering mechanism must exist that counteracts the mirror force. In this thesis, a kinetic model for electrons in the solar corona and wind is presented that provides electron scattering by resonant interaction with whistler waves. The kinetic model reproduces the observed components of solar wind electron distributions, i.e. core, halo, and a "strahl" with finite width. But the model is not only applicable on the quiet Sun. The propagation of energetic electrons from a solar flare is studied, and it is found that scattering in the direction of propagation and energy diffusion influence the arrival times of flare electrons at Earth approximately to the same degree. In the corona, the interaction of electrons with whistler waves does not only lead to scattering, but also to the formation of a suprathermal halo, as it is observed in interplanetary space. This effect is studied both for the solar wind as well as the closed volume of a coronal magnetic loop. The result is of fundamental importance for solar-stellar relations. The quiet solar corona always produces suprathermal electrons. This process is closely related to coronal heating, and can therefore be expected in any hot stellar corona. In the second part of this thesis it is detailed how to calculate growth or damping rates of plasma waves from electron velocity distributions. The emission and propagation of electron cyclotron waves in the quiet solar corona, and that of whistler waves during solar flares, is studied. The latter can be observed as so-called fiber bursts in dynamic radio spectra, and the results are in good agreement with observed bursts. N2 - Die Sonne ist von einer 10^6 K heißen Atmosphäre, der Korona, umgeben. Sie ist ebenso wie der Sonnenwind vollständig ionisiert, also ein Plasma. Magnetfelder spielen in einem Plasma eine wichtige Rolle, da sie elektrisch geladene Teilchen an ihre Feldlinien binden. EUV-Spektroskope, wie SUMER auf der Raumsonde SOHO, zeigen eine bevorzugte Heizung koronaler Ionen sowie starke Temperaturanisotropien. Geschwindigkeitsverteilung von Elektronen können im Sonnenwind direkt gemessen werden, z.B. mit dem 3DPlasma Instrument auf dem Satelliten WIND. Sie weisen einen thermischen Kern, einen isotropen suprathermischen Halo, sowie einen anti-solaren, magnetfeldparallelen Strahl auf. Zum Verständnis der physikalischen Prozesse in der Korona wird eine geeignete Beschreibung des Plasms benötigt. Die Magnetohydrodynamik (MHD) betrachtet das Plasma einfach als elektrisch leitfähige Flüssigkeit. Mehrflüssigkeitsmodelle behandeln z.B. Protonen und Elektronen als getrennte Fluide. Damit lassen sich viele makroskopische Vorgänge beschreiben. Fluidmodelle basieren aber auf der Annahme eines Plasmas nahe am thermodynamischen Gleichgewicht. Doch die Korona ist weit davon entfernt. Ferner ist es mit Fluidmodellen nicht möglich, Prozesse wie die Wechselwirkung mit elektromagnetischen Wellen mikroskopisch zu beschreiben. Kinetische Modelle, die Geschwindigkeitsverteilungen beschreiben, haben diese Einschränkungen nicht und sind deshalb geeignet, die oben genannten Messungen zu erklären. Bei den einfachsten Modellen bündelt die Spiegelkraft im interplanetaren Magnetfeld die Elektronen des Sonnenwinds in einen extrem engen Strahl, im Widerspruch zur Beobachtung. Daher muss es einen Streuprozess geben, der dem entgegenwirkt. In der vorliegenden Arbeit wird ein kinetisches Modell für Elektronen in der Korona und im Sonnenwind präsentiert, bei dem die Elektronen durch resonante Wechselwirkung mit Whistler-Wellen gestreut werden. Das kinetische Modell reproduziert die beobachteten Bestandteile von Elektronenverteilungen im Sonnenwind, d.h. Kern, Halo und einen Strahl endlicher Breite. Doch es ist nicht nur auf die ruhige Sonne anwendbar. Die Ausbreitung energetischer Elektronen eines solaren Flares wird untersucht und dabei festgestellt, dass Streuung in Ausbreitungsrichtung und Diffusion in Energie die Ankunftszeiten von Flare-Elektronen bei der Erde in etwa gleichem Maße beeinflussen. Die Wechselwirkung von Elektronen mit Whistlern führt in der Korona nicht nur zu Streuung, sondern auch zur Erzeugung eines suprathermischen Halos, wie er im interplanetaren Raum gemessen wird. Dieser Effekt wird sowohl im Sonnenwind als auch in einem geschlossenen koronalen Magnetfeldbogen untersucht. Das Ergebnis ist von fundamentaler Bedeutung für solar-stellare Beziehungen. Die ruhige Korona erzeugt stets suprathermische Elektronen. Dieser Prozeß ist eng mit der Koronaheizung verbunden, und daher in jeder heißen stellaren Korona zu erwarten. Im zweiten Teil der Arbeit wird beschrieben, wie sich aus der Geschwindigkeitsverteilung der Elektronen die Dämpfung oder Anregung von Plasmawellen berechnen lässt. Die Erzeugung und Ausbreitung von Elektronenzyklotronwellen in der ruhigen Korona und von Whistlern während solarer Flares wird untersucht. Letztere sind als sogenannte fiber bursts in dynamischen Radiospektren beobachtbar, und die Ergebnisse stimmen gut mit beobachteten Bursts überein. KW - Sonnenkorona KW - Plasmaphysik KW - kinetische Theorie KW - Elektronen-Geschwindigkeitsverteilungen KW - Whistler-Wellen KW - Solar corona KW - plasma physics KW - kinetic theory KW - electron velocity distributions KW - whistler waves Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-65259 ER - TY - JOUR A1 - Wang, Feipeng A1 - Lack, Alexander A1 - Xie, Zailai A1 - Frübing, Peter A1 - Taubert, Andreas A1 - Gerhard, Reimund T1 - Ionic-liquid-induced ferroelectric polarization in poly(vinylidene fluoride) thin films JF - Applied physics letters N2 - Thin films of ferroelectric beta-phase poly(vinylidene fluoride) (PVDF) were spin-coated from a solution that contained small amounts of the ionic liquid (IL) 1-ethyl-3-methylimidazolium nitrate. A remanent polarization of 60 mC/m(2) and a quasi-static pyroelectric coefficient of 19 mu C/m(2)K at 30 degrees C were observed in the films. It is suggested that the IL promotes the formation of the beta phase through dipolar interactions between PVDF chain-molecules and the IL. The dipolar interactions are identified as Coulomb attraction between hydrogen atoms in PVDF chains and anions in IL. The strong crystallinity increase is probably caused by the same dipolar interaction as well. KW - dielectric polarisation KW - ferroelectric thin films KW - polymer films KW - pyroelectricity KW - spin coating Y1 - 2012 U6 - https://doi.org/10.1063/1.3683526 SN - 0003-6951 VL - 100 IS - 6 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Weber, Cornelia A1 - Frank, C. A1 - Bommel, Sebastian A1 - Rukat, Tammo A1 - Leitenberger, Wolfram A1 - Schäfer, Peter A1 - Schreiber, Frank A1 - Kowarik, Stefan T1 - Chain-length dependent growth dynamics of n-alkanes on silica investigated by energy-dispersive x-ray reflectivity in situ and in real-time JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We compare the growth dynamics of the three n-alkanes C36H74, C40H82, and C44H90 on SiO2 using real-time and in situ energy-dispersive x-ray reflectivity. All molecules investigated align in an upright-standing orientation on the substrate and exhibit a transition from layer-by-layer growth to island growth after about 4 monolayers under the conditions employed. Simultaneous fits of the reflected intensity at five distinct points in reciprocal space show that films formed by longer n-alkanes roughen faster during growth. This behavior can be explained by a chain-length dependent height of the Ehrlich-Schwoebel barrier. Further x-ray diffraction measurements after growth indicate that films consisting of longer n-alkanes also incorporate more lying-down molecules in the top region. While the results reveal behavior typical for chain-like molecules, the findings can also be useful for the optimization of organic field effect transistors where smooth interlayers of n-alkanes without coexistence of two or more molecular orientations are required. Y1 - 2012 U6 - https://doi.org/10.1063/1.4719530 SN - 0021-9606 VL - 136 IS - 20 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Wendt, Martin A1 - Molaro, P. T1 - QSO 0347-383 and the invariance of m(p)/m(e) in the course of cosmic time JF - Astronomy and astrophysics : an international weekly journal N2 - Context. The variation of the dimensionless fundamental physical constant mu = m(p)/m(e) - the proton to electron mass ratio - can be constrained via observation of Lyman and Werner lines of molecular hydrogen in the spectra of damped Lyman alpha systems (DLAs) in the line of sight to distant QSOs. Aims. Our intention is to maximize the possible precision of quasar absorption spectroscopy with regard to the investigation of the variation of the proton-to-electron mass-ratio mu. The demand for precision requires an understanding of the errors involved and effective techniques to handle present systematic errors. Methods. An analysis based on UVES high resolution data sets of QSO 0347-383 and its DLA is put forward and new approaches to some of the steps involved in the data analysis are introduced. We apply corrections for the observed offsets between discrete spectra and for the first time we find indications for inter-order distortions. Results. Drawing on VLT-UVES observations of QSO 0347-383 in 2009 our analysis yields Delta mu/mu = (4.3 +/- 7.2) x 10(-6) at z(abs) = 3.025. Conclusions. Current analyzes tend to underestimate the impact of systematic errors. Based on the scatter of the measured redshifts and the corresponding low significance of the redshift-sensitivity correlation we estimate the limit of accuracy of line position measurements to similar to 220 m s (1), consisting of roughly 150 m s (1) due to the uncertainty of the absorption line fit and about 150 m s (1) allocated to systematics related to instrumentation and calibration. KW - cosmology: observations KW - quasars: absorption lines KW - quasars: individual: QSO 0347-383 KW - early Universe Y1 - 2012 U6 - https://doi.org/10.1051/0004-6361/201218862 SN - 0004-6361 VL - 541 IS - 3 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Wertheimer, Michael R. A1 - St-Georges-Robillard, Amelie A1 - Lerouge, Sophie A1 - Mwale, Fackson A1 - Elkin, Bentsian A1 - Oehr, Christian A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - Amine-rich organic thin films for cell culture - possible electrostatic effects in cell-surface interactions JF - Japanese journal of applied physics N2 - In recent communications from these laboratories, we observed that amine-rich thin organic layers are very efficient surfaces for the adhesion of mammalian cells. We prepare such deposits by plasma polymerization at low pressure, atmospheric pressure, or by vacuum-ultraviolet photo-polymerization. More recently, we have also investigated a commercially available material, Parylene diX AM. In this article we first briefly introduce literature relating to electrostatic interactions between cells, proteins, and charged surfaces. We then present certain selected cell-response results that pertain to applications in orthopedic and cardiovascular medicine: we discuss the influence of surface properties on the observed behaviors of two particular cell lines, human U937 monocytes, and Chinese hamster ovary cells. Particular emphasis is placed on possible electrostatic attractive forces due to positively charged R-NH3+ groups and negatively charged proteins and cells, respectively. Experiments carried out with electrets, polymers with high positive or negative surface potentials are added for comparison. Y1 - 2012 U6 - https://doi.org/10.1143/JJAP.51.11PJ04 SN - 0021-4922 VL - 51 IS - 11 PB - Japan Soc. of Applied Physics CY - Tokyo ER - TY - THES A1 - Winkelmann, Ricarda T1 - The future sea-level contribution from antartica: projections of solid ice discharge Y1 - 2012 CY - Potsdam ER - TY - JOUR A1 - Winkelmann, Ricarda A1 - Levermann, Anders A1 - Martin, Maria A. A1 - Frieler, Katja T1 - Increased future ice discharge from Antarctica owing to higher snowfall JF - Nature : the international weekly journal of science N2 - Anthropogenic climate change is likely to cause continuing global sea level rise(1), but some processes within the Earth system may mitigate the magnitude of the projected effect. Regional and global climate models simulate enhanced snowfall over Antarctica, which would provide a direct offset of the future contribution to global sea level rise from cryospheric mass loss(2,3) and ocean expansion(4). Uncertainties exist in modelled snowfall(5), but even larger uncertainties exist in the potential changes of dynamic ice discharge from Antarctica(1,6) and thus in the ultimate fate of the precipitation-deposited ice mass. Here we show that snowfall and discharge are not independent, but that future ice discharge will increase by up to three times as a result of additional snowfall under global warming. Our results, based on an ice-sheet model(7) forced by climate simulations through to the end of 2500 (ref. 8), show that the enhanced discharge effect exceeds the effect of surface warming as well as that of basal ice-shelf melting, and is due to the difference in surface elevation change caused by snowfall on grounded versus floating ice. Although different underlying forcings drive ice loss from basal melting versus increased snowfall, similar ice dynamical processes are nonetheless at work in both; therefore results are relatively independent of the specific representation of the transition zone. In an ensemble of simulations designed to capture ice-physics uncertainty, the additional dynamic ice loss along the coastline compensates between 30 and 65 per cent of the ice gain due to enhanced snowfall over the entire continent. This results in a dynamic ice loss of up to 1.25 metres in the year 2500 for the strongest warming scenario. The reported effect thus strongly counters a potential negative contribution to global sea level by the Antarctic Ice Sheet. Y1 - 2012 U6 - https://doi.org/10.1038/nature11616 SN - 0028-0836 VL - 492 IS - 7428 SP - 239 EP - + PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Wirges, Werner A1 - Raabe, Sebastian A1 - Qiu, Xunlin T1 - Dielectric elastomer and ferroelectret films combined in a single device how do they reinforce each other? JF - Applied physics : A, Materials science & processing N2 - Dielectric elastomers (DE) are soft polymer materials exhibiting large deformations under electrostatic stress. When a prestretched elastomer is stuck to a flat plastic frame, a complex structure that can be used as an actuator (DEA) is formed due to self-organization and energy minimization. Here, such a DEA was equipped with a ferroelectret film. Ferroelectrets are internally charged polymer foams or void-containing polymer-film systems combining large piezoelectricity with mechanical flexibility and elastic compliance. In their dielectric spectra, ferroelectrets show piezoelectric resonances that can be used to analyze their electromechanical properties. The antiresonance frequencies ( ) of ferroelectret films not only are directly related to their geometric parameters, but also are sensitive to the boundary conditions during measurement. In this paper, a fluoroethylenepropylene (FEP) ferroelectret film with tubular void channels was glued to a plastic frame prior to the formation of self-organized minimum-energy DEA structure. The dielectric resonance spectrum (DRS) of the ferroelectret film was measured in-situ during the actuation of the DEA under applied voltage. It is found that the antiresonance frequency is a monotropic function of the bending angle of the actuator. Therefore, the actuation of DEAs can be used to modulate the of ferroelectrets, while the can also be taken for in-situ diagnosis and for precise control of the actuation of the DEA. Combination of DEAs and ferroelectrets brings a number of possibilities for application. Y1 - 2012 U6 - https://doi.org/10.1007/s00339-012-6833-6 SN - 0947-8396 SN - 1432-0630 VL - 107 IS - 3 SP - 583 EP - 588 PB - Springer CY - New York ER - TY - THES A1 - Zakharova, Anna T1 - Bifurcations in deterministic and stochastic systems and applications to biology Y1 - 2012 CY - Potsdam ER - TY - JOUR A1 - Zakrevskyy, Yuriy A1 - Richter, Marcel A1 - Zakrevska, Svitlana A1 - Lomadze, Nino A1 - von Klitzing, Regine A1 - Santer, Svetlana T1 - Light-controlled reversible manipulation of microgel particle size using azobenzene-containing surfactant JF - Advanced functional materials N2 - The light-induced reversible switching of the swelling of microgel particles triggered by photo-isomerization and binding/unbinding of a photosensitive azobenzene-containing surfactant is reported. The interactions between the microgel (N-isopropylacrylamide, co-monomer: allyl acetic acid, crosslinker: N,N'-methylenebisacrylamide) and the surfactant are studied by UV-Vis spectroscopy, dynamic and electrophoretic light scattering measurements. Addition of the surfactant above a critical concentration leads to contraction/collapse of the microgel. UV light irradiation results in trans-cis isomerization of the azobenzene unit incorporated into the surfactant tail and causes an unbinding of the more hydrophilic cis isomer from the microgel and its reversible swelling. The reversible contraction can be realized by blue light irradiation that transfers the surfactant back to the more hydrophobic trans conformation, in which it binds to the microgel. The phase diagram of the surfactant-microgel interaction and transitions (aggregation, contraction, and precipitation) is constructed and allows prediction of changes in the system when the concentration of one or both components is varied. Remote and reversible switching between different states can be realized by either UV or visible light irradiation. Y1 - 2012 U6 - https://doi.org/10.1002/adfm.201200617 SN - 1616-301X VL - 22 IS - 23 SP - 5000 EP - 5009 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Zhu, Jian A1 - Kollosche, Matthias A1 - Lu, Tongqing A1 - Kofod, Guggi A1 - Suo, Zhigang T1 - Two types of transitions to wrinkles in dielectric elastomers JF - Soft matter N2 - A membrane of a dielectric elastomer coated with compliant electrodes may form wrinkles as the applied voltage is ramped up. We present a combination of experiment and theory to investigate the transition to wrinkles using a clamped membrane subject to a constant force and a voltage ramp. Two types of transitions are identified. In type-I transition, the voltage-stretch curve is N-shaped, and flat and wrinkled regions coexist in separate areas of the membrane. The type-I transition progresses by nucleation of small wrinkled regions, followed by the growth of the wrinkled regions at the expense of the flat regions, until the entire membrane is wrinkled. By contrast, in type-II transition, the voltage-stretch curve is monotonic, and the entire flat membrane becomes wrinkled with no nucleation barrier. The two types of transitions are analogous to the first and the second order phase transitions. While the type-I transition is accompanied by a jump in the vertical displacement, type-II transition is accompanied by a continuous change in the vertical displacement. Such transitions may enable applications in muscle-like actuation and energy harvesting, where large deformation and large energy of conversion are desired. Y1 - 2012 U6 - https://doi.org/10.1039/c2sm26034d SN - 1744-683X VL - 8 IS - 34 SP - 8840 EP - 8846 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zurita-Sanchez, Jorge R. A1 - Henkel, Carsten T1 - Acoustic waves from mechanical impulses due to fluorescence resonant energy (Forster) transfer Blowing a whistle with light JF - epl : a letters journal exploring the frontiers of physics N2 - We present a momentum transfer mechanism mediated by electromagnetic fields that originates in a system of two nearby molecules: one excited (donor D*) and the other in ground state (acceptor A). An intermolecular force related to fluorescence resonant energy or Forster transfer (FRET) arises in the unstable D* A molecular system, which differs from the equilibrium van der Waals interaction. Due to the its finite lifetime, a mechanical impulse is imparted to the relative motion in the system. We analyze the FRET impulse when the molecules are embedded in free space and find that its magnitude can be much greater than the single recoil photon momentum, getting comparable with the thermal momentum (Maxwell-Boltzmann distribution) at room temperature. In addition, we propose that this FRET impulse can be exploited in the generation of acoustic waves inside a film containing layers of donor and acceptor molecules, when a picosecond laser pulse excites the donors. This acoustic transient is distinguishable from that produced by thermal stress due to laser absorption, and may therefore play a role in photoacoustic spectroscopy. The effect can be seen as exciting a vibrating system like a string or organ pipe with light; it may be used as an opto-mechanical transducer. Y1 - 2012 U6 - https://doi.org/10.1209/0295-5075/97/43002 SN - 0295-5075 VL - 97 IS - 4 PB - EDP Sciences CY - Mulhouse ER -