TY - JOUR A1 - Dahm, Torsten A1 - Kuehn, Daniela A1 - Ohrnberger, Matthias A1 - Kroeger, Jens A1 - Wiederhold, Helga A1 - Reuther, Claus-Dieter A1 - Dehghani, Ali A1 - Scherbaum, Frank T1 - Combining geophysical data sets to study the dynamics of shallow evaporites in urban environments : application to Hamburg, Germany N2 - Shallowly situated evaporites in built-up areas are of relevance for urban and cultural development and hydrological regulation. The hazard of sinkholes, subrosion depressions and gypsum karst is often difficult to evaluate and may quickly change with anthropogenic influence. The geophysical exploration of evaporites in metropolitan areas is often not feasible with active industrial techniques. We collect and combine different passive geophysical data as microgravity, ambient vibrations, deformation and hydrological information to study the roof morphology of shallow evaporites beneath Hamburg, Northern Germany. The application of a novel gravity inversion technique leads to a 3-D depth model of the salt diapir under study. We compare the gravity-based depth model to pseudo-depths from H/V measurements and depth estimates from small-scale seismological array data. While the general range and trend of the diapir roof is consistent, a few anomalous regions are identified where H/V pseudo-depths indicate shallower structures not observed in gravity or array data. These are interpreted by shallow residual caprock floaters and zones of increased porosity. The shallow salt structure clearly correlates with a relative subsidence in the order of 2 mm yr(-1). The combined interpretation of roof morphology, yearly subsidence rates, chemical analyses of groundwater and of hydraulic head in aquifers indicates that the salt diapir beneath Hamburg is subject to significant ongoing dissolution that may possibly affect subrosion depressions, sinkhole distribution and land usage. The combined analysis of passive geophysical data may be exemplary for the study of shallow evaporites beneath other urban areas. Y1 - 2010 UR - http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-246X U6 - https://doi.org/10.1111/j.1365-246X.2010.04521.x SN - 0956-540X ER - TY - JOUR A1 - Cristiano, Luigia A1 - Petrosino, Simona A1 - Saccorotti, Gilberto A1 - Ohrnberger, Matthias A1 - Scarpa, Roberto T1 - Shear-wave velocity structure at Mt. Etna from inversion of Rayleigh-wave dispersion patterns (2 s < T < 20 s) N2 - In the present study, we investigated the dispersion characteristics of medium-to-long period Rayleigh waves (2 s < T < 20 s) using both single-station techniques (multiple-filter analysis, and phase-match filter) and multichannel techniques (horizontal slowness [p] and angular frequency [omega] stack, and cross-correlation) to determine the velocity structure for the Mt. Etna volcano. We applied these techniques to a dataset of teleseisms, as regional and local earthquakes recorded by two broad-band seismic arrays installed at Mt. Etna in 2002 and 2005, during two seismic surveys organized by the Istituto Nazionale di Geofisica e Vulcanologia (INGV), sezione di Napoli. The dispersion curves obtained showed phase velocities ranging from 1.5 km/s to 4.0 km/s in the frequency band 0.05 Hz to 0.45 Hz. We inverted the average phase velocity dispersion curves using a non-linear approach, to obtain a set of shear-wave velocity models with maximum resolution depths of 25 km to 30 km. Moreover, the presence of lateral velocity contrasts was checked by dividing the whole array into seven triangular sub-arrays and inverting the dispersion curves relative to each triangle. Y1 - 2010 UR - http://annalsofgeophysics.ingv.it/index.html U6 - https://doi.org/10.4401/Ag-4574 SN - 1593-5213 ER - TY - JOUR A1 - Clarke, Brian A. A1 - Burbank, Douglas W. T1 - Bedrock fracturing, threshold hillslopes, and limits to the magnitude of bedrock landslides N2 - Bedrock fracturing and rock strength are widely believed to influence landscape morphology and erosional resistance. Yet, understanding of the quantitative relationship between rock-mass strength and landscape evolution remains limited. Here we present a new application of seismic refraction surveys that uses variations in seismic velocity to interpret differences in bedrock fracture density with depth. We use a comparative study of Fiordland and the western Southern Alps of New Zealand to examine how differences in rock type and bedrock fracturing influence landscape morphology and landslide response to rock uplift. In both regions, slopes appear invariant with differential rock-uplift rates and slope distributions reveal modal hillslope angles of similar to 32 degrees. The majority of landslides initiate on slopes steeper than the modal hillslope angle, however, landslide magnitude-frequency distributions reveal order-of-magnitude differences between the regions, with Fiordland experiencing considerably smaller and less frequent landsliding events. Landslide-driven denudation rates of similar to 9 mm/yr in the western Southern Alps and between similar to 0.1 and 0.3 mm/yr in Fiordland approximate estimates of long-term rock-uplift rates for each region. The invariance of hillslope angles, near-normal slope distributions, predominance of landslide initiation on slopes steeper than modal values, and the apparent balance between rates of uplift and landslide-driven erosion suggest that hillslopes in both regions are at threshold angles. Their similar modal slopes further suggest that both ranges are characterized by equivalent rock-mass strength, despite striking differences in lithology. Additionally, our seismic analysis reveals nearly identical surface p-wave velocities. The unexpected equivalence of both modal slopes and surface velocities between these lithologically distinct ranges is attributed to contrasting degrees of surface fracturing that have differentially affected the intact rock properties, such that they now yield equivalent surface velocities and hillslope-scale strengths. Given that surface fractures help regulate threshold angles by modulating hillslope strength; we propose that shallow seismic velocities may provide a quantitative proxy for rock-mass strength. We define two contrasting fracture and landsliding environments. In Fiordland, dense geomorphic fracturing that is focused within the shallow subsurface appears to limit the depth and magnitude of most bedrock landslides. Conversely, in the western Southern Alps, tectonic forces produce pervasive fracturing with depth that results in larger, and deeper landslides. Our data suggest that bedrock fracturing at the Earth's surface modulates threshold hillslope angles, whereas the depth of bedrock fracturing influences the magnitude and frequency of landslide response to tectonic rock uplift. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/0012821X U6 - https://doi.org/10.1016/j.epsl.2010.07.011 SN - 0012-821X ER - TY - JOUR A1 - Carrapa, Barbara A1 - Hauer, Joern A1 - Schoenbohm, Lindsay M. A1 - Strecker, Manfred A1 - Schmitt, Axel K. A1 - Villanueva, Arturo A1 - Gomez, José Sosa T1 - Dynamics of deformation and sedimentation in the northern Sierras Pampeanas : an integrated study of the Neogene Fiambalá basin, NW Argentina ; reply Y1 - 2010 UR - http://gsabulletin.gsapubs.org/ U6 - https://doi.org/10.1130/B30134.1 SN - 0016-7606 ER - TY - JOUR A1 - Cacace, Mauro A1 - Kaiser, Bjoern Onno A1 - Lewerenz, Bjoern A1 - Scheck-Wenderoth, Magdalena T1 - Geothermal energy in sedimentary basins : what we can learn from regional numerical models N2 - Understanding the interactions between the different processes that control the geothermal and fluid flow fields in sedimentary basins is crucial for exploitation of geothermal energy. Numerical models provide predictive and feasible information for a correct assessment of geothermal resources especially in areas where data acquisition is demanding. Here, we present results from numerical efforts to characterize the thermal structure and its interaction with the fluid system for the area of the North East German Basin (NEGB). The relative impact of the different (diffusive and advective) processes affecting the hydrothermal setting of the basin are investigated by means of three- dimensional numerical simulations. Lithospheric-scale numerical models are evaluated to understand the specific thermal signature of the relevant factors influencing the present-day conductive geothermal field in the NEGB. Shallow and deep structural controls on the thermal configuration of the basin are addressed and quantified. Interaction between the resulting thermal field and the active fluid system is investigated by means of three-dimensional simulations of coupled fluid flow and heat transport. Factors influencing stability and reliability of modeling predictions are discussed. The main effort is to build a physically consistent model for the basin which integrates the impacts of thermal gradients on the regional fluid regime and their coupling with the main geological units defining the basin. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/00092819 U6 - https://doi.org/10.1016/j.chemer.2010.05.017 SN - 0009-2819 ER - TY - JOUR A1 - Brunelle, Brigitte G. A1 - Sigman, Daniel M. A1 - Jaccard, Samuel Laurent A1 - Keigwin, Lloyd D. A1 - Plessen, Birgit A1 - Schettler, Georg A1 - Cook, Mea S. A1 - Haug, Gerald H. T1 - Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum N2 - In piston cores from the open subarctic Pacific and the Okhotsk Sea, diatom-bound delta N-15 (delta N-15(db)), biogenic opal, calcium carbonate, and barium were measured from coretop to the previous glacial maximum (MIS 6). Glacial intervals are generally characterized by high delta N-15(db) (similar to 8 parts per thousand) and low productivity, whereas interglacial intervals have a lower delta N-15(db) (5.7-6.3 parts per thousand) and indicate high biogenic productivity. These data extend the regional swath of evidence for nearly complete surface nutrient utilization during glacial maxima, consistent with stronger upper water column stratification throughout the subarctic region during colder intervals. An early deglacial decline in delta N-15(db) of 2 parts per thousand at similar to 17.5 ka, previously observed in the Bering Sea, is found here in the open subarctic Pacific record and arguably also in the Okhotsk, and a case can be made that a similar decrease in delta N-15(db) occurred in both regions at the previous deglaciation as well. The early deglacial delta N-15(db) decrease, best explained by a decrease in surface nutrient utilization, appears synchronous with southern hemisphere-associated deglacial changes and with the Heinrich 1 event in the North Atlantic. This delta N-15(db) decrease may signal the initial deglacial weakening in subarctic North Pacific stratification and/or a deglacial increase in shallow subsurface nitrate concentration. If the former, it would be the North Pacific analogue to the increase in vertical exchange inferred for the Southern Ocean at the time of Heinrich Event 1. In either case, the lack of any clear change in paleoproductivity proxies during this interval would seem to require an early deglacial decrease in the iron-to-nitrate ratio of subsurface nutrient supply or the predominance of light limitation of phytoplankton growth during the deglaciation prior to Bolling-Allerod warming. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/02773791 U6 - https://doi.org/10.1016/j.quascirev.2010.03.010 SN - 0277-3791 ER - TY - JOUR A1 - Breitenbach, Sebastian Franz Martin A1 - Adkins, Jess F. A1 - Meyer, Hanno A1 - Marwan, Norbert A1 - Kumar, Kanikicharla Krishna A1 - Haug, Gerald H. T1 - Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India N2 - To calibrate delta O-18 time-series from speleothems in the eastern Indian summer monsoon (ISM) region of India, and to understand the moisture regime over the northern Bay of Bengal (BoB) we analyze the delta O-18 and delta D of rainwater, collected in 2007 and 2008 near Cherrapunji, India. delta D values range from + 18.5 parts per thousand to 144.4 parts per thousand, while delta O-18 varies between +0.8 parts per thousand and 18.8 parts per thousand. The Local Meteoric Water Line (LMWL) is found to be indistinguishable from the Global Meteoric Water Line (GMWL). Late ISM (September-October) rainfall exhibits lowest delta O-18 and delta D values, with little relationship to the local precipitation amount. There is a trend to lighter isotope values over the course of the ISM, but it does not correlate with the patterns of temperature and rainfall amount delta O-18 and delta D time-series have to be interpreted with caution in terms of the 'amount effect' in this subtropical region. We find that the temporal trend in delta O-18 reflects increasing transport distance during the ISM, isotopic changes in the northern BoB surface waters during late ISM, and vapor re-equilibration with rain droplets. Using an isotope box model for surface ocean waters, we quantify the potential influence of river runoff on the isotopic composition of the seasonal freshwater plume in the northern BoB. Temporal variations in this source can contribute up to 25% of the observed changes in stable isotopes of precipitation in NE India. To delineate other moisture sources, we use backward trajectory computations and find a strong correlation between source region and isotopic composition. Palaeoclimatic stable isotope time-series from northeast Indian speleothems likely reflect changes in moisture source and transport pathway, as well as the isotopic composition of the BoB surface water, all of which in turn reflect ISM strength. Stalagmite records from the region can therefore be interpreted as integrated measures of the ISM strength. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/0012821X U6 - https://doi.org/10.1016/j.epsl.2010.01.038 SN - 0012-821X ER - TY - JOUR A1 - Braeuniger, Claudia A1 - Knapp, Sonja A1 - Kuehn, Ingolf A1 - Klotz, Stefan T1 - Testing taxonomic and landscape surrogates for biodiversity in an urban setting N2 - Cities often have higher species diversity than the surrounding landscape. This diversity is important for both nature conservation and urban planning. The recreation of residents and the protection of species and habitats are simultaneous targets of maintaining urban green spaces. Data about the distribution and richness of species and their habitats have been compiled frequently; however, it is difficult and costly to measure the complete biodiversity of a region, necessitating useful surrogates. We tested species and habitat data in 27 protected areas in a Central German city and asked (1) whether the diversity of selected taxa acts as a surrogate for the diversity of other taxa and total investigated diversity, and (2) whether landscape structure and human impact explain species richness. Landscape structure metrics were based on soil and habitat types; human influence was measured as the degree of hemeroby. We tested and accounted for sample bias prior to analyses. (1) Vascular plant species richness explained total richness and single taxon richness best. (2) The size of a protected area was the most important predictor of species richness. After correcting for the effect of size, shape complexity, isolation, and matrix properties remained significant. Accordingly, the type of data frequently used for urban planning - collected over several years, by various persons for various purposes - is suitable regarding systematic conservation planning for species richness. The surrogate taxa concept applies in urban areas but with restrictions. Additionally, species richness should be examined in the context of both the city and its surrounding countryside. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/01692046 U6 - https://doi.org/10.1016/j.landurbplan.2010.07.001 SN - 0169-2046 ER - TY - JOUR A1 - Borchert, Manuela A1 - Wilke, Max A1 - Schmidt, Christian A1 - Cauzid, Jean A1 - Tucoulou, Rémi T1 - Partitioning of Ba, La, Yb and Y between haplogranitic melts and aqueous solutions : an experimental study N2 - Barium, lanthanum, ytterbium, and yttrium partitioning experiments between fluid-saturated haplogranitic melts and aqueous solutions were conducted at 750 to 950 degrees C and 0.2 to 1 GPa to investigate the effects of melt and fluid composition, pressure, and temperature. Partition coefficients were determined using different experimental methods. On one hand quenched experiments were performed, and on the other hand, trace element contents in the aqueous fluid were determined directly using a hydrothermal diamond-anvil cell and synchrotron radiation X-ray fluorescence microanalysis of K-lines. The latter required a high excitation energy of 50 key due to the high energies necessary to excite the K-lines of the studied elements. The data from these two techniques showed good agreement for chloridic solutions, whereas quenching had a significant effect on results of the experiments with only water in the case of Ba. In Cl-free experiments, lanthanum and yttrium, trace element contents were even below detection limit in the quenched fluids, whereas small concentrations were detected in comparable in-situ experiments. This distinct difference is likely due to back reactions between fluid and melt upon cooling. The partitioning data of all elements show no dependence on the temperature and only small dependence on pressure. In contrast, the partitioning is strongly influenced by the composition of the starting fluid and melt. For chloridic fluids, there was a sharp increase in the Ba, La, Y and Yb partition coefficients with the alumina saturation index (ASI). The Ba partition coefficient increased from 0.002 at an ASI of 0.8 to 0.55 at an ASI of 1.07. At higher ASI, it decreased slightly to 0.2 at an ASI of similar to 1.3. Likewise, it was one to two orders of magnitude higher in chloridic fluids compared to those found in H2O experiments. Fluid-melt partition coefficients of La and Y increased from 0.002 at an ASI of similar to 0.8 to similar to 0.1 at an ASI of 1.2. In the same ASI range, the Yb partition coefficient increased to a maximum value of 0.02. Even at high salinities all elements fractionate into the melt. The compositional dependence of the partitioning data imply that both melt composition and fluid composition have a strong influence on trace element behavior and that complexation of Ba. REE and Y tin the fluid is not only controlled by the presence of Cl- in the fluid. Instead, interaction of these elements with major melt components dissolved in the fluid is very likely. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/00092541 U6 - https://doi.org/10.1016/j.chemgeo.2010.06.009 SN - 0009-2541 ER - TY - JOUR A1 - Boeniger, Urs A1 - Tronicke, Jens T1 - On the potential of kinematic GPR surveying using a self-tracking total station : evaluating system crosstalk and latency N2 - In this paper, we present an efficient kinematic ground-penetrating radar (GPR) surveying setup using a self- tracking total station (TTS). This setup combines the ability of modern GPR systems to interface with Global Positioning System (GPS) and the capability of the employed TTS system to immediately make the positioning information available in a standardized GPS data format. Wireless communication between the GPR and the TTS system is established by using gain variable radio modems. Such a kinematic surveying setup faces two major potential limitations. First, possible crosstalk effects between the GPR and the positioning system have to be evaluated. Based on multiple walkaway experiments, we show that, for reasonable field setups, instrumental crosstalk has no significant impact on GPR data quality. Second, we investigate systematic latency (i.e., the time delay between the actual position measurement by TTS and its fusion with the GPR data) and its impact on the positional precision of kinematically acquired 2-D and 3-D GPR data. To quantify latency for our kinematic survey setup, we acquired forward-reverse profile pairs across a well-known subsurface target. Comparing the forward and reverse GPR images using three fidelity measures allows determining the optimum latency value and correcting for it. Accounting for both of these potential limitations allows us to kinematically acquire high- quality and high-precision GPR data using off-the-shelf instrumentation without further hardware modifications. Until now, these issues have not been investigated in detail, and thus, we believe that our findings have significant implications also for other geophysical surveying approaches. Y1 - 2010 UR - http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?puNumber=36 U6 - https://doi.org/10.1109/Tgrs.2010.2048332 SN - 0196-2892 ER -