TY - THES A1 - Niedermayer, Thomas T1 - On the depolymerization of actin filaments T1 - Über die Depolymerisation von Aktinfilamenten N2 - Actin is one of the most abundant and highly conserved proteins in eukaryotic cells. The globular protein assembles into long filaments, which form a variety of different networks within the cytoskeleton. The dynamic reorganization of these networks - which is pivotal for cell motility, cell adhesion, and cell division - is based on cycles of polymerization (assembly) and depolymerization (disassembly) of actin filaments. Actin binds ATP and within the filament, actin-bound ATP is hydrolyzed into ADP on a time scale of a few minutes. As ADP-actin dissociates faster from the filament ends than ATP-actin, the filament becomes less stable as it grows older. Recent single filament experiments, where abrupt dynamical changes during filament depolymerization have been observed, suggest the opposite behavior, however, namely that the actin filaments become increasingly stable with time. Several mechanisms for this stabilization have been proposed, ranging from structural transitions of the whole filament to surface attachment of the filament ends. The key issue of this thesis is to elucidate the unexpected interruptions of depolymerization by a combination of experimental and theoretical studies. In new depolymerization experiments on single filaments, we confirm that filaments cease to shrink in an abrupt manner and determine the time from the initiation of depolymerization until the occurrence of the first interruption. This duration differs from filament to filament and represents a stochastic variable. We consider various hypothetical mechanisms that may cause the observed interruptions. These mechanisms cannot be distinguished directly, but they give rise to distinct distributions of the time until the first interruption, which we compute by modeling the underlying stochastic processes. A comparison with the measured distribution reveals that the sudden truncation of the shrinkage process neither arises from blocking of the ends nor from a collective transition of the whole filament. Instead, we predict a local transition process occurring at random sites within the filament. The combination of additional experimental findings and our theoretical approach confirms the notion of a local transition mechanism and identifies the transition as the photo-induced formation of an actin dimer within the filaments. Unlabeled actin filaments do not exhibit pauses, which implies that, in vivo, older filaments become destabilized by ATP hydrolysis. This destabilization can be identified with an acceleration of the depolymerization prior to the interruption. In the final part of this thesis, we theoretically analyze this acceleration to infer the mechanism of ATP hydrolysis. We show that the rate of ATP hydrolysis is constant within the filament, corresponding to a random as opposed to a vectorial hydrolysis mechanism. N2 - Aktin ist eines der am häufigsten vorkommenden und am stärksten konservierten Proteine in eukaryotischen Zellen. Dieses globuläre Protein bildet lange Filamente, die zu einer großen Vielfalt von Netzwerken innerhalb des Zellskeletts führen. Die dynamische Reorganisation dieser Netzwerke, die entscheidend für Zellbewegung, Zelladhäsion, und Zellteilung ist, basiert auf der Polymerisation (dem Aufbau) und der Depolymerisation (dem Abbau) von Aktinfilamenten. Aktin bindet ATP, welches innerhalb des Filaments auf einer Zeitskala von einigen Minuten in ADP hydrolysiert wird. Da ADP-Aktin schneller vom Filamentende dissoziiert als ATP-Aktin, sollte ein Filament mit der Zeit instabiler werden. Neuere Experimente, in denen abrupte dynamische Änderungen während der Filamentdepolymerisation beobachtet wurden, deuten jedoch auf ein gegenteiliges Verhalten hin: Die Aktinfilamente werden mit der Zeit zunehmend stabiler. Mehrere Mechanismen für diese Stabilisierung wurden bereits vorgeschlagen, von strukturellen Übergängen des gesamten Filaments bis zu Wechselwirkungen der Filamentenden mit dem experimentellen Aufbau. Das zentrale Thema der vorliegenden Dissertation ist die Aufklärung der unerwarteten Unterbrechungen der Depolymerisation. Dies geschieht durch eine Kombination von experimentellen und theoretischen Untersuchungen. Mit Hilfe neuer Depolymerisationexperimente mit einzelnen Filamenten bestätigen wir zunächst, dass die Filamente plötzlich aufhören zu schrumpfen und bestimmen die Zeit, die von der Einleitung der Depolymerisation bis zum Auftreten der ersten Unterbrechung vergeht. Diese Zeit unterscheidet sich von Filament zu Filament und stellt eine stochastische Größe dar. Wir untersuchen daraufhin verschiedene hypothetische Mechanismen, welche die beobachteten Unterbrechungen verursachen könnten. Die Mechanismen können experimentell nicht direkt unterschieden werden, haben jedoch verschiedene Verteilungen für die Zeit bis zur ersten Unterbrechung zur Folge. Wir berechnen die jeweiligen Verteilungen, indem wir die zugrundeliegenden stochastischen Prozesse modellieren. Ein Vergleich mit der gemessenen Verteilung zeigt, dass der plötzliche Abbruch des Depolymerisationsprozesses weder auf eine Blockade der Enden, noch auf einen kollektiven strukturellen Übergang des gesamten Filaments zurückzuführen ist. An Stelle dessen postulieren wir einen lokalen Übergangsprozess, der an zufälligen Stellen innerhalb des Filaments auftritt. Die Kombination von weiteren experimentellen Ergebnissen und unserem theoretischen Ansatz bestätigt die Vorstellung eines lokalen Übergangsmechanismus und identifiziert den Übergang als die photo-induzierte Bildung eines Aktindimers innerhalb des Filaments. Nicht fluoreszenzmarkierte Aktinfilamente zeigen keine Unterbrechungen, woraus folgt, dass ältere Filamente in vivo durch die ATP-Hydrolyse destabilisiert werden. Die Destabilisierung zeigt sich durch die Beschleunigung der Depolymerisation vor der Unterbrechung. Im letzten Teil der vorliegenden Arbeit untersuchen wir diese Beschleunigung mit theoretischen Methoden, um auf den Mechanismus der ATP-Hydrolyse zu schließen. Wir zeigen, dass die Hydrolyserate von ATP innerhalb des Filaments konstant ist, was dem sogenannten zufälligen Hydrolysemechanismus entspricht und im Gegensatz zum sogenannten vektoriellen Mechanismus steht. KW - Aktinfilamente KW - Depolymerisation KW - stochastische Prozesse KW - Fluoreszenzmikroskopie KW - ATP-Hydrolyse KW - actin filaments KW - depolymerization KW - stochastic processes KW - fluorescence microscopy KW - ATP hydrolysis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-63605 ER - TY - THES A1 - Mulansky, Mario T1 - Chaotic diffusion in nonlinear Hamiltonian systems T1 - Chaotische Diffusion in nichtlinearen Hamiltonschen Systemen N2 - This work investigates diffusion in nonlinear Hamiltonian systems. The diffusion, more precisely subdiffusion, in such systems is induced by the intrinsic chaotic behavior of trajectories and thus is called chaotic diffusion''. Its properties are studied on the example of one- or two-dimensional lattices of harmonic or nonlinear oscillators with nearest neighbor couplings. The fundamental observation is the spreading of energy for localized initial conditions. Methods of quantifying this spreading behavior are presented, including a new quantity called excitation time. This new quantity allows for a more precise analysis of the spreading than traditional methods. Furthermore, the nonlinear diffusion equation is introduced as a phenomenologic description of the spreading process and a number of predictions on the density dependence of the spreading are drawn from this equation. Two mathematical techniques for analyzing nonlinear Hamiltonian systems are introduced. The first one is based on a scaling analysis of the Hamiltonian equations and the results are related to similar scaling properties of the NDE. From this relation, exact spreading predictions are deduced. Secondly, the microscopic dynamics at the edge of spreading states are thoroughly analyzed, which again suggests a scaling behavior that can be related to the NDE. Such a microscopic treatment of chaotically spreading states in nonlinear Hamiltonian systems has not been done before and the results present a new technique of connecting microscopic dynamics with macroscopic descriptions like the nonlinear diffusion equation. All theoretical results are supported by heavy numerical simulations, partly obtained on one of Europe's fastest supercomputers located in Bologna, Italy. In the end, the highly interesting case of harmonic oscillators with random frequencies and nonlinear coupling is studied, which resembles to some extent the famous Discrete Anderson Nonlinear Schroedinger Equation. For this model, a deviation from the widely believed power-law spreading is observed in numerical experiments. Some ideas on a theoretical explanation for this deviation are presented, but a conclusive theory could not be found due to the complicated phase space structure in this case. Nevertheless, it is hoped that the techniques and results presented in this work will help to eventually understand this controversely discussed case as well. N2 - Diese Arbeit beschäftigt sich mit dem Phänomen der Diffusion in nichtlinearen Systemen. Unter Diffusion versteht man normalerweise die zufallsmä\ss ige Bewegung von Partikeln durch den stochastischen Einfluss einer thermodynamisch beschreibbaren Umgebung. Dieser Prozess ist mathematisch beschrieben durch die Diffusionsgleichung. In dieser Arbeit werden jedoch abgeschlossene Systeme ohne Einfluss der Umgebung betrachtet. Dennoch wird eine Art von Diffusion, üblicherweise bezeichnet als Subdiffusion, beobachtet. Die Ursache dafür liegt im chaotischen Verhalten des Systems. Vereinfacht gesagt, erzeugt das Chaos eine intrinsische Pseudo-Zufälligkeit, die zu einem gewissen Grad mit dem Einfluss einer thermodynamischen Umgebung vergleichbar ist und somit auch diffusives Verhalten provoziert. Zur quantitativen Beschreibung dieses subdiffusiven Prozesses wird eine Verallgemeinerung der Diffusionsgleichung herangezogen, die Nichtlineare Diffusionsgleichung. Desweiteren wird die mikroskopische Dynamik des Systems mit analytischen Methoden untersucht, und Schlussfolgerungen für den makroskopischen Diffusionsprozess abgeleitet. Die Technik der Verbindung von mikroskopischer Dynamik und makroskopischen Beobachtungen, die in dieser Arbeit entwickelt wird und detailliert beschrieben ist, führt zu einem tieferen Verständnis von hochdimensionalen chaotischen Systemen. Die mit mathematischen Mitteln abgeleiteten Ergebnisse sind darüber hinaus durch ausführliche Simulationen verifiziert, welche teilweise auf einem der leistungsfähigsten Supercomputer Europas durchgeführt wurden, dem sp6 in Bologna, Italien. Desweiteren können die in dieser Arbeit vorgestellten Erkenntnisse und Techniken mit Sicherheit auch in anderen Fällen bei der Untersuchung chaotischer Systeme Anwendung finden. KW - Chaos KW - Diffusion KW - Thermalisierung KW - Energieausbreitung KW - chaos KW - diffusion KW - thermalization KW - energy spreading Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-63180 ER - TY - THES A1 - Ohliger, Matthias T1 - Characterizing and measuring properties of continuous-variable quantum states T1 - Charakterisierung und Messung der Eigenschaften von Quantenzuständen mit kontinuierlichen Variablen N2 - We investigate properties of quantum mechanical systems in the light of quantum information theory. We put an emphasize on systems with infinite-dimensional Hilbert spaces, so-called continuous-variable systems'', which are needed to describe quantum optics beyond the single photon regime and other Bosonic quantum systems. We present methods to obtain a description of such systems from a series of measurements in an efficient manner and demonstrate the performance in realistic situations by means of numerical simulations. We consider both unconditional quantum state tomography, which is applicable to arbitrary systems, and tomography of matrix product states. The latter allows for the tomography of many-body systems because the necessary number of measurements scales merely polynomially with the particle number, compared to an exponential scaling in the generic case. We also present a method to realize such a tomography scheme for a system of ultra-cold atoms in optical lattices. Furthermore, we discuss in detail the possibilities and limitations of using continuous-variable systems for measurement-based quantum computing. We will see that the distinction between Gaussian and non-Gaussian quantum states and measurements plays an crucial role. We also provide an algorithm to solve the large and interesting class of naturally occurring Hamiltonians, namely frustration free ones, efficiently and use this insight to obtain a simple approximation method for slightly frustrated systems. To achieve this goals, we make use of, among various other techniques, the well developed theory of matrix product states, tensor networks, semi-definite programming, and matrix analysis. N2 - Die stürmische Entwicklung der Quanteninformationstheorie in den letzten Jahren brachte einen neuen Blickwinkel auf quantenmechanische Probleme. Insbesondere die fundamentale Eigenschaft der Verschränkung von Quantenzuständen spielt hierbei eine Schlüsselrolle. Einstein, Podolsky und Rosen haben 1935 versucht die Unvollständigkeit der Quantenmechanik zu demonstrieren, indem sie zeigten, dass sie keine lokale, realistische Therie ist und der Ausgang einer Messung an einem Ort von Messungen abhängen kann, die an beliebig weit entfernten Orten gemacht wurden. John Bell stellte 1964 eine, später nach ihm benannte, Ungleichung auf, die eine Grenze an mögliche Korrelationen von Messergebnissen in lokalen, realistischen Theorien gibt. Die Vorhersagen der Quatenmechanik verletzen diese Ungleichung, eine Tatsache, die 1981 von Alain Aspect und anderen auch experimentell bestätigt wurde. Solche nicht-lokalen Quantenzustände werden verschränkt'' genannt. In neuerer Zeit wurde Verschränkung nicht mehr nur als mysteriöse Eigenschaft der Quantenmechanik sondern auch als Resource für Aufgaben der Informationsverarbeitung gesehen. Ein Computer, der sich diese Eigenschaften der Quantenmechanik zu nutze macht, ein sogenannter Quantencomputer, würde es erlauben gewisse Aufgaben schnell zu lösen für die normale'' Computer zu lange brauchen. Das wichtigste Beispiel hierfür ist die Zerlegung von großen Zahlen in ihre Primfaktoren, für die Shor 1993 einen Quantenalgorithmus präsentierte. In dieser Arbeit haben wir uns mit den Eigenschaften von Quantensystemen, die durch sogenannte kontinuierliche Variablen beschrieben werden, beschäftigt. Diese sind nicht nur theoretisch sonder auch experimentell von besonderem Interesse, da sie quantenoptische Systeme beschreiben, die sich verhältnismäßig leicht im Labor präparieren, manipulieren und messen lassen. Wenn man eine vollständige Beschreibung eines Quantenzustandes erhalten will, braucht man, auf Grund der Heisenberg'schen Unschärferelation, mehrere Kopien von ihm an denen man dann Messungen durchführt. Wir haben eine Methode, compressed-sensing genannt, eingeführt um die Anzahl der nötigen Messungen substantiell zu reduzieren. Wir haben die theoretische Effizienz dieser Methode bewiesen und durch numerische Simulationen auch ihre Praktikabilität demonstriert. Desweiteren haben wir beschrieben, wie man compressed-sensing für die schon erwähnten optischen Systemen sowie für ultrakalte Atome experimentell realisieren kann. Ein zweites Hauptthema dieser Arbeit war messbasiertes Quantenrechnen. Das Standardmodell des Quantenrechnens basiert auf sogenannten Gattern, die eine genaue Kontrolle der Wechselwirkung zwischen den Bestandteilen des Quantencomputers erfordern. Messbasiertes Quantenrechnen hingegen kommt mit der Präparation eines geeigneten Quantenzustands, Resource genannt, gefolgt von einfachen Messungen auf diesem Zustand aus. Wir haben gezeigt, dass Systeme mit kontinuierlichen Variablen eine vorteilhafte Realisierung eines Quantencomputers in diesem Paradigma erlauben, es jedoch auch wichtige Beschränkungen gibt, die kompliziertere Zustandspräparationen und Messungen nötig machen. KW - Quantencomputer KW - Quantenoptik KW - Vielteilchentheorie KW - quantum computer KW - quantum optics KW - quantum many-body theory Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-62924 ER - TY - THES A1 - Eschenlohr, Andrea T1 - Element-resolved ultrafast magnetization dynamics in ferromagnetic alloys and multilayers T1 - Elementaufgelöste ultraschnelle Magnetisierungsdynamik in ferromagnetischen Legierungen und Multilagen N2 - The microscopic origin of ultrafast demagnetization, i.e. the quenching of the magnetization of a ferromagnetic metal on a sub-picosecond timescale after laser excitation, is still only incompletely understood, despite a large body of experimental and theoretical work performed since the discovery of the effect more than 15 years ago. Time- and element-resolved x-ray magnetic circular dichroism measurements can provide insight into the microscopic processes behind ultrafast demagnetization as well as its dependence on materials properties. Using the BESSY II Femtoslicing facility, a storage ring based source of 100 fs short soft x-ray pulses, ultrafast magnetization dynamics of ferromagnetic NiFe and GdTb alloys as well as a Au/Ni layered structure were investigated in laser pump – x-ray probe experiments. After laser excitation, the constituents of Ni50Fe50 and Ni80Fe20 exhibit distinctly different time constants of demagnetization, leading to decoupled dynamics, despite the strong exchange interaction that couples the Ni and Fe sublattices under equilibrium conditions. Furthermore, the time constants of demagnetization for Ni and Fe are different in Ni50Fe50 and Ni80Fe20, and also different from the values for the respective pure elements. These variations are explained by taking the magnetic moments of the Ni and Fe sublattices, which are changed from the pure element values due to alloying, as well as the strength of the intersublattice exchange interaction into account. GdTb exhibits demagnetization in two steps, typical for rare earths. The time constant of the second, slower magnetization decay was previously linked to the strength of spin-lattice coupling in pure Gd and Tb, with the stronger, direct spin-lattice coupling in Tb leading to a faster demagnetization. In GdTb, the demagnetization of Gd follows Tb on all timescales. This is due to the opening of an additional channel for the dissipation of spin angular momentum to the lattice, since Gd magnetic moments in the alloy are coupled via indirect exchange interaction to neighboring Tb magnetic moments, which are in turn strongly coupled to the lattice. Time-resolved measurements of the ultrafast demagnetization of a Ni layer buried under a Au cap layer, thick enough to absorb nearly all of the incident pump laser light, showed a somewhat slower but still sub-picosecond demagnetization of the buried Ni layer in Au/Ni compared to a Ni reference sample. Supported by simulations, I conclude that demagnetization can thus be induced by transport of hot electrons excited in the Au layer into the Ni layer, without the need for direct interaction between photons and spins. N2 - Der mikroskopische Ursprung der ultraschnellen Entmagnetisierung, d.h. des Rückgangs der Magnetisierung eines ferromagnetischen Metalls innerhalb einer Pikosekunde nach Laseranregung, ist bisher nur unvollständig verstanden, trotz umfangreicher experimenteller und theoretischer Arbeiten, die seit der Entdeckung des Effekts vor mehr als 15 Jahren durchgeführt wurden. Zeit- und elementaufgelöster Röntgenzirkulardichroismus kann Einblick in die mikroskopischen Prozesse hinter der ultraschnellen Entmagnetisierung sowie deren Materialabhängigkeit gewähren. Am BESSY II Femtoslicing, einer speicherringbasierten Quelle für 100 fs kurze Röntgenpulse, wurde ultraschnelle Magnetisierungsdynamik von ferromagnetischen NiFe- und GdTb-Legierungen sowie einer Au/Ni-Schichtstruktur in Anregungs-Abfrage-Experimenten untersucht. Nach Laseranregung zeigen die Konstituenten von Ni50Fe50 und Ni80Fe20 deutlich unterscheidbares Verhalten und damit entkoppelte Dynamik, trotz starker Austauschkopplung der Ni- und Fe-Untergitter im Gleichgewichtszustand. Weiterhin variieren die Werte der Zeitkonstanten der Entmagnetisierung von Ni und Fe für Ni50Fe50 und Ni80Fe20, und auch für die jeweiligen reinen Elemente. Diese Unterschiede werden durch die magnetischen Momente der Untergitter erklärt, die sich in den Legierungen gegenüber den reinen Elementen ändern, sowie durch die Stärke der Austauschkopplung zwischen den Untergittern. GdTb zeigt Entmagnetisierung in zwei Stufen, was typisch für Seltene Erden ist. Die Zeitkonstante der langsameren zweiten Stufe wurde kürzlich mit der Stärke der Spin-Gitter-Kopplung in reinem Gd und Tb in Verbindung gebracht, wobei die stärkere, direkte Spin-Gitter-Kopplung in Tb zu schnellerer Entmagnetisierung führt. In GdTb folgt die Entmagnetisierung von Gd auf allen Zeitskalen der von Tb. Dies beruht auf einer verstärkten Kopplung der magnetischen Momente von Gd an das Gitter, über die indirekte Austauschkopplung an die Tb-Momente. Dadurch kann Spindrehimpuls schneller an das Gitter abfließen. Zeitaufgelöste Messungen der Entmagnetisierung einer Ni-Schicht unter einer Au-Deckschicht, deren Dicke ausreichend ist um den anregenden Laserpuls praktisch vollständig zu absorbieren, zeigen eine leicht verzögerte aber trotzdem ultraschnelle Entmagnetisierung im Vergleich mit einer Ni-Referenzprobe. Unterstützt durch Simulationen zeigt sich, dass Entmagnetisierung durch den Transport heißer Elektronen von der Au-Deckschicht in die Ni-Schicht ausgelöst wird, ohne dass direkte Wechselwirkung zwischen Photonen und Spins notwendig ist. KW - Festkörperphysik KW - Magnetismus KW - Magnetisierungsdynamik KW - Ultraschnelle Dynamik KW - Röntgenspektroskopie KW - solid state physics KW - magnetism KW - magnetization dynamics KW - ultrafast dynamics KW - x-ray spectroscopy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-62846 ER - TY - THES A1 - Herzog, Marc T1 - Structural dynamics of photoexcited nanolayered perovskites studied by ultrafast x-ray diffraction T1 - Untersuchung der Strukturdynamik photoangeregter Nanoschicht-Perowskite mittels ultraschneller Röntgenbeugung N2 - This publication-based thesis represents a contribution to the active research field of ultrafast structural dynamics in laser-excited nanostructures. The investigation of such dynamics is mandatory for the understanding of the various physical processes on microscopic scales in complex materials which have great potentials for advances in many technological applications. I theoretically and experimentally examine the coherent, incoherent and anharmonic lattice dynamics of epitaxial metal-insulator heterostructures on timescales ranging from femtoseconds up to nanoseconds. To infer information on the transient dynamics in the photoexcited crystal lattices experimental techniques using ultrashort optical and x-ray pulses are employed. The experimental setups include table-top sources as well as large-scale facilities such as synchrotron sources. At the core of my work lies the development of a linear-chain model to simulate and analyze the photoexcited atomic-scale dynamics. The calculated strain fields are then used to simulate the optical and x-ray response of the considered thin films and multilayers in order to relate the experimental signatures to particular structural processes. This way one obtains insight into the rich lattice dynamics exhibiting coherent transport of vibrational energy from local excitations via delocalized phonon modes of the samples. The complex deformations in tailored multilayers are identified to give rise to highly nonlinear x-ray diffraction responses due to transient interference effects. The understanding of such effects and the ability to precisely calculate those are exploited for the design of novel ultrafast x-ray optics. In particular, I present several Phonon Bragg Switch concepts to efficiently generate ultrashort x-ray pulses for time-resolved structural investigations. By extension of the numerical models to include incoherent phonon propagation and anharmonic lattice potentials I present a new view on the fundamental research topics of nanoscale thermal transport and anharmonic phonon-phonon interactions such as nonlinear sound propagation and phonon damping. The former issue is exemplified by the time-resolved heat conduction from thin SrRuO3 films into a SrTiO3 substrate which exhibits an unexpectedly slow heat conductivity. Furthermore, I discuss various experiments which can be well reproduced by the versatile numerical models and thus evidence strong lattice anharmonicities in the perovskite oxide SrTiO3. The thesis also presents several advances of experimental techniques such as time-resolved phonon spectroscopy with optical and x-ray photons as well as concepts for the implementation of x-ray diffraction setups at standard synchrotron beamlines with largely improved time-resolution for investigations of ultrafast structural processes. This work forms the basis for ongoing research topics in complex oxide materials including electronic correlations and phase transitions related to the elastic, magnetic and polarization degrees of freedom. N2 - Diese publikationsbasierte Dissertation ist ein Beitrag zu dem aktuellen Forschungsgebiet der ultraschnellen Strukturdynamik in laserangeregten Nanostrukturen. Die Erforschung solcher Vorgänge ist unabdingbar für ein Verständnis der vielseitigen physikalischen Prozesse auf mikroskopischen Längenskalen in komplexen Materialien, welche enorme Weiterentwicklungen für technologische Anwendungen versprechen. Meine theoretischen und experimentellen Untersuchungen betrachten kohärente, inkohärente und anharmonische Gitterdynamiken in epitaktischen Metal-Isolator-Heterostrukturen auf Zeitskalen von Femtosekunden bis Nanosekunden. Um Einsichten in solche transienten Prozesse in laserangeregten Kristallen zu erhalten, werden experimentelle Techniken herangezogen, die ultrakurze Pulse von sichtbarem Licht und Röntgenstrahlung verwenden. Ein zentraler Bestandteil meiner Arbeit ist die Entwicklung eines Linearkettenmodells zur Simulation und Analyse der laserinitiierten Atombewegungen. Die damit errechneten Verzerrungsfelder werden anschließend verwendet, um die Änderung der optischen und Röntgeneigenschaften der betrachteten Dünnfilm- und Vielschichtsysteme zu simulieren. Diese Rechnungen werden dann mit den experimentellen Daten verglichen, um die experimentellen Signaturen mit errechneten strukturellen Prozessen zu identifizieren. Dadurch erhält man Einsicht in die vielseitige Gitterdynamiken, was z.B. einen kohärenten Transport der Vibrationsenergie von lokal angeregten Bereichen durch delokalisierte Phononenmoden offenbart. Es wird gezeigt, dass die komplexen Deformationen in maßgeschneiderten Vielschichtsystemen hochgradig nichtlineare Röntgenbeugungseffekte auf Grund von transienten Interferenzerscheinungen verursachen. Das Verständnis dieser Prozesse und die Möglichkeit, diese präzise zu simulieren, werden dazu verwendet, neuartige ultraschnelle Röntgenoptiken zu entwerfen. Insbesondere erläutere ich mehrere Phonon-Bragg-Schalter-Konzepte für die effiziente Erzeugung ultrakurzer Röntgenpulse, die in zeitaufgelösten Strukturanalysen Anwendung finden. Auf Grund der Erweiterung der numerischen Modelle zur Beschreibung von inkohärenter Phononenausbreitung und anharmonischer Gitterpotentiale decken diese ebenfalls die aktuellen Themengebiete von Wärmetransport auf Nanoskalen und anharmonischer Phonon-Phonon-Wechselwirkung (z.B. nichtlineare Schallausbreitung und Phononendämpfung) ab. Die erstere Thematik wird am Beispiel der zeitaufgelösten Wärmeleitung von einem dünnen SrRuO3-Film in ein SrTiO3-Substrat behandelt, wobei ein unerwartet langsamer Wärmetransport zu Tage tritt. Außerdem diskutiere ich mehrere Experimente, die auf Grund der sehr guten Reproduzierbarkeit durch die numerischen Modelle starke Gitteranharmonizitäten in dem oxidischen Perowskit SrTiO3 bezeugen. Diese Dissertation erarbeitet zusätzlich verschiedene Weiterentwicklungen von experimentellen Methoden, wie z.B. die zeitaufgelöste Phononenspektroskopie mittels optischer Photonen und Röntgenphotonen, sowie Konzepte für die Umsetzung von Röntgenbeugungsexperimenten an Standard-Synchrotronquellen mit stark verbesserter Zeitauflösung für weitere Studien von ultraschnellen Strukturvorgängen. KW - ultraschnelle Röntgenbeugung KW - Phononen KW - epitaktisch KW - ultrafast x-ray diffraction KW - phonons KW - epitaxial Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-62632 ER - TY - THES A1 - Kappel, Marcel T1 - Scattering effects in the sound wave propagation of instrument soundboards T1 - Schall-Streueffekte in Resonanzböden von Musikinstrumenten N2 - In the western hemisphere, the piano is one of the most important instruments. While its evolution lasted for more than three centuries, and the most important physical aspects have already been investigated, some parts in the characterization of the piano remain not well understood. Considering the pivotal piano soundboard, the effect of ribs mounted on the board exerted on the sound radiation and propagation in particular, is mostly neglected in the literature. The present investigation deals exactly with the sound wave propagation effects that emerge in the presence of an array of equally-distant mounted ribs at a soundboard. Solid-state theory proposes particular eigenmodes and -frequencies for such arrangements, which are comparable to single units in a crystal. Following this 'linear chain model' (LCM), differences in the frequency spectrum are observable as a distinct band structure. Also, the amplitudes of the modes are changed, due to differences of the damping factor. These scattering effects were not only investigated for a well-understood conceptional rectangular soundboard (multichord), but also for a genuine piano resonance board manufactured by the piano maker company 'C. Bechstein Pianofortefabrik'. To obtain the possibility to distinguish between the characterizing spectra both with and without mounted ribs, the typical assembly plan for the Bechstein instrument was specially customized. Spectral similarities and differences between both boards are found in terms of damping and tone. Furthermore, specially prepared minimal-invasive piezoelectric polymer sensors made from polyvinylidene fluoride (PVDF) were used to record solid-state vibrations of the investigated system. The essential calibration and characterization of these polymer sensors was performed by determining the electromechanical conversion, which is represented by the piezoelectric coefficient. Therefore, the robust 'sinusoidally varying external force' method was applied, where a dynamic force perpendicular to the sensor's surface, generates movable charge carriers. Crucial parameters were monitored, with the frequency response function as the most important one for acousticians. Along with conventional condenser microphones, the sound was measured as solid-state vibration as well as airborne wave. On this basis, statements can be made about emergence, propagation, and also the overall radiation of the generated modes of the vibrating system. Ultimately, these results acoustically characterize the entire system. N2 - Betrachtet man den westlichen Kulturkreis, ist der Flügel bzw. das Klavier wohl eines der bedeutendsten Instrumente. Trotz einer stetigen, empirischen Weiterentwicklung dieses Instrumentes in den letzten drei Jahrhunderten und des Wissens um die wichtigsten physikalischen Effekte, sind viele Teile der Charakterisierung des Klaviers (sowohl akustisch als auch physikalisch) immer noch nicht vollständig verstanden. Nehmen wir nur den Resonanzboden - das entscheidende Bauteil für die Akustik eines Klaviers - und betrachten die Auswirkung, den die Berippung auf die Schallausbreitung des Instruments hat. Bis auf wenige Ausnahmen wird dieser Struktur-Aspekt in der Literatur weitestgehend übergangen. Die vorliegende Arbeit untersucht genau diese Ausbreitungscharakteristiken und Streueffekte, welche dadurch entstehen, dass Rippen, die denselben Abstand zueinander haben, auf dem Resonanzboden angebracht werden. Die Festkörperphysik stellt ein einfaches Modell über die Eigenfrequenzen für solche Anordnungen bereit. Dafür werden die Rippen und deren Abstände wie Einheitszellen eines Kristalls betrachtet. Ausgehend vom sogenannten 'Modell der linearen Ketten', werden gemessene Frequenzbänder im Spektrum erklärbar. Zusätzlich ändern sich auch die spektralen Amplituden des Resonanzbodens durch das Anbringen der Rippen. Diese Streueffekte wurden nicht nur an einem konzeptionellen rechteckigen Resonanzboden untersucht, sondern auch an einem originalen Klavier-Resonanzboden, welcher von dem Klavierbauer 'C. Bechstein Pianofortefabrik' hergestellt wurde und auch später in einem fertigen Klavier zum Einsatz kommen wird. Der traditionelle Zusammenbau des Klaviers wurde speziell für diese Untersuchung abgeändert, um die Möglichkeit zu haben, die Berippung des Resonanzbodens spektral zu charakterisieren. Alle gefundenen Eigenschaften des konzeptionellen und des originalen Bodens wurden verglichen. Für die Dämpfung und für die Brillianz des Tons wurden Übereinstimmungen, aber auch Unterschiede gefunden. Ein großer Teil dieser Untersuchung erforderte den Einsatz von speziell angefertigten piezoelektrischen Polymer-Beschleunigungsaufnehmern aus Polyvinylidenfluorid. Direkt fest eingeklebt im Instrument, wurden diese eingesetzt, um die Körperschwingungen des vibrierenden Systems aufzunehmen. Die essentielle Kalibrierung und Charakterisierung dieser Sensoren wurde durchgeführt, indem die elektromechanische Umwandlung bestimmt wurde, die durch den piezoelektrischen Koeffizienten gegeben ist. Durch eine sinusförmig variierende, externe Kraft und die dadurch entstehenden Ladungsträger an den Oberflächen des Sensormaterials kann dieser Koeffizient sehr genau bestimmt werden. In Abhängigkeit entscheidender physikalischer Größen, z.B. der Frequenz-Antwort-Funktion, wurde das Verhalten des piezoelektrischen Koeffizienten untersucht. Die erzeugten Vibrationen als Körperschall (aufgenommen durch die Piezopolymere) und als Luftschallwelle (aufgenommen durch konventionelle Kondensator-Mikrophone) wurden simultan gemessen und dann untersucht. Daraus kann man Aussagen über Entstehung, Ausbreitung und Abstrahlung der erzeugten Moden in das umgebende Medium ableiten. Letztlich charakterisieren diese Ergebnisse das gesamte vibrierende System akustisch. KW - Musikinstrumente KW - piezoelektrische Sensoren KW - Streuung von Schallwellen KW - music instruments KW - piezoelectric sensors KW - wave scattering Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-62676 ER - TY - THES A1 - Deneke, Carlus T1 - Theory of mRNA degradation T1 - Theoretische Beschreibung des Abbaus von mRNA N2 - One of the central themes of biology is to understand how individual cells achieve a high fidelity in gene expression. Each cell needs to ensure accurate protein levels for its proper functioning and its capability to proliferate. Therefore, complex regulatory mechanisms have evolved in order to render the expression of each gene dependent on the expression level of (all) other genes. Regulation can occur at different stages within the framework of the central dogma of molecular biology. One very effective and relatively direct mechanism concerns the regulation of the stability of mRNAs. All organisms have evolved diverse and powerful mechanisms to achieve this. In order to better comprehend the regulation in living cells, biochemists have studied specific degradation mechanisms in detail. In addition to that, modern high-throughput techniques allow to obtain quantitative data on a global scale by parallel analysis of the decay patterns of many different mRNAs from different genes. In previous studies, the interpretation of these mRNA decay experiments relied on a simple theoretical description based on an exponential decay. However, this does not account for the complexity of the responsible mechanisms and, as a consequence, the exponential decay is often not in agreement with the experimental decay patterns. We have developed an improved and more general theory of mRNA degradation which provides a general framework of mRNA expression and allows describing specific degradation mechanisms. We have made an attempt to provide detailed models for the regulation in different organisms. In the yeast S. cerevisiae, different degradation pathways are known to compete and furthermore most of them rely on the biochemical modification of mRNA molecules. In bacteria such as E. coli, degradation proceeds primarily endonucleolytically, i.e. it is governed by the initial cleavage within the coding region. In addition, it is often coupled to the level of maturity and the size of the polysome of an mRNA. Both for S. cerevisiae and E. coli, our descriptions lead to a considerable improvement of the interpretation of experimental data. The general outcome is that the degradation of mRNA must be described by an age-dependent degradation rate, which can be interpreted as a consequence of molecular aging of mRNAs. Within our theory, we find adequate ways to address this much debated topic from a theoretical perspective. The improvements of the understanding of mRNA degradation can be readily applied to further comprehend the mRNA expression under different internal or environmental conditions such as after the induction of transcription or stress application. Also, the role of mRNA decay can be assessed in the context of translation and protein synthesis. The ultimate goal in understanding gene regulation mediated by mRNA stability will be to identify the relevance and biological function of different mechanisms. Once more quantitative data will become available, our description allows to elaborate the role of each mechanism by devising a suitable model. N2 - Ein zentrales Ziel der modernen Biologie ist es, ein umfassendes Verständnis der Genexpression zu erlangen. Die fundamentalen Prozesse sind im zentralen Dogma der Genexpression zusammengefasst: Die genetische Information wird von DNA in Boten-RNAs (mRNA) transkribiert und im Prozess der Translation von mRNA in Proteine übersetzt. Zum Erhalt ihrer Funktionalität und der Möglichkeit von Wachstum und Fortpflanzung muss in jeder Zelle und für jedes Gen die optimale Proteinkonzentration akkurat eingestellt werden. Hierzu hat jeder Organismus detaillierte Regulationsmechanismen entwickelt. Regulation kann auf allen Stufen der Genexpression erfolgen, insbesondere liefert der Abbau der mRNA-Moleküle einen effizienten und direkten Kontrollmechanismus. Daher sind in allen Lebewesen spezifische Mechanismen - die Degradationsmechanismen - entstanden, welche aktiv den Abbau befördern. Um ein besseres Verständnis von den zugrunde liegenden Prozessen zu erlangen, untersuchen Biochemiker die Degradationsmechanismen im Detail. Gleichzeitig erlauben moderne molekularbiologische Verfahren die simultane Bestimmung der Zerfallskurven von mRNA für alle untersuchten Gene einer Zelle. Aus theoretischer Perspektive wird der Zerfall der mRNA-Menge als exponentieller Zerfall mit konstanter Rate betrachtet. Diese Betrachtung dient der Interpretation der zugrunde liegenden Experimente, berücksichtigt aber nicht die fundierten Kenntnisse über die molekularen Mechanismen der Degradation. Zudem zeigen viele experimentelle Studien ein deutliches Abweichen von einem exponentiellen Zerfall. In der vorliegenden Doktorarbeit wird daher eine erweiterte theoretische Beschreibung für die Expression von mRNA-Molekülen eingeführt. Insbesondere lag der Schwerpunkt auf einer verbesserten Beschreibung des Prozesses der Degradation. Die Genexpression kann als ein stochastischer Prozess aufgefasst werden, in dem alle Einzelprozesse auf zufällig ablaufenden chemischen Reaktionen basieren. Die Beschreibung erfolgt daher im Rahmen von Methoden der stochastischen Modellierung. Die fundamentale Annahme besteht darin, dass jedes mRNA-Molekül eine zufällige Lebenszeit hat und diese Lebenszeit für jedes Gen durch eine statistische Lebenszeitverteilung gegeben ist. Ziel ist es nun, spezifische Lebenszeitverteilungen basierend auf den molekularen Degradationsmechanismen zu finden. In dieser Arbeit wurden theoretische Modelle für die Degradation in zwei verschiedenen Organismen entwickelt. Zum einen ist bekannt, dass in eukaryotischen Zellen wie dem Hefepilz S. cerevisiae mehrere Mechanismen zum Abbau der mRNA-Moleküle in Konkurrenz zueinander stehen. Zudem ist der Abbau durch mehrere geschwindigkeitsbestimmende biochemische Schritte charakterisiert. In der vorliegenden Arbeit wurden diese Feststellungen durch ein theoretisches Modell beschrieben. Eine Markow-Kette stellte sich als sehr erfolgreich heraus, um diese Komplexität in eine mathematisch-fassbare Form abzubilden. Zum anderen wird in Kolibakterien die Degradation überwiegend durch einen initialen Schnitt in der kodierenden Sequenz der mRNA eingeleitet. Des Weiteren gibt es komplexe Wechselwirkungen mit dem Prozess der Translation. Die dafür verantwortlichen Enzyme - die Ribosomen - schützen Teile der mRNA und vermindern dadurch deren Zerfall. In der vorliegenden Arbeit wurden diese Zusammenhänge im Rahmen eines weiteren spezifischen, theoretischen Modells untersucht. Beide Mechanismen konnten an experimentellen Daten verifiziert werden. Unter anderem konnten dadurch die Interpretation der Zerfallsexperimente deutlich verbessert und fundamentale Eigenschaften der mRNA-Moleküle bestimmt werden. Ein Vorteil der statistischen Herangehensweise in dieser Arbeit liegt darin, dass theoretische Konzepte für das molekulare Altern der mRNAs entwickelt werden konnten. Mit Hilfe dieser neuentwickelten Methode konnte gezeigt werden, dass sich die Komplexität der Abbaumechanismen in einem Alterungsprozess manifestiert. Dieser kann mit der Lebenserwartung von einzelnen mRNA-Molekülen beschrieben werden. In dieser Doktorarbeit wurde eine verallgemeinerte theoretische Beschreibung des Abbaus von mRNAMolek ülen entwickelt. Die zentrale Idee basiert auf der Verknüpfung von experimentellen Zerfallsmessungen mit den biochemischen Mechanismen der Degradation. In zukünftigen experimentellen Untersuchungen können die entwickelten Verfahren angewandt werden, um eine genauere Interpretation der Befunde zu ermöglichen. Insbesondere zeigt die Arbeit auf, wie verschiedene Hypothesen über den Degradationsmechanismus anhand eines geeigneten mathematischen Modells durch quantitative Experimente verifiziert oder falsifiziert werden können. KW - Abbau von Boten-RNS KW - Stochastische Genexpression KW - Posttranskriptionale Genregulation KW - Nichtexponentieller Zerfall von mRNA KW - Molekulares Altern KW - Degradation of messenger RNA KW - Stochastic gene expression KW - Post-transcriptional gene regulation KW - Non-exponential mRNA decay KW - Molecular Aging Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-61998 ER - TY - THES A1 - Haakh, Harald Richard T1 - Fluctuation-mediated interactions of atoms and surfaces on a mesoscopic scale T1 - Fluktuationsinduzierte Wechselwirkungen zwischen Atomen und Oberflächen auf mesoskopischen Skalen N2 - Thermal and quantum fluctuations of the electromagnetic near field of atoms and macroscopic bodies play a key role in quantum electrodynamics (QED), as in the Lamb shift. They lead, e.g., to atomic level shifts, dispersion interactions (Van der Waals-Casimir-Polder interactions), and state broadening (Purcell effect) because the field is subject to boundary conditions. Such effects can be observed with high precision on the mesoscopic scale which can be accessed in micro-electro-mechanical systems (MEMS) and solid-state-based magnetic microtraps for cold atoms (‘atom chips’). A quantum field theory of atoms (molecules) and photons is adapted to nonequilibrium situations. Atoms and photons are described as fully quantized while macroscopic bodies can be included in terms of classical reflection amplitudes, similar to the scattering approach of cavity QED. The formalism is applied to the study of nonequilibrium two-body potentials. We then investigate the impact of the material properties of metals on the electromagnetic surface noise, with applications to atomic trapping in atom-chip setups and quantum computing, and on the magnetic dipole contribution to the Van der Waals-Casimir-Polder potential in and out of thermal equilibrium. In both cases, the particular properties of superconductors are of high interest. Surface-mode contributions, which dominate the near-field fluctuations, are discussed in the context of the (partial) dynamic atomic dressing after a rapid change of a system parameter and in the Casimir interaction between two conducting plates, where nonequilibrium configurations can give rise to repulsion. N2 - Thermische und Quantenfluktuationen des elektromagnetischen Nahfelds von Atomen und makroskopischen Körpern spielen eine Schlüsselrolle in der Quantenelektrodynamik (QED), wie etwa beim Lamb-Shift. Sie führen z.B. zur Verschiebung atomarer Energieniveaus, Dispersionswechselwirkungen (Van der Waals-Casimir-Polder-Wechselwirkungen) und Zustandsverbreiterungen (Purcell-Effekt), da das Feld Randbedingungen unterliegt. Mikroelektromechanische Systeme (MEMS) und festkörperbasierte magnetische Fallen für kalte Atome (‘Atom-Chips’) ermöglichen den Zugang zu mesoskopischen Skalen, auf denen solche Effekte mit hoher Genauigkeit beobachtet werden können. Eine Quantenfeldtheorie für Atome (Moleküle) und Photonen wird an Nichtgleichgewichtssituationen angepasst. Atome und Photonen werden durch vollständig quantisierte Felder beschrieben, während die Beschreibung makroskopischer Körper, ähnlich wie im Streuformalismus (scattering approach) der Resonator-QED, durch klassische Streuamplituden erfolgt. In diesem Formalismus wird das Nichtgleich- gewichts-Zweiteilchenpotential diskutiert. Anschließend wird der Einfluss der Materialeigenschaften von normalen Metallen auf das elektromagnetische Oberflächenrauschen, das für magnetische Fallen für kalte Atome auf Atom-Chips und für Quantencomputer-Anwendungen von Bedeutung ist, sowie auf den Beitrag des magnetischen Dipolmoments zum Van der Waals-Casimir-Polder-Potential im thermisch- en Gleichgewicht und in Nichtgleichgewichtssituationen untersucht. In beiden Fällen sind die speziellen Eigenschaften von Supraleitern von besonderem Interesse. Beiträge von Oberflächenmoden, die die Feldfluktuationen im Nahfeld dominieren, werden im Kontext des (partiellen) dynamischen Dressing nach einer raschen Änderung eines Systemparameters sowie für die Casimir-Wechselwirkung zweier metallischer Platten diskutiert, zwischen denen in Nichtgleichgewichtssituationen Abstoßung auftreten kann. KW - Resonator Quantenelektrodynamik KW - Atom-Oberflächenwechselwirkung KW - Van der Waals Kräfte KW - Atom-Chips KW - Quantenfluktuationen KW - cavity quantum electrodynamics KW - atom-surface interaction KW - Van der Waals forces KW - atom chips KW - quantum fluctuations Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-61819 ER - TY - THES A1 - Kiel, Mareike T1 - Static and ultrafast optical properties of nanolayered composites : gold nanoparticles embedded in polyelectrolytes T1 - Statische und ultraschnelle optische Eigenschaften von nanogeschichteten Kompositmaterialien. Gold-Nanopartikel in Polyelektrolytschichten. N2 - In the course of this thesis gold nanoparticle/polyelectrolyte multilayer structures were prepared, characterized, and investigated according to their static and ultrafast optical properties. Using the dip-coating or spin-coating layer-by-layer deposition method, gold-nanoparticle layers were embedded in a polyelectrolyte environment with high structural perfection. Typical structures exhibit four repetition units, each consisting of one gold-particle layer and ten double layers of polyelectrolyte (cationic+anionic polyelectrolyte). The structures were characterized by X-ray reflectivity measurements, which reveal Bragg peaks up to the seventh order, evidencing the high stratication of the particle layers. In the same measurements pronounced Kiessig fringes were observed, which indicate a low global roughness of the samples. Atomic force microscopy (AFM) images veried this low roughness, which results from the high smoothing capabilities of polyelectrolyte layers. This smoothing effect facilitates the fabrication of stratified nanoparticle/polyelectrolyte multilayer structures, which were nicely illustrated in a transmission electron microscopy image. The samples' optical properties were investigated by static spectroscopic measurements in the visible and UV range. The measurements revealed a frequency shift of the reflectance and of the plasmon absorption band, depending on the thickness of the polyelectrolyte layers that cover a nanoparticle layer. When the covering layer becomes thicker than the particle interaction range, the absorption spectrum becomes independent of the polymer thickness. However, the reflectance spectrum continues shifting to lower frequencies (even for large thicknesses). The range of plasmon interaction was determined to be in the order of the particle diameter for 10 nm, 20 nm, and 150 nm particles. The transient broadband complex dielectric function of a multilayer structure was determined experimentally by ultrafast pump-probe spectroscopy. This was achieved by simultaneous measurements of the changes in the reflectance and transmittance of the excited sample over a broad spectral range. The changes in the real and imaginary parts of the dielectric function were directly deduced from the measured data by using a recursive formalism based on the Fresnel equations. This method can be applied to a broad range of nanoparticle systems where experimental data on the transient dielectric response are rare. This complete experimental approach serves as a test ground for modeling the dielectric function of a nanoparticle compound structure upon laser excitation. N2 - Im Rahmen dieser Arbeit wurden Gold-Nanopartikel/Polyelektrolyt Multischichtstrukturen hergestellt, strukturell charakterisiert und bezüglich ihrer optischen Eigenschaften sowohl statisch als auch zeitaufgelöst analysiert. Die Strukturen wurden mithilfe der Dip-coating oder der Spin-coating Methode hergestellt. Beide Methoden ermöglichen das Einbetten einzelner Partikellagen in eine Polyelektrolytumgebung. Typische Strukturen in dieser Arbeit bestehen aus vier Wiederholeinheiten, wobei jede aus einer Nanopartikelschicht und zehn Polyelektrolyt-Doppellagen (kationisches und anionisches Polyelektrolyt) zusammengesetzt ist. Die Stratizierung der Gold-Nanopartikellagen wurde mittels Röntgenreflektometrie-Messungen im Kleinwinkelbereich nachgewiesen, welche Bragg Reflexionen bis zur siebten Ordnung aufzeigen. Das ausgeprägte Kiessig Interferenzmuster dieser Messungen weist zudem auf eine geringe globale Rauheit hin, die durch Oberflächenanalysen mit einem Rasterkraftmikroskop bestätigt werden konnte. Diese geringe Rauheit resultiert aus den glättenden Eigenschaften der Polyelektrolyte, die die Herstellung von Multilagensystemen mit mehreren Partikellagen erst ermöglichen. Die Aufnahme eines Transmissionselektronenmikroskops veranschaulicht eindrucksvoll die Anordnung der Partikel in einzelne Schichten. Durch photospektroskopische Messungen wurden die optischen Eigenschaften der Strukturen im UV- und sichtbaren Bereich untersucht. Beispielsweise wird eine Verschiebung und Verstärkung der Plasmonenresonanz beobachtet, wenn eine Goldnanopartikellage mit transparenten Polyelektrolyten beschichtet wird. Erst wenn die bedeckende Schicht dicker als die Reichweite der Plasmonen wird, bleibt die Absorption konstant. Die spektrale Reflektivität jedoch ändert sich auch mit jeder weiteren adsorbierten Polyelektrolytschicht. Die Reichweite der Plasmonenresonanz konnte auf diese Art für Partikel der Größe 10 nm, 20 nm und 150 nm bestimmt werden. Die Ergebnisse wurden im Kontext einer Effektiven Mediums Theorie diskutiert. Die komplexe dielektrische Funktion einer Multilagenstruktur wurde zeitabhängig nach Laserpulsanregung für einen breiten spektralen Bereich bestimmt. Dazu wurden zuerst die Änderungen der Reflektivität und Transmittivität simultan mittels der Pump-Probe (Anrege-Abtast) Spektroskopie gemessen. Anschließend wurden aus diesen Daten, mithilfe eines Formalismus, der auf den Fresnelschen Formeln basiert, die Änderungen im Real- und Imaginärteil der dielektrischen Funktion ermittelt. Diese Methode eignet sich zur Bestimmung der transienten dielektrischen Funktion einer Vielzahl von Nanopartikelsystemen. Der rein experimentelle Ansatz ermöglicht es, effektive Medien Theorien und Simulationen der dielektrischen Funktion nach Laserpulsanregung zu überprüfen. KW - Nanopartikel KW - Polyelektrolyte KW - Dielektrische Funktion KW - Anrege-Abtast Spektroskopie KW - nanoparticles KW - polyelectrolytes KW - dielectric function KW - pump-probe spectroscopy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-61823 ER - TY - THES A1 - Rivera Hernández, Sergio T1 - Tensorial spacetime geometries carrying predictive, interpretable and quantizable matter dynamics T1 - Tensorielle Raumzeit-Geometrien, welche prädiktive, interpretierbare und quantisierbare Materiefeld-Dynamiken tragen können N2 - Which tensor fields G on a smooth manifold M can serve as a spacetime structure? In the first part of this thesis, it is found that only a severely restricted class of tensor fields can provide classical spacetime geometries, namely those that can carry predictive, interpretable and quantizable matter dynamics. The obvious dependence of this characterization of admissible tensorial spacetime geometries on specific matter is not a weakness, but rather presents an insight: it was Maxwell theory that justified Einstein to promote Lorentzian manifolds to the status of a spacetime geometry. Any matter that does not mimick the structure of Maxwell theory, will force us to choose another geometry on which the matter dynamics of interest are predictive, interpretable and quantizable. These three physical conditions on matter impose three corresponding algebraic conditions on the totally symmetric contravariant coefficient tensor field P that determines the principal symbol of the matter field equations in terms of the geometric tensor G: the tensor field P must be hyperbolic, time-orientable and energy-distinguishing. Remarkably, these physically necessary conditions on the geometry are mathematically already sufficient to realize all kinematical constructions familiar from Lorentzian geometry, for precisely the same structural reasons. This we were able to show employing a subtle interplay of convex analysis, the theory of partial differential equations and real algebraic geometry. In the second part of this thesis, we then explore general properties of any hyperbolic, time-orientable and energy-distinguishing tensorial geometry. Physically most important are the construction of freely falling non-rotating laboratories, the appearance of admissible modified dispersion relations to particular observers, and the identification of a mechanism that explains why massive particles that are faster than some massless particles can radiate off energy until they are slower than all massless particles in any hyperbolic, time-orientable and energy-distinguishing geometry. In the third part of the thesis, we explore how tensorial spacetime geometries fare when one wants to quantize particles and fields on them. This study is motivated, in part, in order to provide the tools to calculate the rate at which superluminal particles radiate off energy to become infraluminal, as explained above. Remarkably, it is again the three geometric conditions of hyperbolicity, time-orientability and energy-distinguishability that allow the quantization of general linear electrodynamics on an area metric spacetime and the quantization of massive point particles obeying any admissible dispersion relation. We explore the issue of field equations of all possible derivative order in rather systematic fashion, and prove a practically most useful theorem that determines Dirac algebras allowing the reduction of derivative orders. The final part of the thesis presents the sketch of a truly remarkable result that was obtained building on the work of the present thesis. Particularly based on the subtle duality maps between momenta and velocities in general tensorial spacetimes, it could be shown that gravitational dynamics for hyperbolic, time-orientable and energy distinguishable geometries need not be postulated, but the formidable physical problem of their construction can be reduced to a mere mathematical task: the solution of a system of homogeneous linear partial differential equations. This far-reaching physical result on modified gravity theories is a direct, but difficult to derive, outcome of the findings in the present thesis. Throughout the thesis, the abstract theory is illustrated through instructive examples. N2 - Welche Tensorfelder G auf einer glatten Mannigfaltigkeit M können eine Raumzeit-Geometrie beschreiben? Im ersten Teil dieser Dissertation wird es gezeigt, dass nur stark eingeschränkte Klassen von Tensorfeldern eine Raumzeit-Geometrie darstellen können, nämlich Tensorfelder, die eine prädiktive, interpretierbare und quantisierbare Dynamik für Materiefelder ermöglichen. Die offensichtliche Abhängigkeit dieser Charakterisierung erlaubter tensorieller Raumzeiten von einer spezifischen Materiefelder-Dynamik ist keine Schwäche der Theorie, sondern ist letztlich genau das Prinzip, das die üblicherweise betrachteten Lorentzschen Mannigfaltigkeiten auszeichnet: diese stellen die metrische Geometrie dar, welche die Maxwellsche Elektrodynamik prädiktiv, interpretierbar und quantisierbar macht. Materiefeld-Dynamiken, welche die kausale Struktur von Maxwell-Elektrodynamik nicht respektieren, zwingen uns, eine andere Geometrie auszuwählen, auf der die Materiefelder-Dynamik aber immer noch prädiktiv, interpretierbar und quantisierbar sein muss. Diesen drei Voraussetzungen an die Materie entsprechen drei algebraische Voraussetzungen an das total symmetrische kontravariante Tensorfeld P, welches das Prinzipalpolynom der Materiefeldgleichungen (ausgedrückt durch das grundlegende Tensorfeld G) bestimmt: das Tensorfeld P muss hyperbolisch, zeitorientierbar und energie-differenzierend sein. Diese drei notwendigen Bedingungen an die Geometrie genügen, um alle aus der Lorentzschen Geometrie bekannten kinematischen Konstruktionen zu realisieren. Dies zeigen wir im ersten Teil der vorliegenden Arbeit unter Verwendung eines teilweise recht subtilen Wechselspiels zwischen konvexer Analysis, der Theorie partieller Differentialgleichungen und reeller algebraischer Geometrie. Im zweiten Teil dieser Dissertation erforschen wir allgemeine Eigenschaften aller solcher hyperbolischen, zeit-orientierbaren und energie-differenzierenden Geometrien. Physikalisch wichtig sind der Aufbau von frei fallenden und nicht rotierenden Laboratorien, das Auftreten modifizierter Energie-Impuls-Beziehungen und die Identifizierung eines Mechanismus, der erklärt, warum massive Teilchen, die sich schneller als einige masselosse Teilchen bewegen, Energie abstrahlen können, aber nur bis sie sich langsamer als alle masselossen Teilchen bewegen. Im dritten Teil der Dissertation ergründen wir die Quantisierung von Teilchen und Feldern auf tensoriellen Raumzeit-Geometrien, die die obigen physikalischen Bedingungen erfüllen. Eine wichtige Motivation dieser Untersuchung ist es, Techniken zur Berechnung der Zerfallsrate von Teilchen zu berechnen, die sich schneller als langsame masselose Teilchen bewegen. Wir finden, dass es wiederum die drei zuvor im klassischen Kontext identifizierten Voraussetzungen (der Hyperbolizität, Zeit-Orientierbarkeit und Energie-Differenzierbarkeit) sind, welche die Quantisierung allgemeiner linearer Elektrodynamik auf einer flächenmetrischen Raumzeit und die Quantizierung massiver Teilchen, die eine physikalische Energie-Impuls-Beziehung respektieren, erlauben. Wir erkunden auch systematisch, wie man Feldgleichungen aller Ableitungsordnungen generieren kann und beweisen einen Satz, der verallgemeinerte Dirac-Algebren bestimmt und die damit Reduzierung des Ableitungsgrades einer physikalischen Materiefeldgleichung ermöglicht. Der letzte Teil der vorliegenden Schrift skizziert ein bemerkenswertes Ergebnis, das mit den in dieser Dissertation dargestellten Techniken erzielt wurde. Insbesondere aufgrund der hier identifizierten dualen Abbildungen zwischen Teilchenimpulsen und -geschwindigkeiten auf allgemeinen tensoriellen Raumzeiten war es möglich zu zeigen, dass man die Gravitationsdynamik für hyperbolische, zeit-orientierbare und energie-differenzierende Geometrien nicht postulieren muss, sondern dass sich das Problem ihrer Konstruktion auf eine rein mathematische Aufgabe reduziert: die Lösung eines homogenen linearen Differentialgleichungssystems. Dieses weitreichende Ergebnis über modifizierte Gravitationstheorien ist eine direkte (aber schwer herzuleitende) Folgerung der Forschungsergebnisse dieser Dissertation. Die abstrakte Theorie dieser Doktorarbeit wird durch mehrere instruktive Beispiele illustriert. KW - refined spacetime geometries KW - modified dispersion relations KW - modified gravitational dynamics KW - Finsler geometry KW - quantization of field theories Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-61869 ER - TY - THES A1 - Fernandes Guimarães, Ana Helena T1 - How does adhesion influence the small aggregates in Saturn's rings T1 - Wie Adhäsion die Bildung von Aggregaten in den Saturnringen beeinflusst N2 - Particles in Saturn’s main rings range in size from dust to even kilometer-sized objects. Their size distribution is thought to be a result of competing accretion and fragmentation processes. While growth is naturally limited in tidal environments, frequent collisions among these objects may contribute to both accretion and fragmentation. As ring particles are primarily made of water ice attractive surface forces like adhesion could significantly influence these processes, finally determining the resulting size distribution. Here, we derive analytic expressions for the specific self-energy Q and related specific break-up energy Q⋆ of aggregates. These expressions can be used for any aggregate type composed of monomeric constituents. We compare these expressions to numerical experiments where we create aggregates of various types including: regular packings like the face-centered cubic (fcc), Ballistic Particle Cluster Aggregates (BPCA), and modified BPCAs including e.g. different constituent size distributions. We show that accounting for attractive surface forces such as adhesion a simple approach is able to: a) generally account for the size dependence of the specific break-up energy for fragmentation to occur reported in the literature, namely the division into “strength” and “gravity” regimes, and b) estimate the maximum aggregate size in a collisional ensemble to be on the order of a few meters, consistent with the maximum aggregate size observed in Saturn’s rings of about 10m. N2 - Die Ringe des Saturns bestehen aus Myriaden von Teilchen, deren Größe von Mikrometern (Staub) bis hin zu Hunderten von Metern reicht. Die Ringteilchen bestehen hauptsächlich aus Eis, wobei attraktive Oberflächenkräfte wie Adhäsion und Gravitation zur Bildung von Aggregaten führen kann. Das Wachstum der Aggregate wird durch die Wirkung der Gezeitenkräfte und auch durch Kollisionen der Ringteilchen untereinander auf natürliche Weise begrenzt. Die Kollisionen der Ringteilchen führen zu Akkretion und Fragmentation, welche die resultierende Größenverteilung der Agglomerate schließlich bestimmen. In dieser Arbeit wurden Ausdrücke für die spezifische Eigenenergie Q der Aggregate und der in Relation stehenden spezifischen Fragmentationsenergie Q* analytisch hergeleitet. Diese Ausdrücke können für alle aus monomeren Teilchen bestehenden Agglomerate verwendet werden. Die analytisch gewonnenen Ergebnisse wurden mit numerischen Experimenten verglichen. In den numerischen Experimenten wurden verschiedene Agglomerattypen erzeugt: (i) Agglomerate mit kubischem Kristallsystem, (ii) ballistische Teilchenaggregate und (iii) modifiziert ballistische Teilchenaggregate. Für die ballistischen Teilchenaggregate wurden verschiedene Größenverteilungen der Konstituenten verwendet. Als Ergebnis lassen sich die erzeugten Aggregate gemäß ihrer Größe in zwei Gruppen einteilen. Während die kleinen Aggregate hauptsächlich durch die Kontaktkräfte (Adhäsion) zusammengehalten werden, dominiert bei großen Aggregaten (größer als einige Meter) die Gravitationskraft. D.h. wächst aus kleinen Teilchen ein Aggregat, so wird dieses zunächst durch die haftenden Kontakte zwischen den Teilchen zusammengehalten. Wächst das Agglomerat über eine bestimmte Größe, so ist es die Eigengravitation, die den Körper zusammenhält. Damit kann die maximale Gesamtgröße der Aggregate im Kollisionsensemble abgeschätzt werden. Der so bestimmte Wert von einigen Metern stimmt mit der aus Beobachtungen berechneten maximalen Größe der Ringteilchen von rund 10 Metern gut überein. KW - Saturn KW - Ringe KW - Agglomerate KW - Adhäsion KW - Saturn KW - Ring KW - Aggregates KW - Adhesion Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-61846 ER - TY - THES A1 - Ohme, Frank T1 - Bridging the gap between post-Newtonian theory and numerical relativity in gravitational-wave data analysis T1 - Die Verbindung von post-Newtonscher Theorie und Numerischer Relativitätstheorie in der Gravitationswellenanalyse N2 - One of the most exciting predictions of Einstein's theory of gravitation that have not yet been proven experimentally by a direct detection are gravitational waves. These are tiny distortions of the spacetime itself, and a world-wide effort to directly measure them for the first time with a network of large-scale laser interferometers is currently ongoing and expected to provide positive results within this decade. One potential source of measurable gravitational waves is the inspiral and merger of two compact objects, such as binary black holes. Successfully finding their signature in the noise-dominated data of the detectors crucially relies on accurate predictions of what we are looking for. In this thesis, we present a detailed study of how the most complete waveform templates can be constructed by combining the results from (A) analytical expansions within the post-Newtonian framework and (B) numerical simulations of the full relativistic dynamics. We analyze various strategies to construct complete hybrid waveforms that consist of a post-Newtonian inspiral part matched to numerical-relativity data. We elaborate on exsisting approaches for nonspinning systems by extending the accessible parameter space and introducing an alternative scheme based in the Fourier domain. Our methods can now be readily applied to multiple spherical-harmonic modes and precessing systems. In addition to that, we analyze in detail the accuracy of hybrid waveforms with the goal to quantify how numerous sources of error in the approximation techniques affect the application of such templates in real gravitational-wave searches. This is of major importance for the future construction of improved models, but also for the correct interpretation of gravitational-wave observations that are made utilizing any complete waveform family. In particular, we comprehensively discuss how long the numerical-relativity contribution to the signal has to be in order to make the resulting hybrids accurate enough, and for currently feasible simulation lengths we assess the physics one can potentially do with template-based searches. N2 - Eine der aufregendsten Vorhersagen aus Einsteins Gravitationstheorie, die bisher noch nicht direkt durch ein Experiment nachgewiesen werden konnten, sind Gravitationswellen. Dies sind winzige Verzerrungen der Raumzeit selbst, und es wird erwartet, dass das aktuelle Netzwerk von groß angelegten Laserinterferometern im kommenden Jahrzehnt die erste direkte Gravitationswellenmessung realisieren kann. Eine potentielle Quelle von messbaren Gravitationswellen ist das Einspiralen und Verschmelzen zweier kompakter Objekte, wie z.B. ein Binärsystem von Schwarzen Löchern. Die erfolgreiche Identifizierung ihrer charakteristischen Signatur im Rausch-dominierten Datenstrom der Detektoren hängt allerdings entscheidend von genauen Vorhersagen ab, was wir eigentlich suchen. In dieser Arbeit wird detailliert untersucht, wie die komplettesten Wellenformenmodelle konstruiert werden können, indem die Ergebnisse von (A) analytischen Entwicklungen im post-Newtonschen Verfahren und (B) numerische Simulationen der voll-relativistischen Bewegungen verknüpft werden. Es werden verschiedene Verfahren zur Erstellung solcher "hybriden Wellenformen", bei denen der post-Newtonsche Teil mit numerischen Daten vervollständigt wird, analysiert. Existierende Strategien für nicht-rotierende Systeme werden vertieft und der beschriebene Parameterraum erweitert. Des Weiteren wird eine Alternative im Fourierraum eingeführt. Die entwickelten Methoden können nun auf multiple sphärisch-harmonische Moden und präzedierende Systeme angewandt werden. Zusätzlich wird die Genauigkeit der hybriden Wellenformen mit dem Ziel analysiert, den Einfluss verschiedener Fehlerquellen in den Näherungstechniken zu quantifizieren und die resultierenden Einschränkungen bei realen Anwendungen abzuschätzen. Dies ist von größter Bedeutung für die zukünftige Entwicklung von verbesserten Modellen, aber auch für die korrekte Interpretation von Gravitationswellenbeobachtungen, die auf Grundlage solcher Familien von Wellenformen gemacht worden sind. Insbesondere wird diskutiert, wie lang der numerische Anteil des Signals sein muss, um die Hybride genau genug konstruieren zu können. Für die aktuell umsetzbaren Simulationslängen wird die Physik eingeschätzt, die mit Hilfe von Modell-basierten Suchen potentiell untersucht werden kann. KW - Schwarze Löcher KW - Gravitationswellen KW - Numerische Relativitätstheorie KW - Datenanalyse KW - Post-Newton KW - black holes KW - gravitational waves KW - numerical relativity KW - data analysis KW - post-Newton Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-60346 ER - TY - THES A1 - Berger, Florian T1 - Different modes of cooperative transport by molecular motors T1 - Verschiedene Arten kooperativen Transportes mittels molekularer Motoren N2 - Cargo transport by molecular motors is ubiquitous in all eukaryotic cells and is typically driven cooperatively by several molecular motors, which may belong to one or several motor species like kinesin, dynein or myosin. These motor proteins transport cargos such as RNAs, protein complexes or organelles along filaments, from which they unbind after a finite run length. Understanding how these motors interact and how their movements are coordinated and regulated is a central and challenging problem in studies of intracellular transport. In this thesis, we describe a general theoretical framework for the analysis of such transport processes, which enables us to explain the behavior of intracellular cargos based on the transport properties of individual motors and their interactions. Motivated by recent in vitro experiments, we address two different modes of transport: unidirectional transport by two identical motors and cooperative transport by actively walking and passively diffusing motors. The case of cargo transport by two identical motors involves an elastic coupling between the motors that can reduce the motors’ velocity and/or the binding time to the filament. We show that this elastic coupling leads, in general, to four distinct transport regimes. In addition to a weak coupling regime, kinesin and dynein motors are found to exhibit a strong coupling and an enhanced unbinding regime, whereas myosin motors are predicted to attain a reduced velocity regime. All of these regimes, which we derive both by analytical calculations and by general time scale arguments, can be explored experimentally by varying the elastic coupling strength. In addition, using the time scale arguments, we explain why previous studies came to different conclusions about the effect and relevance of motor-motor interference. In this way, our theory provides a general and unifying framework for understanding the dynamical behavior of two elastically coupled molecular motors. The second mode of transport studied in this thesis is cargo transport by actively pulling and passively diffusing motors. Although these passive motors do not participate in active transport, they strongly enhance the overall cargo run length. When an active motor unbinds, the cargo is still tethered to the filament by the passive motors, giving the unbound motor the chance to rebind and continue its active walk. We develop a stochastic description for such cooperative behavior and explicitly derive the enhanced run length for a cargo transported by one actively pulling and one passively diffusing motor. We generalize our description to the case of several pulling and diffusing motors and find an exponential increase of the run length with the number of involved motors. N2 - Lastentransport mittels Motorproteinen ist ein grundlegender Mechanismus aller eukaryotischen Zellen und wird üblicherweise von mehreren Motoren kooperativ durchgeführt, die zu einer oder zu verschiedenen Motorarten wie Kinesin, Dynein oder Myosin gehören. Diese Motoren befördern Lasten wie zum Beispiel RNAs, Proteinkomplexe oder Organellen entlang Filamenten, von denen sie nach einer endlichen zurückgelegten Strecke abbinden. Es ist ein zentrales und herausforderndes Problem zu verstehen, wie diese Motoren wechselwirken und wie ihre Bewegungen koordiniert und reguliert werden. In der vorliegenden Arbeit wird eine allgemeine theoretische Herangehensweise zur Untersuchung solcher Transportprozesse beschrieben, die es uns ermöglicht, das Verhalten von intrazellularem Transport, ausgehend von den Transporteigenschaften einzelner Motoren und ihren Wechselwirkungen, zu verstehen. Wir befassen uns mit zwei Arten kooperativen Transports, die auch kürzlich in verschiedenen in vitro-Experimenten untersucht wurden: (i) gleichgerichteter Transport mit zwei identischen Motorproteinen und (ii) kooperativer Transport mit aktiv schreitenden und passiv diffundierenden Motoren. Beim Lastentransport mit zwei identischen Motoren sind die Motoren elastisch gekoppelt, was eine Verminderung ihrer Geschwindigkeit und/oder ihrer Bindezeit am Filament hervorrufen kann. Wir zeigen, dass solch eine elastische Kopplung im Allgemeinen zu vier verschiedenen Transportcharakteristiken führt. Zusätzlich zu einer schwachen Kopplung, können bei Kinesinen und Dyneinen eine starke Kopplung und ein verstärktes Abbinden auftreten, wohingegen bei Myosin Motoren eine verminderte Geschwindigkeit vorhergesagt wird. All diese Transportcharakteristiken, die wir mit Hilfe analytischer Rechnungen und Zeitskalenargumenten herleiten, können durch Änderung der elastischen Kopplung experimentell untersucht werden. Zusätzlich erklären wir anhand der Zeitskalenargumente, warum frühere Untersuchungen zu unterschiedlichen Erkenntnissen über die Auswirkung und die Wichtigkeit der gegenseitigen Beeinflussung der Motoren gelangt sind. Auf diese Art und Weise liefert unsere Theorie eine allgemeine und vereinheitlichende Beschreibung des dynamischen Verhaltens von zwei elastisch gekoppelten Motorproteinen. Die zweite Art von Transport, die in dieser Arbeit untersucht wird ist der Lastentransport durch aktiv ziehende und passiv diffundierende Motoren. Obwohl die passiven Motoren nicht zum aktiven Transport beitragen, verlängern sie stark die zurückgelegte Strecke auf dem Filament. Denn wenn ein aktiver Motor abbindet, wird das Lastteilchen immer noch am Filament durch den passiven Motor festgehalten, was dem abgebundenen Motor die Möglichkeit gibt, wieder an das Filament anzubinden und den aktiven Transport fortzusetzen. Für dieses kooperative Verhalten entwickeln wir eine stochastische Beschreibung und leiten explizit die verlängerte Transportstrecke für einen aktiv ziehenden und einen passiv diffundierenden Motor her. Wir verallgemeinern unsere Beschreibung für den Fall von mehreren ziehenden und diffundierenden Motoren und finden ein exponentielles Anwachsen der zurückgelegten Strecke in Abhängigkeit von der Anzahl der beteiligten Motoren. KW - molekulare Motoren KW - kooperativer Transport KW - intrazellulärer Transport KW - elastische Kopplung KW - stochastische Prozesse KW - molecular motors KW - cooperative transport KW - intracellular transport KW - elastic coupling KW - stochastic processes Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-60319 ER - TY - THES A1 - Mari, Andrea T1 - Signatures of non-classicality in optomechanical systems T1 - Nicht klassische Merkmale in optomechanischen Systemen N2 - This thesis contains several theoretical studies on optomechanical systems, i.e. physical devices where mechanical degrees of freedom are coupled with optical cavity modes. This optomechanical interaction, mediated by radiation pressure, can be exploited for cooling and controlling mechanical resonators in a quantum regime. The goal of this thesis is to propose several new ideas for preparing meso- scopic mechanical systems (of the order of 10^15 atoms) into highly non-classical states. In particular we have shown new methods for preparing optomechani-cal pure states, squeezed states and entangled states. At the same time, proce-dures for experimentally detecting these quantum effects have been proposed. In particular, a quantitative measure of non classicality has been defined in terms of the negativity of phase space quasi-distributions. An operational al- gorithm for experimentally estimating the non-classicality of quantum states has been proposed and successfully applied in a quantum optics experiment. The research has been performed with relatively advanced mathematical tools related to differential equations with periodic coefficients, classical and quantum Bochner’s theorems and semidefinite programming. Nevertheless the physics of the problems and the experimental feasibility of the results have been the main priorities. N2 - Die vorliegende Arbeit besteht aus verschiedenen theoretischen Untersuchungen von optomechanischen Systemen, das heißt physikalische Bauteile bei denen mechanische Freiheitsgrade mit Lichtmoden in optischen Kavitäten gekoppelt sind. Diese optimechanischen Wechselwirkungen, die über den Strahlungsdruck vermittelt werden, lassen sich zur Kühlung und Kontrolle von mechanischen Resonatoren im Quantenregime verwenden. Das Ziel dieser Arbeit ist es, verschiedene neue Ideen für Methoden vorzuschlagen, mit denen sich mesoskopische mechanische Systeme (bestehend aus etwa 10^15 Atomen) in sehr nicht-klassischen Zuständen präparieren lassen. Außerdem werden Techniken beschrieben, mit denen sich diese Quateneffekte experimentell beobachten lassen. Insbesondere wird ein quantitatives Maß für Nichtklassizität auf der Basis von Quasiwahrscheinlichkeitsverteilungen im Phasenraum definiert und ein operationeller Algorithmus zu dessen experimenteller Beschrieben, der bereits erfolgreich in einem quantenoptischen Experiment eingesetzt wurde. KW - Quanten Optomechanik KW - gequetschte Zustände KW - nicht klassische Zustände KW - Verschränkung KW - Wigner Funktion KW - Quantum Optomechanics KW - squeezing entanglement KW - Wigner negativity KW - non-classicality Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-59814 ER - TY - THES A1 - Klar, Jochen T1 - A detailed view of filaments and sheets of the warm-hot intergalactic medium T1 - Eine detaillierte Ansicht der Filamente und Ebenen des warm-heißen intergalaktischen Mediums N2 - In the context of cosmological structure formation sheets, filaments and eventually halos form due to gravitational instabilities. It is noteworthy, that at all times, the majority of the baryons in the universe does not reside in the dense halos but in the filaments and the sheets of the intergalactic medium. While at higher redshifts of z > 2, these baryons can be detected via the absorption of light (originating from more distant sources) by neutral hydrogen at temperatures of T ~ 10^4 K (the Lyman-alpha forest), at lower redshifts only about 20 % can be found in this state. The remain (about 50 to 70 % of the total baryons mass) is unaccounted for by observational means. Numerical simulations predict that these missing baryons could reside in the filaments and sheets of the cosmic web at high temperatures of T = 10^4.5 - 10^7 K, but only at low to intermediate densities, and constitutes the warm-hot intergalactic medium (WHIM). The high temperatures of the WHIM are caused by the formation of shocks and the subsequent shock-heating of the gas. This results in a high degree of ionization and renders the reliable detection of the WHIM a challenging task. Recent high-resolution hydrodynamical simulations indicate that, at redshifts of z ~ 2, filaments are able to provide very massive galaxies with a significant amount of cool gas at temperatures of T ~ 10^4 K. This could have an important impact on the star-formation in those galaxies. It is therefore of principle importance to investigate the particular hydro- and thermodynamical conditions of these large filament structures. Density and temperature profiles, and velocity fields, are expected to leave their special imprint on spectroscopic observations. A potential multiphase structure may act as tracer in observational studies of the WHIM. In the context of cold streams, it is important to explore the processes, which regulate the amount of gas transported by the streams. This includes the time evolution of filaments, as well as possible quenching mechanisms. In this context, the halo mass range in which cold stream accretion occurs is of particular interest. In order to address these questions, we perform particular hydrodynamical simulations of very high resolution, and investigate the formation and evolution of prototype structures representing the typical filaments and sheets of the WHIM. We start with a comprehensive study of the one-dimensional collapse of a sinusoidal density perturbation (pancake formation) and examine the influence of radiative cooling, heating due to an UV background, thermal conduction, and the effect of small-scale perturbations given by the cosmological power spectrum. We use a set of simulations, parametrized by the wave length of the initial perturbation L. For L ~ 2 Mpc/h the collapse leads to shock-confined structures. As a result of radiative cooling and of heating due to an UV background, a relatively cold and dense core forms. With increasing L the core becomes denser and more concentrated. Thermal conduction enhances this trend and may lead to an evaporation of the core at very large L ~ 30 Mpc/h. When extending our simulations into three dimensions, instead of a pancake structure, we obtain a configuration consisting of well-defined sheets, filaments, and a gaseous halo. For L > 4 Mpc/h filaments form, which are fully confined by an accretion shock. As with the one-dimensional pancakes, they exhibit an isothermal core. Thus, our results confirm a multiphase structure, which may generate particular spectral tracers. We find that, after its formation, the core becomes shielded against further infall of gas onto the filament, and its mass content decreases with time. In the vicinity of the halo, the filament's core can be attributed to the cold streams found in other studies. We show, that the basic structure of these cold streams exists from the very beginning of the collapse process. Further on, the cross section of the streams is constricted by the outwards moving accretion shock of the halo. Thermal conduction leads to a complete evaporation of the cold stream for L > 6 Mpc/h. This corresponds to halos with a total mass higher than M_halo = 10^13 M_sun, and predicts that in more massive halos star-formation can not be sustained by cold streams. Far away from the gaseous halo, the temperature gradients in the filament are not sufficiently strong for thermal conduction to be effective. N2 - Im Rahmen der kosmologischen Strukturbildung entstehen durch Gravitationsinstabilitäten Flächen, Filamente und schließlich Halos. Interessanterweise befinden sich zu jedem Zeitpunkt der kosmologischen Entwicklung der Großteil der Baryonen nicht in den Halos, sondern in den Filamenten und Ebenen des intergalaktischen Mediums. Während diese Baryonen bei höheren Rotverschiebungen (z ~ 2) noch in Form durch die Absorbtion von Licht (von weit entfernteren Quellen) durch neutralen Wasserstoff bei einer Temperatur von T ~ 10^4 K beobachtbar sind (Lyman-Alpha Wald), gilt dies bei niedrigeren Rotverschiebungen für nur noch ca. 20 % der Baryonen. Der überwiegende Teil (ca. 50-70 % der gesamten baryonischen Masse) sind bisher noch nicht direkt beobachtbar. Numerische Simulationen sagen jedoch voraus, das sich diese Baryonen in den Filamenten und Flächen des kosmischen Netzes befinden. Die entsprechende Gasverteilung zeichnet sich durch hohe Temperaturen T = 10^5 - 10^7 K und geringe bis mittlere Dichten aus und wird als warm-heißes intergalaktisches Medium (WHIM) bezeichnet. Die hohen Temperaturen entstehen in Folge der Bildung von Stoßwellen und der darauf folgenden Erhitzung des Gases (shock-heating). Das WHIM ist daher hochgradig ionisiert und sein verlässlicher Nachweis stellt eine große Herausforderung für die beobachtende Kosmologie dar. Neuere hydrodynamische Simulationen zeigen, dass sich bei höheren Rotverschiebungen von z ~ 2 Gasströmungen entlang der Filamente bilden, die massive Galaxien mit erheblichen Mengen an relativ kaltem Gas (T ~ 10^4 K) versorgen können. Dies hätte einen erheblichen Einfluss auf die Sternentstehung in diesen Galaxien. Es ist daher von grundsätzlichem Interesse, die spezifischen hydro- und thermodynamischen Bedingungen in den Strukturen des WHIM zu untersuchen. Sowohl Dichte- und Temperaturprofile als auch Geschwindigkeitsfelder prägen spektroskopische Beobachtungen. Eine mögliche Mehrphasenstruktur des WHIM könnte daher als Indikator in beobachtenden Studien dienen. Im Zusammenhang mit den kalten Strömen ist es besonders interessant, Prozesse zu untersuchen die den Zufluss von kaltem Gas zu den Galaxien regulieren. Dies umfasst die Zeitentwicklung des Anteils an kaltem Gas in den Filamenten, sowie mögliche Mechanismen, die zum Versiegen des Zuflusses von kaltem Gas auf die Galaxienscheibe führen. Um diese Zusammenhänge zu erforschen, führen wir spezielle hydrodynamische Simulationen mit sehr hoher Auflösung durch, die zu ausgewählten, wohldefinierten Strukturen führen, die das WHIM charakterisieren. Wir beginnen mit einer ausführlichen Untersuchung des eindimensionalen Kollaps einer sinusförmigen Störung (pancake formation). Hierbei untersuchen wir den Einfluss von Strahlungkühlung, Heizung durch den intergalaktischen UV Hintergrund, Wärmeleitung, sowie von kleinskaligen Störungen, welche dem kosmologischen Störungsspektrum folgen. Wir benutzen hierbei eine Reihe von Simulationen, welche die Längenskala der anfänglichen Störung L als Parameter verwenden. Für L ~ 2 Mpc/h führt der Kollaps zur Ausbildung einer Stoßwelle. Zusätzlich entsteht als Folge der Strahlungskühlung und der Heizung durch den UV Hintergrund ein relativ dichter und kalter isothermer Kern. Mit ansteigendem L wird dieser Kern dichter und kompakter. Durch Wärmeleitung reduziert sich die räumliche Ausdehnung des Kerns. Für L ~ 30 Mpc/h führt dies zu einem Verschwinden des Kerns. Mit der Erweiterung unserer Methodik auf dreidimensionale Simulationen, entsteht nun eine Konfiguration, welche aus wohldefinierten Flächen, Filamenten und einem gasförmigen Halo besteht. Für L > 4 Mpc/h, erhalten wir Filamente, die vollständig durch Akkretionsschocks begrenzt sind. Wie in unseren eindimensionalen Simulationen weisen auch sie einen isothermen Kern auf. Dies legt nahe, dass das WHIM eine Mehrphasenstruktur besitzt und mögliche Spektralsignaturen erzeugen kann. Nach seiner Entstehung ist der Kern gegen weiteren Zufluss von Gas abgeschirmt und seine Masse reduziert sich mit der Zeit. In der direkten Umgebung des Halos entspricht der Kern des Filamentes den oben angesprochenen kalten Strömen. Unsere Untersuchung zeigt, dass diese während der gesamten Entwicklung des Halos existent sind. In der weiteren Entwicklung werden sie durch den expandierenden Akkretionsschock des Halos verengt. Ab einer Skala von L > 6 Mpc/h kann Wärmeleitung zu einem Verschwinden des Zustroms von kaltem Gas führen. Diese Skala entspricht Halos mit einer Gesamtmasse von M_halo = 10^13 M_sun. Galaxien, die sich in noch massiveren Halos bilden, können daher nicht durch kalte Ströme mit Gas für die Sternentstehung versorgt werden. Im Filament, weit außerhalb des gasförmigen Halos, sind die Temperaturgradienten zu klein, um effiziente Wärmeleitung zu ermöglichen. KW - Kosmologie KW - Hydrodynamik KW - Intergalaktisches Medium KW - cosmology KW - hydrodynamics KW - intergalactic medium Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-58038 ER -