TY - GEN A1 - Elsner, Julia A1 - Schibler, Jörg A1 - Hofreiter, Michael A1 - Schlumbaum, Angela T1 - Burial condition is the most important factor for mtDNA PCR amplification success in Palaeolithic equid remains from the Alpine foreland T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Faunal remains from Palaeolithic sites are important genetic sources to study preglacial and postglacial populations and to investigate the effect of climate change and human impact. Post mortem decay, resulting in fragmented and chemically modified DNA, is a key obstacle in ancient DNA analyses. In the absence of reliable methods to determine the presence of endogenous DNA in sub-fossil samples, temporal and spatial surveys of DNA survival on a regional scale may help to estimate the potential of faunal remains from a given time period and region. We therefore investigated PCR amplification success, PCR performance and post mortem damage in c. 47,000 to c. 12,000-year-old horse remains from 14 Palaeolithic sites along the Swiss Jura Mountains in relation to depositional context, tissue type, storage time and age, potentially influencing DNA preservation. The targeted 75 base pair mitochondrial DNA fragment could be amplified solely from equid remains from caves and not from any of the open dry and (temporary) wetland sites. Whether teeth are better than bones cannot be ultimately decided; however, both storage time after excavation and age significantly affect PCR amplification and performance, albeit not in a linear way. This is best explained by the—inevitable—heterogeneity of the data set. The extent of post mortem damage is not related to any of the potential impact factors. The results encourage comprehensive investigations of Palaeolithic cave sites, even from temperate regions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 727 KW - ancient DNA KW - DNA preservation KW - horse KW - cave KW - Switzerland Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429763 SN - 1866-8372 IS - 727 SP - 505 EP - 515 ER - TY - JOUR A1 - Teasdale, Matthew David A1 - van Doorn, N. L. A1 - Fiddyment, S. A1 - Webb, C. C. A1 - Hofreiter, Michael A1 - Collins, Matthew J. A1 - Bradley, Daniel G. T1 - Paging through history: parchment as a reservoir of ancient DNA for next generation sequencing JF - Philosophical transactions of the Royal Society of London : B, Biological sciences N2 - Parchment represents an invaluable cultural reservoir. Retrieving an additional layer of information from these abundant, dated livestock-skins via the use of ancient DNA (aDNA) sequencing has been mooted by a number of researchers. However, prior PCR-based work has indicated that this may be challenged by cross-individual and cross-species contamination, perhaps from the bulk parchment preparation process. Here we apply next generation sequencing to two parchments of seventeenth and eighteenth century northern English provenance. Following alignment to the published sheep, goat, cow and human genomes, it is clear that the only genome displaying substantial unique homology is sheep and this species identification is confirmed by collagen peptide mass spectrometry. Only 4% of sequence reads align preferentially to a different species indicating low contamination across species. Moreover, mitochondrial DNA sequences suggest an upper bound of contamination at 5%. Over 45% of reads aligned to the sheep genome, and even this limited sequencing exercise yield 9 and 7% of each sampled sheep genome post filtering, allowing the mapping of genetic affinity to modern British sheep breeds. We conclude that parchment represents an excellent substrate for genomic analyses of historical livestock. KW - parchment KW - next generation sequencing KW - ancient DNA KW - ZooMS KW - sheep Y1 - 2015 U6 - https://doi.org/10.1098/rstb.2013.0379 SN - 0962-8436 SN - 1471-2970 VL - 370 IS - 1660 PB - Royal Society CY - London ER - TY - JOUR A1 - Ludwig, Arne A1 - Reissmann, Monika A1 - Benecke, Norbert A1 - Bellone, Rebecca A1 - Sandoval-Castellanos, Edson A1 - Cieslak, Michael A1 - González-Fortes, Gloria M. A1 - Morales-Muniz, Arturo A1 - Hofreiter, Michael A1 - Pruvost, Melanie T1 - Twenty-five thousand years of fluctuating selection on leopard complex spotting and congenital night blindness in horses JF - Philosophical transactions of the Royal Society of London : B, Biological sciences N2 - Leopard complex spotting is inherited by the incompletely dominant locus, LP, which also causes congenital stationary night blindness in homozygous horses. We investigated an associated single nucleotide polymorphism in the TRPM1 gene in 96 archaeological bones from 31 localities from Late Pleistocene (approx. 17 000 YBP) to medieval times. The first genetic evidence of LP spotting in Europe dates back to the Pleistocene. We tested for temporal changes in the LP associated allele frequency and estimated coefficients of selection by means of approximate Bayesian computation analyses. Our results show that at least some of the observed frequency changes are congruent with shifts in artificial selection pressure for the leopard complex spotting phenotype. In early domestic horses from Kirklareli-Kanligecit (Turkey) dating to 2700-2200 BC, a remarkably high number of leopard spotted horses (six of 10 individuals) was detected including one adult homozygote. However, LP seems to have largely disappeared during the late Bronze Age, suggesting selection against this phenotype in early domestic horses. During the Iron Age, LP reappeared, probably by reintroduction into the domestic gene pool from wild animals. This picture of alternating selective regimes might explain how genetic diversity was maintained in domestic animals despite selection for specific traits at different times. KW - ancient DNA KW - coat colour KW - domestication KW - Equus KW - palaeogenetics KW - population Y1 - 2015 U6 - https://doi.org/10.1098/rstb.2013.0386 SN - 0962-8436 SN - 1471-2970 VL - 370 IS - 1660 PB - Royal Society CY - London ER - TY - INPR A1 - Hagelberg, Erika A1 - Hofreiter, Michael A1 - Keyser, Christine T1 - Ancient DNA: the first three decades T2 - Philosophical transactions of the Royal Society of London : B, Biological sciences KW - ancient DNA KW - human evolutionary genetics KW - palaeogenomics Y1 - 2015 U6 - https://doi.org/10.1098/rstb.2013.0371 SN - 0962-8436 SN - 1471-2970 VL - 370 IS - 1660 PB - Royal Society CY - London ER - TY - JOUR A1 - Hofreiter, Michael A1 - Paijmans, Johanna L. A. A1 - Goodchild, Helen A1 - Speller, Camilla F. A1 - Barlow, Axel A1 - González-Fortes, Gloria M. A1 - Thomas, Jessica A. A1 - Ludwig, Arne A1 - Collins, Matthew J. T1 - The future of ancient DNA: Technical advances and conceptual shifts JF - Bioessays : ideas that push the boundaries N2 - Technological innovations such as next generation sequencing and DNA hybridisation enrichment have resulted in multi-fold increases in both the quantity of ancient DNA sequence data and the time depth for DNA retrieval. To date, over 30 ancient genomes have been sequenced, moving from 0.7x coverage (mammoth) in 2008 to more than 50x coverage (Neanderthal) in 2014. Studies of rapid evolutionary changes, such as the evolution and spread of pathogens and the genetic responses of hosts, or the genetics of domestication and climatic adaptation, are developing swiftly and the importance of palaeogenomics for investigating evolutionary processes during the last million years is likely to increase considerably. However, these new datasets require new methods of data processing and analysis, as well as conceptual changes in interpreting the results. In this review we highlight important areas of future technical and conceptual progress and discuss research topics in the rapidly growing field of palaeogenomics. KW - ancient DNA KW - hybridisation capture KW - multi-locus data KW - next generation sequencing (NGS) KW - palaeogenomics KW - population genomics Y1 - 2015 U6 - https://doi.org/10.1002/bies.201400160 SN - 0265-9247 SN - 1521-1878 VL - 37 IS - 3 SP - 284 EP - 293 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Alter, S. Elizabeth A1 - Meyer, Matthias A1 - Post, Klaas A1 - Czechowski, Paul A1 - Gravlund, Peter A1 - Gaines, Cork A1 - Rosenbaum, Howard C. A1 - Kaschner, Kristin A1 - Turvey, Samuel T. A1 - van der Plicht, Johannes A1 - Shapiro, Beth A1 - Hofreiter, Michael T1 - Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100 JF - Molecular ecology N2 - Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range. KW - ancient DNA KW - climate change KW - last glacial maximum KW - marine mammal Y1 - 2015 U6 - https://doi.org/10.1111/mec.13121 SN - 0962-1083 SN - 1365-294X VL - 24 IS - 7 SP - 1510 EP - 1522 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Campbell, Kevin L. A1 - Hofreiter, Michael T1 - Resurrecting phenotypes from ancient DNA sequences: promises and perspectives JF - Canadian journal of zoology = Revue canadienne de zoologie N2 - Anatomical changes in extinct mammalian lineages over evolutionary time, such as the loss of fingers and teeth and the rapid increase in body size that accompanied the late Miocene dispersal of the progenitors of Steller's sea cows (Hydrodamalis gigas (Zimmermann, 1780)) into North Pacific waters and the convergent development of a thick pelage and accompanying reductions in ear and tail surface area of woolly mammoths (Mammuthus primigenius (Blumenbach, 1799)) and woolly rhinoceros (Coelodonta antiquitatis (Blumenbach, 1799)), are prime examples of adaptive evolution underlying the exploitation of new habitats. It is likely, however, that biochemical specializations adopted during these evolutionary transitions were of similar or even greater biological importance. As these "living" processes do not fossilize, direct information regarding the physiological attributes of extinct species has largely remained beyond the range of scientific inquiry. However, the ability to retrieve genomic sequences from ancient DNA samples, combined with ectopic expression systems, now permit the evolutionary origins and structural and functional properties of authentic prehistoric proteins to be examined in great detail. Exponential technical advances in ancient DNA retrieval, enrichment, and sequencing will soon permit targeted generation of complete genomes from hundreds of extinct species across the last one million years that, in combination with emerging in vitro expression, genome engineering, and cell differentiation techniques, promises to herald an exciting new trajectory of evolutionary research at the interface of biochemistry, genomics, palaeontology, and cell biology. KW - paleophysiology KW - ancient DNA KW - extinct species KW - adaptation KW - protein structure Y1 - 2015 U6 - https://doi.org/10.1139/cjz-2014-0337 SN - 0008-4301 SN - 1480-3283 VL - 93 IS - 9 SP - 701 EP - 710 PB - NRC Research Press CY - Ottawa ER - TY - JOUR A1 - Xiang, Hai A1 - Gao, Jianqiang A1 - Yu, Baoquan A1 - Zhou, Hui A1 - Cai, Dawei A1 - Zhang, Youwen A1 - Chen, Xiaoyong A1 - Wang, Xi A1 - Hofreiter, Michael A1 - Zhao, Xingbo T1 - Early Holocene chicken domestication in northern China JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Chickens represent by far the most important poultry species, yet the number, locations, and timings of their domestication have remained controversial for more than a century. Here we report ancient mitochondrial DNA sequences from the earliest archaeological chicken bones from China, dating back to similar to 10,000 B.P. The results clearly show that all investigated bones, including the oldest from the Nanzhuangtou site, are derived from the genus Gallus, rather than any other related genus, such as Phasianus. Our analyses also suggest that northern China represents one region of the earliest chicken domestication, possibly dating as early as 10,000 y B.P. Similar to the evidence from pig domestication, our results suggest that these early domesticated chickens contributed to the gene pool of modern chicken populations. Moreover, our results support the idea that multiple members of the genus Gallus, specifically Gallus gallus and Gallus sonneratii contributed to the gene pool of the modern domestic chicken. Our results provide further support for the growing evidence of an early mixed agricultural complex in northern China. KW - ancient DNA KW - chicken KW - domestication KW - species origin Y1 - 2014 U6 - https://doi.org/10.1073/pnas.1411882111 SN - 0027-8424 VL - 111 IS - 49 SP - 17564 EP - 17569 PB - National Acad. of Sciences CY - Washington ER -