TY - JOUR A1 - Spooner, Cameron A1 - Scheck-Wenderoth, Magdalena A1 - Götze, Hans-Jürgen A1 - Ebbing, Jörg A1 - Hetenyi, Gyoergy T1 - Density distribution across the Alpine lithosphere constrained by 3-D gravity modelling and relation to seismicity and deformation JF - Solid earth N2 - The Alpine orogen formed as a result of the collision between the Adriatic and European plates. Significant crustal heterogeneity exists within the region due to the long history of interplay between these plates, other continental and oceanic blocks in the region, and inherited crustal features from earlier orogenies. Deformation relating to the collision continues to the present day. Here, a seismically constrained, 3-D structural and density model of the lithosphere of the Alps and their respective forelands, derived from integrating numerous geoscientific datasets, was adjusted to match the observed gravity field. It is shown that the distribution of seismicity and deformation within the region correlates well to thickness and density changes within the crust, and that the present-day Adriatic crust is both thinner and denser (22.5 km, 2800 kg m(-3) ) than the European crust (27.5 km, 2750 kg m(-3)). Alpine crust derived from each respective plate is found to show the same trend, with zones of Adriatic provenance (Austro-Alpine unit and Southern Alps) found to be denser and those of European provenance (Helvetic zone and Tauern Window) to be less dense. This suggests that the respective plates and related terranes had similar crustal properties to the present-day ones prior to orogenesis. The model generated here is available for open-access use to further discussions about the crust in the region. Y1 - 2019 U6 - https://doi.org/10.5194/se-10-2073-2019 SN - 1869-9510 SN - 1869-9529 VL - 10 IS - 6 SP - 2073 EP - 2088 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Coch, Caroline A1 - Juhls, Bennet A1 - Lamoureux, Scott F. A1 - Lafreniere, Melissa J. A1 - Fritz, Michael A1 - Heim, Birgit A1 - Lantuit, Hugues T1 - Comparisons of dissolved organic matter and its optical characteristics in small low and high Arctic catchments JF - Biogeosciences N2 - Climate change is affecting the rate of carbon cycling, particularly in the Arctic. Permafrost degradation through deeper thaw and physical disturbances results in the release of carbon dioxide and methane to the atmosphere and to an increase in lateral dissolved organic matter (DOM) fluxes. Whereas riverine DOM fluxes of the large Arctic rivers are well assessed, knowledge is limited with regard to small catchments that cover more than 40% of the Arctic drainage basin. Here, we use absorption measurements to characterize changes in DOM quantity and quality in a low Arctic (Herschel Island, Yukon, Canada) and a high Arctic (Cape Bounty, Melville Island, Nunavut, Canada) setting with regard to geographical differences, impacts of permafrost degradation, and rainfall events. We find that DOM quantity and quality is controlled by differences in vegetation cover and soil organic carbon content (SOCC). The low Arctic site has higher SOCC and greater abundance of plant material resulting in higher chromophoric dissolved organic matter (cDOM) and dissolved organic carbon (DOC) than in the high Arctic. DOC concentration and cDOM in surface waters at both sites show strong linear relationships similar to the one for the great Arctic rivers. We used the optical characteristics of DOM such as cDOM absorption, specific ultraviolet absorbance (SUVA), ultraviolet (UV) spectral slopes (S275-295), and slope ratio (SR) for assessing quality changes downstream, at base flow and storm flow conditions, and in relation to permafrost disturbance. DOM in streams at both sites demonstrated optical signatures indicative of photodegradation downstream processes, even over short distances of 2000 m. Flow pathways and the connected hydrological residence time control DOM quality. Deeper flow pathways allow the export of permafrost-derived DOM (i.e. from deeper in the active layer), whereas shallow pathways with shorter residence times lead to the export of fresh surface- and near-surface-derived DOM. Compared to the large Arctic rivers, DOM quality exported from the small catchments studied here is much fresher and therefore prone to degradation. Assessing optical properties of DOM and linking them to catchment properties will be a useful tool for understanding changing DOM fluxes and quality at a pan-Arctic scale. Y1 - 2019 U6 - https://doi.org/10.5194/bg-16-4535-2019 SN - 1726-4170 SN - 1726-4189 VL - 16 IS - 23 SP - 4535 EP - 4553 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Margirier, Audrey A1 - Braun, Jean A1 - Gautheron, Cecile A1 - Carcaillet, Julien A1 - Schwartz, Stephane A1 - Jamme, Rosella Pinna A1 - Stanley, Jessica T1 - Climate control on Early Cenozoic denudation of the Namibian margin as deduced from new thermochronological constraints JF - Earth & planetary science letters N2 - The processes that control long term landscape evolution in continental interiors and, in particular, along passive margins such as in southern Africa, are still the subject of much debate (e.g. Braun, 2018). Although today the Namibian margin is characterized by an arid climate, it has experienced climatic fluctuations during the Cenozoic and, yet, to date no study has documented the potential role of climate on its erosion history. In western Namibia, the Brandberg Massif, an erosional remnant or inselberg, provides a good opportunity to document the Cenozoic denudation history of the margin using the relationship between rock cooling or exhumation ages and their elevation. Here we provide new apatite (UThSm)/He dates on the Brandberg Inselberg that range from 151 +/- 12 to 30 +/- 2 Ma. Combined with existing apatite fission track data, they yield new constraints on the denudation history of the margin. These data document two main cooling phases since continental break-up 130 Myr ago, a rapid one (similar to 10 degrees C/Myr) following break-up and a slower one (similar to 12 degrees C/Myr) between 65 and 35 Ma. We interpret them respectively to be related to escarpment erosion following rifting and continental break-up and as a phase of enhanced denudation during the Early Eocene Climatic Optimum. We propose that during the Early Eocene Climatic Optimum chemical weathering was important and contributed significantly to the denudation of the Namibian margin and the formation of a pediplain around the Brandberg and enhanced valley incision within the massif. Additionally, aridification of the region since 35 Ma has resulted in negligible denudation rates since that time. (C) 2019 Elsevier B.V. All rights reserved. KW - climate KW - Early Eocene Climatic Optimum KW - apatite (U-Th-Sm)/He thermochronology KW - denudation KW - weathering KW - Namibian passive margin Y1 - 2019 U6 - https://doi.org/10.1016/j.epsl.2019.115779 SN - 0012-821X SN - 1385-013X VL - 527 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Guillemoteau, Julien A1 - Simon, Francois-Xavier A1 - Hulin, Guillaume A1 - Dousteyssier, Bertrand A1 - Dacko, Marion A1 - Tronicke, Jens T1 - 3-D imaging of subsurface magnetic permeability/susceptibility with portable frequency domain electromagnetic sensors for near surface exploration JF - Geophysical journal international N2 - The in-phase response collected by portable loop-loop electromagnetic induction (EMI) sensors operating at low and moderate induction numbers (<= 1) is typically used for sensing the magnetic permeability (or susceptibility) of the subsurface. This is due to the fact that the in-phase response contains a small induction fraction and a preponderant induced magnetization fraction. The magnetization fraction follows the magneto-static equations similarly to the magnetic method but with an active magnetic source. The use of an active source offers the possibility to collect data with several loop-loop configurations, which illuminate the subsurface with different sensitivity patterns. Such multiconfiguration soundings thereby allows the imaging of subsurface magnetic permeability/susceptibility variations through an inversion procedure. This method is not affected by the remnant magnetization and theoretically overcomes the classical depth ambiguity generally encountered with passive geomagnetic data. To invert multiconfiguration in-phase data sets, we propose a novel methodology based on a full-grid 3-D multichannel deconvolution (MCD) procedure. This method allows us to invert large data sets (e.g. consisting of more than a hundred thousand of data points) for a dense voxel-based 3-D model of magnetic susceptibility subject to smoothness constraints. In this study, we first present and discuss synthetic examples of our imaging procedure, which aim at simulating realistic conditions. Finally, we demonstrate the applicability of our method to field data collected across an archaeological site in Auvergne (France) to image the foundations of a Gallo-Roman villa built with basalt rock material. Our synthetic and field data examples demonstrate the potential of the proposed inversion procedure offering new and complementary ways to interpret data sets collected with modern EMI instruments. KW - Magnetic properties KW - Controlled source electromagnetics (CSEM) KW - Electromagnetic theory KW - Environmental magnetism KW - Inverse theory Y1 - 2019 U6 - https://doi.org/10.1093/gji/ggz382 SN - 0956-540X SN - 1365-246X VL - 219 IS - 3 SP - 1773 EP - 1785 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Egli, Lukas A1 - Weise, Hanna A1 - Radchuk, Viktoriia A1 - Seppelt, Ralf A1 - Grimm, Volker T1 - Exploring resilience with agent-based models: State of the art, knowledge gaps and recommendations for coping with multidimensionality JF - Ecological complexity N2 - Anthropogenic pressures increasingly alter natural systems. Therefore, understanding the resilience of agent-based complex systems such as ecosystems, i.e. their ability to absorb these pressures and sustain their functioning and services, is a major challenge. However, the mechanisms underlying resilience are still poorly understood. A main reason for this is the multidimensionality of both resilience, embracing the three fundamental stability properties recovery, resistance and persistence, and of the specific situations for which stability properties can be assessed. Agent-based models (ABM) complement empirical research which is, for logistic reasons, limited in coping with these multiple dimensions. Besides their ability to integrate multidimensionality through extensive manipulation in a fully controlled system, ABMs can capture the emergence of system resilience from individual interactions and feedbacks across different levels of organization. To assess the extent to which this potential of ABMs has already been exploited, we reviewed the state of the art in exploring resilience and its multidimensionality in ecological and socio-ecological systems with ABMs. We found that the potential of ABMs is not utilized in most models, as they typically focus on a single dimension of resilience by using variability as a proxy for persistence, and are limited to one reference state, disturbance type and scale. Moreover, only few studies explicitly test the ability of different mechanisms to support resilience. To overcome these limitations, we recommend to simultaneously assess multiple stability properties for different situations and under consideration of the mechanisms that are hypothesised to render a system resilient. This will help us to better exploit the potential of ABMs to understand and quantify resilience mechanisms, and hence support solving real-world problems related to the resilience of agent-based complex systems. KW - Agent-based models KW - Model development KW - Multidimensionality KW - Review KW - Social-ecological systems KW - Stability properties Y1 - 2019 U6 - https://doi.org/10.1016/j.ecocom.2018.06.008 SN - 1476-945X SN - 1476-9840 VL - 40 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zhu, Chuanbin A1 - Cotton, Fabrice A1 - Pilz, Marco T1 - Testing the Depths to 1.0 and 2.5 km/s Velocity Isosurfaces in a Velocity Model for Japan and Implications for Ground-Motion Modeling JF - Bulletin of the Seismological Society of America N2 - In the Next Generation Attenuation West2 (NGA-West2) project, a 3D subsurface structure model (Japan Seismic Hazard Information Station [J-SHIS]) was queried to establish depths to 1.0 and 2.5 km/s velocity isosurfaces for sites without depth measurement in Japan. In this article, we evaluate the depth parameters in the J-SHIS velocity model by comparing them with their corresponding site-specific depth measurements derived from selected KiK-net velocity profiles. The comparison indicates that the J-SHIS model underestimates site depths at shallow sites and overestimates depths at deep sites. Similar issues were also identified in the southern California basin model. Our results also show that these underestimations and over-estimations have a potentially significant impact on ground-motion prediction using NGA-West2 ground-motion models (GMMs). Site resonant period may be considered as an alternative to depth parameter in the site term of a GMM. Y1 - 2019 U6 - https://doi.org/10.1785/0120190016 SN - 0037-1106 SN - 1943-3573 VL - 109 IS - 6 SP - 2710 EP - 2721 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Weiss, Jonathan R. A1 - Qiu, Qiang A1 - Barbot, Sylvain A1 - Wright, Tim J. A1 - Foster, James H. A1 - Saunders, Alexander A1 - Brooks, Benjamin A. A1 - Bevis, Michael A1 - Kendrick, Eric A1 - Ericksen, Todd L. A1 - Avery, Jonathan A1 - Smalley, Robert A1 - Cimbaro, Sergio R. A1 - Lenzano, Luis Eduardo A1 - Baron, Jorge A1 - Carlos Baez, Juan A1 - Echalar, Arturo T1 - Illuminating subduction zone rheological properties in the wake of a giant earthquake JF - Science Advances N2 - Deformation associated with plate convergence at subduction zones is accommodated by a complex system involving fault slip and viscoelastic flow. These processes have proven difficult to disentangle. The 2010 M-w 8.8 Maule earthquake occurred close to the Chilean coast within a dense network of continuously recording Global Positioning System stations, which provide a comprehensive history of surface strain. We use these data to assemble a detailed picture of a structurally controlled megathrust fault frictional patchwork and the three-dimensional rheological and time-dependent viscosity structure of the lower crust and upper mantle, all of which control the relative importance of afterslip and viscoelastic relaxation during postseismic deformation. These results enhance our understanding of subduction dynamics including the interplay of localized and distributed deformation during the subduction zone earthquake cycle. Y1 - 2019 U6 - https://doi.org/10.1126/sciadv.aax6720 SN - 2375-2548 VL - 5 IS - 12 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Lorenz, Melanie A1 - Altenberger, Uwe A1 - Trumbull, Robert B. A1 - Lira, Raul A1 - Lopez de Luchi, Monica Graciela A1 - Günter, Christina A1 - Eidner, Sascha T1 - Chemical and textural relations of britholite- and apatite-group minerals from hydrothermal REE mineralization at the Rodeo de los Molles deposit, Central Argentina JF - American mineralogist : an international journal of earth and planetary materials N2 - Britholite group minerals (REE,Ca)(5)[(Si,P)O-4](3)(OH,F) are widespread rare-earth minerals in alkaline rocks and their associated metasomatic zones, where they usually are minor accessory phases. An exception is the REE deposit Rodeo de los Molles, Central Argentina, where fluorbritholite-(Ce) (FBri) is the main carrier of REE and is closely intergrown with fluorapatite (FAp). These minerals reach an abundance of locally up to 75 modal% (FBri) and 20 modal% (FAp) in the vein mineralizations. The Rodeo de los Molles deposit is hosted by a fenitized monzogranite of the Middle Devonian Las Chacras-Potrerillos batholith. The REE mineralization consists of fluorbritholite-(Ce), britholite-(Ce), fluorapatite, allanite-(Ce), and REE fluorcarbonates, and is associated with hydrothermal fluorite, quartz, albite, zircon, and titanite. The REE assemblage takes two forms: irregular patchy shaped REE-rich composites and discrete cross-cutting veins. The irregular composites are more common, but here fluorbritholite-(Ce) is mostly replaced by REE carbonates. The vein mineralization has more abundant and better-preserved britholite phases. The majority of britholite grains at Rodeo de los Molles are hydrothermally altered, and alteration is strongly enhanced by metamictization, which is indicated by darkening of the mineral, loss of birefringence, porosity, and volume changes leading to polygonal cracks in and around altered grains. A detailed electron microprobe study of apatite-britholite minerals from Rodeo de los Molles revealed compositional variations in fluorapatite and fluorbritholite-(Ce) consistent with the coupled substitution of REE3+ + Si4+ = Ca2+ + P5+ and a compositional gap of similar to 4 apfu between the two phases, which we interpret as a miscibility gap. Micrometer-scale intergrowths of fluorapatite in fluorbritholite-(Ce) minerals and vice versa are chemically characterized here for the first time and interpreted as exsolution textures that formed during cooling below the proposed solvus. KW - Britholite KW - apatite KW - exsolution textures KW - miscibility gap KW - compositional gap KW - REE KW - fenite KW - alkaline granites KW - hydrothermal alteration Y1 - 2019 U6 - https://doi.org/10.2138/am-2019-6969 SN - 0003-004X SN - 1945-3027 VL - 104 IS - 12 SP - 1840 EP - 1850 PB - Mineralogical Society of America CY - Chantilly ER - TY - JOUR A1 - Han, Sungju A1 - Kuhlicke, Christian T1 - Reducing Hydro-Meteorological Risk by Nature-Based Solutions: What Do We JF - Water N2 - Nature-based solutions (NBS) have recently received attention due to their potential ability to sustainably reduce hydro-meteorological risks, providing co-benefits for both ecosystems and affected people. Therefore, pioneering research has dedicated efforts to optimize the design of NBS, to evaluate their wider co-benefits and to understand promoting and/or hampering governance conditions for the uptake of NBS. In this article, we aim to complement this research by conducting a comprehensive literature review of factors shaping people’s perceptions of NBS as a means to reduce hydro-meteorological risks. Based on 102 studies, we identified six topics shaping the current discussion in this field of research: (1) valuation of the co-benefits (including those related to ecosystems and society); (2) evaluation of risk reduction efficacy; (3) stakeholder participation; (4) socio-economic and location-specific conditions; (5) environmental attitude, and (6) uncertainty. Our analysis reveals that concerned empirical insights are diverse and even contradictory, they vary in the depth of the insights generated and are often not comparable for a lack of a sound theoretical-methodological grounding. We, therefore, propose a conceptual model outlining avenues for future research by indicating potential inter-linkages between constructs underlying perceptions of NBS to hydro-meteorological risks. KW - disaster risk reduction KW - climate change adaptation KW - river restoration KW - green infrastructure KW - ecosystem services KW - acceptability KW - attitudes KW - co-benefits KW - preferences KW - participation Y1 - 2019 U6 - https://doi.org/10.3390/w11122599 SN - 2073-4441 VL - 11 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Klein, Konstantin P. A1 - Lantuit, Hugues A1 - Heim, Birgit A1 - Fell, Frank A1 - Doxaran, David A1 - Irrgang, Anna Maria T1 - Long-Term High-Resolution Sediment and Sea Surface Temperature Spatial Patterns in Arctic Nearshore Waters Retrieved Using 30-Year Landsat Archive Imagery JF - Remote sensing N2 - The Arctic is directly impacted by climate change. The increase in air temperature drives the thawing of permafrost and an increase in coastal erosion and river discharge. This leads to a greater input of sediment and organic matter into coastal waters, which substantially impacts the ecosystems, the subsistence economy of the local population, and the climate because of the transformation of organic matter into greenhouse gases. Yet, the patterns of sediment dispersal in the nearshore zone are not well known, because ships do not often reach shallow waters and satellite remote sensing is traditionally focused on less dynamic environments. The goal of this study is to use the extensive Landsat archive to investigate sediment dispersal patterns specifically on an exemplary Arctic nearshore environment, where field measurements are often scarce. Multiple Landsat scenes were combined to calculate means of sediment dispersal and sea surface temperature under changing seasonal wind conditions in the nearshore zone of Herschel Island Qikiqtaruk in the western Canadian Arctic since 1982. We use observations in the Landsat red and thermal wavebands, as well as a recently published water turbidity algorithm to relate archive wind data to turbidity and sea surface temperature. We map the spatial patterns of turbidity and water temperature at high spatial resolution in order to resolve transport pathways of water and sediment at the water surface. Our results show that these pathways are clearly related to the prevailing wind conditions, being ESE and NW. During easterly wind conditions, both turbidity and water temperature are significantly higher in the nearshore area. The extent of the Mackenzie River plume and coastal erosion are the main explanatory variables for sediment dispersal and sea surface temperature distributions in the study area. During northwesterly wind conditions, the influence of the Mackenzie River plume is negligible. Our results highlight the potential of high spatial resolution Landsat imagery to detect small-scale hydrodynamic processes, but also show the need to specifically tune optical models for Arctic nearshore environments. KW - ocean color remote sensing KW - suspended particulate matter KW - turbidity KW - nearshore zone KW - Herschel Island Qikiqtaruk KW - river plume KW - coastal erosion KW - Landsat Y1 - 2019 U6 - https://doi.org/10.3390/rs11232791 SN - 2072-4292 VL - 11 IS - 23 PB - MDPI CY - Basel ER - TY - JOUR A1 - Aichner, Bernhard A1 - Makhmudov, Zafar A1 - Rajabov, Iljomjon A1 - Zhang, Qiong A1 - Pausata, Francesco Salvatore R. A1 - Werner, Martin A1 - Heinecke, Liv A1 - Kuessner, Marie L. A1 - Feakins, Sarah J. A1 - Sachse, Dirk A1 - Mischke, Steffen T1 - Hydroclimate in the Pamirs Was Driven by Changes in Precipitation-Evaporation Seasonality Since theLast Glacial Period JF - Geophysical research letters N2 - The Central Asian Pamir Mountains (Pamirs) are a high-altitude region sensitive to climatic change, with only few paleoclimatic records available. To examine the glacial-interglacial hydrological changes in the region, we analyzed the geochemical parameters of a 31-kyr record from Lake Karakul and performed a set of experiments with climate models to interpret the results. delta D values of terrestrial biomarkers showed insolation-driven trends reflecting major shifts of water vapor sources. For aquatic biomarkers, positive delta D shifts driven by changes in precipitation seasonality were observed at ca. 31-30, 28-26, and 17-14 kyr BP. Multiproxy paleoecological data and modelling results suggest that increased water availability, induced by decreased summer evaporation, triggered higher lake levels during those episodes, possibly synchronous to northern hemispheric rapid climate events. We conclude that seasonal changes in precipitation-evaporation balance significantly influenced the hydrological state of a large waterbody such as Lake Karakul, while annual precipitation amount and inflows remained fairly constant. KW - climate KW - biomarker KW - geochemistry KW - modelling KW - paleoclimate KW - hydrology Y1 - 2019 U6 - https://doi.org/10.1029/2019GL085202 SN - 0094-8276 SN - 1944-8007 VL - 46 IS - 23 SP - 13972 EP - 13983 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Weger, Lindsey B. A1 - Lupaşcu, Aura A1 - Cremonese, Lorenzo A1 - Butler, Tim T1 - Modeling the impact of a potential shale gas industry in Germany and the United Kingdom on ozone with WRF-Chem JF - Elementa-sccience of the anthropocene N2 - Germany and the United Kingdom have domestic shale gas reserves which they may exploit in the future to complement their national energy strategies. However gas production releases volatile organic compounds (VOC) and nitrogen oxides (NOx), which through photochemical reaction form ground-level ozone, an air pollutant that can trigger adverse health effects e.g. on the respiratory system. This study explores the range of impacts of a potential shale gas industry in these two countries on local and regional ambient ozone. To this end, comprehensive emission scenarios are used as the basis for input to an online-coupled regional chemistry transport model (WRF-Chem). Here we simulate shale gas scenarios over summer (June, July, August) 2011, exploring the effects of varying VOC emissions, gas speciation, and concentration of NOx emissions over space and time, on ozone formation. An evaluation of the model setup is performed, which exhibited the model’s ability to predict surface meteorological and chemical variables well compared with observations, and consistent with other studies. When different shale gas scenarios were employed, the results show a peak increase in maximum daily 8-hour average ozone from 3.7 to 28.3 μg m–3. In addition, we find that shale gas emissions can force ozone exceedances at a considerable percentage of regulatory measurement stations locally (up to 21% in Germany and 35% in the United Kingdom) and in distant countries through long-range transport, and increase the cumulative health-related metric SOMO35 (maximum percent increase of ~28%) throughout the region. Findings indicate that VOC emissions are important for ozone enhancement, and to a lesser extent NOx, meaning that VOC regulation for a future European shale gas industry will be of especial importance to mitigate unfavorable health outcomes. Overall our findings demonstrate that shale gas production in Europe can worsen ozone air quality on both the local and regional scales. KW - Shale gas KW - WRF-Chem KW - European air quality KW - Ozone KW - Methane leakage KW - Emission scenarios Y1 - 2019 U6 - https://doi.org/10.1525/elementa.387 SN - 2325-1026 VL - 7 PB - Univ California Press CY - Oakland ER - TY - JOUR A1 - Krummenauer, Linda A1 - Prahl, Boris F. A1 - Costa, Luís Fílípe Carvalho da A1 - Holsten, Anne A1 - Walther, Carsten A1 - Kropp, Jürgen T1 - Global drivers of minimum mortality temperatures in cities JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - Human mortality shows a pronounced temperature dependence. The minimum mortality temperature (MMT) as a characteristic point of the temperature-mortality relationship is influenced by many factors. As MMT estimates are based on case studies, they are sporadic, limited to data-rich regions, and their drivers have not yet been clearly identified across case studies. This impedes the elaboration of spatially comprehensive impact studies on heat-related mortality and hampers the temporal transfer required to assess climate change impacts. Using 400 MMTs from cities, we systematically establish a generalised model that is able to estimate MMTs (in daily apparent temperature) for cities, based on a set of climatic, topographic and socio-economic drivers. A sigmoid model prevailed against alternative model setups due to having the lowest Akaike Information Criterion (AICc) and the smallest RMSE. We find the long-term climate, the elevation, and the socio-economy to be relevant drivers of our MMT sample within the non-linear parametric regression model. A first model application estimated MMTs for 599 European cities ( >100 000 inhabitants) and reveals a pronounced decrease in MMTs (27.8-16 degrees C) from southern to northern cities. Disruptions of this pattern across regions of similar mean temperatures can be explained by socio-economic standards as noted for central eastern Europe. Our alternative method allows to approximate MMTs independently from the availability of daily mortality records. For the first time, a quantification of climatic and non-climatic MMT drivers has been achieved, which allows to consider changes in socio-economic conditions and climate. This work contributes to the comparability among MMTs beyond location-specific and regional limits and, hence, towards a spatially comprehensive impact assessment for heat-related mortality. KW - City population KW - Minimum mortality temperature KW - Climate KW - Topography KW - Socio-economy KW - Sigmoid model Y1 - 2019 U6 - https://doi.org/10.1016/j.scitotenv.2019.07.366 SN - 0048-9697 SN - 1879-1026 VL - 695 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Menges, Johanna A1 - Hovius, Niels A1 - Andermann, Christoff A1 - Dietze, Michael A1 - Swoboda, Charlie A1 - Cook, Kristen L. A1 - Adhikari, Basanta R. A1 - Vieth-Hillebrand, Andrea A1 - Bonnet, Stephane A1 - Reimann, Tony A1 - Koutsodendris, Andreas A1 - Sachse, Dirk T1 - Late holocene landscape collapse of a trans-himalayan dryland BT - human impact and aridification JF - Geophysical research letters N2 - Soil degradation is a severe and growing threat to ecosystem services globally. Soil loss is often nonlinear, involving a rapid deterioration from a stable eco-geomorphic state once a tipping point is reached. Soil loss thresholds have been studied at plot scale, but for landscapes, quantitative constraints on the necessary and sufficient conditions for tipping points are rare. Here, we document a landscape-wide eco-geomorphic tipping point at the edge of the Tibetan Plateau and quantify its drivers and erosional consequences. We show that in the upper Kali Gandaki valley, Nepal, soil formation prevailed under wetter conditions during much of the Holocene. Our data suggest that after a period of human pressure and declining vegetation cover, a 20% reduction of relative humidity and precipitation below 200 mm/year halted soil formation after 1.6 ka and promoted widespread gullying and rapid soil loss, with irreversible consequences for ecosystem services. KW - geomorphology KW - paleoclimate KW - human activity KW - Tibetan plateau KW - late Holocene Y1 - 2019 U6 - https://doi.org/10.1029/2019GL084192 SN - 0094-8276 SN - 1944-8007 VL - 46 IS - 23 SP - 13814 EP - 13824 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Schattan, Paul A1 - Köhli, Markus A1 - Schrön, Martin A1 - Baroni, Gabriele A1 - Oswald, Sascha T1 - Sensing area-average snow water equivalent with cosmic-ray neutrons: the influence of fractional snow cover JF - Water resources research N2 - Cosmic-ray neutron sensing (CRNS) is a promising non-invasive technique to estimate snow water equivalent (SWE) over large areas. In contrast to preliminary studies focusing on shallow snow conditions (SWE <130 mm), more recently the method was shown experimentally to be sensitive also to deeper snowpacks providing the basis for its use at mountain experimental sites. However, hysteretic neutron response has been observed for complex snow cover including patchy snow-free areas. In the present study we aimed to understand and support the experimental findings using a comprehensive neutron modeling approach. Several simulations have been set up in order to disentangle the effect on the signal of different land surface characteristics and to reproduce multiple observations during periods of snow melt and accumulation. To represent the actual land surface heterogeneity and the complex snow cover, the model used data from terrestrial laser scanning. The results show that the model was able to accurately reproduce the CRNS signal and particularly the hysteresis effect during accumulation and melting periods. Moreover, the sensor footprint was found to be anisotropic and affected by the spatial distribution of liquid water and snow as well as by the topography of the nearby mountains. Under fully snow-covered conditions the CRNS is able to accurately estimate SWE without prior knowledge about snow density profiles or other spatial anomalies. These results provide new insights into the characteristics of the detected neutron signal in complex terrain and support the use of CRNS for long-term snow monitoring in high elevated mountain environments. KW - area-average snow monitoring KW - cosmic-ray neutron sensing KW - neutron simulations KW - spatial heterogeneity KW - fractional snow cover Y1 - 2019 U6 - https://doi.org/10.1029/2019WR025647 SN - 0043-1397 SN - 1944-7973 VL - 55 IS - 12 SP - 10796 EP - 10812 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Kaczorek, Danuta A1 - Puppe, Daniel A1 - Busse, Jacqueline A1 - Sommer, Michael T1 - Effects of phytolith distribution and characteristics on extractable silicon fractions in soils under different vegetation - An exploratory study on loess JF - Geoderma : an international journal of soil science N2 - The significance of phytoliths for the control of silicon (Si) fluxes from terrestrial to aquatic ecosystems has been recognized as a key factor. Humankind actively influences Si fluxes by intensified land use, i.e., agriculture and forestry, on a global scale. We hypothesized phytolith distribution and assemblages in soils of agricultural and forestry sites to be controlled by vegetation (which is directed by land use) with direct effects on extractable Si fractions driven mainly by phytolith characteristics, i.e., dissolution status (dissolution signs) and morphology (morphotype proportions). To test our hypothesis we combined different chemical extraction methods (calcium chloride, ammonium oxalate, Tiron) for the quantification of different Si fractions (plant available Si, Si adsorbed to/occluded in pedogenic oxides/hydroxides, amorphous Si) and microscopic techniques (light microscopy, confocal laser scanning microscopy, scanning electron microscopy) for detailed analyses of phytoliths extracted using gravimetric separation (physical extraction) from exemplary loess soils of agricultural (arable land and grassland/meadow) and forestry (beech and pine) sites in Poland. We found differences in dissolution signs, morphotype proportions, and vertical distribution of phytoliths in soil horizons per site. In general, dominant morphotypes of assignable phytoliths in the studied soil profiles were elongate phytoliths and short cells, both of which are typical for grass-dominated vegetation. However, the organic layers of forest soils were dominated by globular phytoliths, which are typical indicators for mosses. As expected soil horizons under different vegetation generally were characterized by differences in extractable Si fractions, especially in the upper soil horizons. However, phytogenic Si pools counter-intuitively showed no correlations with chemically extracted Si fractions and soil pH at all. Our findings indicate that it is necessary to combine microscopic analyses and Si extraction techniques for examinations of Si cycling in biogeosystems, because extractions of Si fractions alone do not allow drawing any conclusions about phytolith characteristics or interactions between phytolith pools and chemically extractable Si fractions and do not necessarily reflect phytogenic Si pool quantities in soils and vice versa. KW - Phytolith dissolution KW - Phytolith morphotypes KW - Si extraction KW - Surface roughness parameters KW - Si cycling Y1 - 2019 U6 - https://doi.org/10.1016/j.geoderma.2019.113917 SN - 0016-7061 SN - 1872-6259 VL - 356 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Milewski, Robert A1 - Chabrillat, Sabine A1 - Brell, Maximillian A1 - Schleicher, Anja Maria A1 - Guanter, Luis T1 - Assessment of the 1.75μm absorption feature for gypsum estimation using laboratory, air- and spaceborne hyperspectral sensors JF - International Journal of Applied Earth Observation and Geoinformation N2 - High spectral resolution (hyperspectral) remote sensing has already demonstrated its capabilities for soil constituent mapping based on absorption feature parameters. This paper tests different parametrizations of the 1.75 μm gypsum feature for the determination of gypsum abundances, from the laboratory to remote sensing applications of recent as well as upcoming hyperspectral sensors. In particular, this study focuses on remote sensing imagery over the large body of the Omongwa pan located in the Namibian Kalahari. Four common absorption feature parameters are compared: band ratio through the introduction of the Normalized Differenced Gypsum Index (NDGI), the shape-based parameters Slope, and Half-Area, and the Continuum Removed Absorption Depth (CRAD). On laboratory soil samples from the pan, CRAD and NDGI approaches perform best to determine gypsum content tested in cross validated regression models with XRD mineralogical data (R² = 0.84 for NDGI and R² = 0.86 for CRAD). Subsequently the laboratory prediction functions are transferred to remote sensing imagery of spaceborne Hyperion, airborne HySpex and simulated spaceborne EnMAP sensor. Variable results were obtained depending on sensor characteristics, data quality, preprocessing and spectral parameters. Overall, the CRAD parameter in this wavelength region proved not to be robust for remote sensing applications, and the simple band ratio based parameter, the NDGI, proved robust and is recommended for future use for the determination of gypsum content in bare soils based on remote sensing hyperspectral imagery. KW - Hyperspectral KW - Gypsum quantification KW - Salt pan KW - Absorption feature parameters KW - Namibia Y1 - 2017 U6 - https://doi.org/10.1016/j.jag.2018.12.012 SN - 0303-2434 VL - 77 SP - 69 EP - 83 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Hierro, Rodrigo A1 - Burgos Fonseca, Y. A1 - Ramezani Ziarani, Maryam A1 - Llamedo, P. A1 - Schmidt, Torsten A1 - de la Torre, Alejandro A1 - Alexander, P. T1 - On the behavior of rainfall maxima at the eastern Andes JF - Atmospheric Research N2 - In this study, we detect high percentile rainfall events in the eastern central Andes, based on Tropical Rainfall Measuring Mission (TRMM) with a spatial resolution of 0.25 × 0.25°, a temporal resolution of 3 h, and for the duration from 2001 to 2018. We identify three areas with high mean accumulated rainfall and analyze their atmospheric behaviour and rainfall characteristics with specific focus on extreme events. Extreme events are defined by events above the 95th percentile of their daily mean accumulated rainfall. Austral summer (DJF) is the period of the year presenting the most frequent extreme events over these three regions. Daily statistics show that the spatial maxima, as well as their associated extreme events, are produced during the night. For the considered period, ERA-Interim reanalysis data, provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) with 0.75° x0.75° spatial and 6-hourly temporal resolutions, were used for the analysis of the meso- and synoptic-scale atmospheric patterns. Night- and day-time differences indicate a nocturnal overload of northerly and northeasterly low-level humidity flows arriving from tropical South America. Under these conditions, cooling descending air from the mountains may find unstable air at the surface, giving place to the development of strong local convection. Another possible mechanism is presented here: a forced ascent of the low-level flow due to the mountains, disrupting the atmospheric stratification and generating vertical displacement of air trajectories. A Principal Component Analysis (PCA) in T-mode is applied to day- and night-time data during the maximum and extreme events. The results show strong correlation areas over each subregion under study during night-time, whereas during day-time no defined patterns are found. This confirms the observed nocturnal behavior of rainfall within these three hotspots. KW - South-America KW - rainy-season KW - part I KW - precipitation KW - TRMM KW - climate KW - summer KW - circulation KW - monsoon KW - systems Y1 - 2019 U6 - https://doi.org/10.1016/j.atmosres.2019.104792 SN - 0169-8095 VL - 234 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Döhmann, Maximilian J.E.A. A1 - Brune, Sascha A1 - Nardini, Livia A1 - Rybacki, Erik A1 - Dresen, Georg T1 - Strain Localization and Weakening Processes in Viscously Deforming Rocks BT - Numerical Modeling Based on Laboratory Torsion Experiments JF - Journal of geophysical research : JGR N2 - Localization processes in the viscous lower crust generate ductile shear zones over a broad range of scales affecting long‐term lithosphere deformation and the mechanical response of faults during the seismic cycle. Here we use centimeter‐scale numerical models in order to gain detailed insight into the processes involved in strain localization and rheological weakening in viscously deforming rocks. Our 2‐D Cartesian models are benchmarked to high‐temperature and high‐pressure torsion experiments on Carrara marble samples containing a single weak Solnhofen limestone inclusion. The models successfully reproduce bulk stress‐strain transients and final strain distributions observed in the experiments by applying a simple, first‐order softening law that mimics rheological weakening. We find that local stress concentrations forming at the inclusion tips initiate strain localization inside the host matrix. At the tip of the propagating shear zone, weakening occurs within a process zone, which expands with time from the inclusion tips toward the matrix. Rheological weakening is a precondition for shear zone localization, and the width of this shear zone is found to be controlled by the degree of softening. Introducing a second softening step at elevated strain, a high strain layer develops inside the localized shear zone, analogous to the formation of ultramylonite bands in mylonites. These results elucidate the transient evolution of stress and strain rate during inception and maturation of ductile shear zones. KW - dislocation creep KW - torsion KW - 2-D numerical model KW - rheological weakening KW - two phase aggregates KW - strain localization Y1 - 2018 U6 - https://doi.org/10.1029/2018JB016917 SN - 0148-0227 SN - 2169-9356 VL - 124 IS - 1 SP - 1120 EP - 1137 PB - Union CY - Washington, DC ER - TY - JOUR A1 - Pick, Leonie A1 - Korte, Monika A1 - Thomas, Yannik A1 - Krivova, Natalie A1 - Wu, Chi-Ju T1 - Evolution of Large-Scale Magnetic Fields From Near-Earth Space During the Last 11 Solar Cycles JF - Journal of Geophysical Research: Space Physics N2 - We use hourly mean magnetic field measurements from 34 midlatitude geomagnetic observatories between 1900 and 2015 to investigate the long-term evolution and driving mechanism of the large-scale external magnetic field at ground. The Hourly Magnetospheric Currents index (HMC) is derived as a refinement of the Annual Magnetospheric Currents index (HMC, Pick & Korte, 2017, https://doi.org/10.1093/gji/ggx367). HMC requires an extensive revision of the observatory hourly means. It depends on three third party geomagnetic field models used to eliminate the core, the crustal, and the ionospheric solar-quiet field contributions. We mitigate the dependency of HMC on the core field model by subtracting only nondipolar components of the model from the data. The separation of the residual (dipolar) signal into internal and external (HMC) parts is the main methodological challenge. Observatory crustal biases are updated with respect to AMC, and the solar-quiet field estimation is extended to the past based on a reconstruction of solar radio flux (F10.7). We find that HMC has more power at low frequencies (periods = 1 year) than the Dcx index, especially at periods relevant to the solar cycle. Most of the slow variations in HMC can be explained by the open solar magnetic flux. There is a weakly decreasing linear trend in absolute HMC from 1900 to present, which depends sensitively on the data rejection criteria at early years. HMC is well suited for studying long-term variations of the geomagnetic field. KW - geomagnetic indices KW - geomagnetic observatories Y1 - 2019 U6 - https://doi.org/10.1029/2018JA026185 SN - 2169-9402 SN - 0148-0227 SP - 2527 EP - 2540 PB - Union CY - Washington, DC ER -