TY - JOUR A1 - Gorfman, S. V. A1 - Tsirelson, Vladimir G. A1 - Pietsch, Ullrich T1 - X-ray diffraction by a crystal in a permanent external electric field : general considerations N2 - The variations of X-ray diffraction intensities from a crystal in the presence of a permanent external electric field is modeled analytically using a first-order stationary perturbation theory. The change in a crystal, induced by an external electric field, is separated into two contributions. The first one is related to a pure polarization of an electron subsystem, while the second contribution can be reduced to the displacements of the rigid pseudoatoms from their equilibrium positions. It is shown that a change of the X-ray diffraction intensities mainly originates from the second contribution, while the influence of the pure polarization of a crystal electron subsystem is negligibly small. The quantities restored from an X-ray diffraction experiment in the presence of an external electric field were analyzed in detail in terms of a rigid pseudoatomic model of electron density and harmonic approximation for the atomic thermal motion. Explicit relationships are derived that link the properties of phonon spectra with E-field-induced variations of a structure factor, pseudoatomic displacements and piezoelectric strains. The displacements can be numerically estimated using a model of independent atomic motion if the Debye - Waller factors and pseudoatomic charges are known either from a previous single-crystal X-ray diffraction study or from density functional theory calculations. The above estimations can be used to develop an optimum strategy for a data collection that avoids the measurements of reflections insensitive to the electric-field-induced variations Y1 - 2005 SN - 0108-7673 ER - TY - JOUR A1 - Pietsch, Ullrich A1 - Grenzer, Jörg A1 - Bischoff, Lothar T1 - Grazing-incidence diffraction strain analysis of a laterally patterned Si wafer treated by focused Ge and An ion beam implantation N2 - Strain analysis of a laterally patterned Si-wafer was carried out utilizing X-ray grazing-incidence diffraction with synchrotron radiation. The lateral patterning was done by focused ion beam implantation using an ion source of liquid AuGeSi alloy. Samples were prepared by either 35 keV Au+ ions (dose: 0.2, 2 x 10(14) cm(-2)) or 70 keV Ge++ ions (dose: 8 X 10(14) cm(-1)). It was shown that due to implantation a periodical defect structure is created consisting of both implanted and not implanted stripes. The evaluated depth distribution of defects within the implanted stripes corresponds to that obtained by TRIM calculation. The induced strain distribution, however, shows no periodicity. This can be explained by an overlap of the strain fields created in each implanted stripe. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Y1 - 2005 ER - TY - JOUR A1 - Pietsch, Ullrich A1 - Bodenthin, Yves A1 - Grenzer, Jörg A1 - Geue, Thomas A1 - Möhwald, Helmuth A1 - Kurth, Dirk G. T1 - Structure and temperature behavior of metallo-supramolecular assemblies N2 - A detailed structural analysis of a Langmuir-Blodgett (LB) multilayer composed of a polyelectrolyte-amphiphile complex (PAC) is presented. The PAC is self-assembled from metal ions, ditopic bis-terpyridines, and amphiphiles. The vertical structure of the LB multilayer is investigated by X-ray reflectometry. The multilayer has a periodicity of 57 A, which corresponds to an architecture of flat lying metallo-supramolecular coordination polyelectrolyte (MEPE) rods and upright-standing amphiphiles (dihexadecyl phosphate, DHP). In-plane diffraction reveals hexagonal packing of the DHP molecules. Using extended X-ray absorption fine structure (EXAFS) experiments, we prove that the central metal ion is coordinated to the terpyridine moieties in a pseudo-octahedral coordination environment. The Fe-N bond distances are 1.82 and 2.0 angstrom, respectively. Temperature resolved measurements indicate a reversible phase transition in a temperature range up to 55 degrees C. EXAFS measurements indicate a lengthening of the average Fe-N bond distance from 1.91 to 1.95 angstrom. The widening of the coordination cage upon heating is expected to lower the ligand field stabilization, thus giving rise to spin transitions in these composite materials Y1 - 2005 ER - TY - JOUR A1 - Pietsch, Ullrich A1 - Bhattacharya, M. K. A1 - Sanyal, M. K. A1 - Geue, Thomas T1 - Glass transition in Ultrathin Polymer Films : a Thermal Expansion Study N2 - The glass transition process gets affected in ultrathin films having thickness comparable to the size of the molecules. We observe systematic broadening of the glass transition temperature (T-g) as the thickness of an ultrathin polymer film reduces below the radius of gyration but the change in the average T-g was found to be very small. The existence of reversible negative and positive thermal expansion below and above T-g increased the sensitivity of our thickness measurements performed using energy-dispersive x-ray reflectivity. A simple model of the T-g variation as a function of depth expected from sliding motion could explain the results Y1 - 2005 ER - TY - JOUR A1 - Pietsch, Ullrich A1 - Bodenthin, Yves A1 - Möhwald, Helmuth A1 - Kurth, Dirk G. T1 - Inducing spin crossover in metallo-supramolecular polyelectrolytes through an amphiphilic phase transition N2 - A phase transition in an amphiphilic mesophase is explored to deliberately induce mechanical strain in an assembly of tightly coupled metal ion coordination centers. Melting of the alkyl chains in the amphiphilic mesophase causes distortion of the coordination geometry around the central transition metal ion. As a result, the crystal field splitting of the d-orbital subsets decreases resulting in a spin transition from a low-spin to a high-spin state. The diamagnetic-paramagnetic transition is reversible. This concept is demonstrated in a metallo-supramolecular coordination polyelectrolyte-amphiphile complex self-assembled from ditopic bis-terpyridines, Fe(II) as central transition metal, and dialkyl phosphates as amphiphiles. The magnetic properties are studied in a Langmuir-Blodgett multilayer. The modularity of this concept provides extensive control of structure and function from molecular to macroscopic length scales and gives access to a wide range of new molecular magnetic architectures such as nanostructures, thin films, and liquid crystals Y1 - 2005 ER - TY - JOUR A1 - Talalaev, V A1 - Tomm, JW A1 - Elsaesser, T A1 - Zeimer, Ute A1 - Fricke, J A1 - Knauer, A A1 - Kissel, H A1 - Weyers, Markus A1 - Tarasov, GG A1 - Grenzer, Jörg A1 - Pietsch, Ullrich T1 - Carrier dynamics in laterally strain-modulated InGaAs quantum wells N2 - We investigate the transient recombination and transfer properties of nonequilibrium carriers in an In0.16Ga0.84As/GaAs quantum well (QW) with an additional lateral confinement implemented by a patterned stressor layer. The structure thus contains QW- and quantum-wire-like areas. At low excitation densities, photoluminescence (PL) transients from both areas are well described by a rate equation model for a three-level system with a saturable interlevel carrier transfer representing the lateral drift of carriers from the QW regions into the wires. Small-signal carrier lifetimes for QW, wires, and transfer time from QW to wire are 180, 190, and 28 ps, respectively. For high excitation densities the time constants of the observed transients increase, in agreement with the model. In addition, QW and wire PL lines merge indicating a smoothening of the potential difference, i.e., the effective carrier confinement caused by the stressor structure becomes weaker with increasing excitation. (c) 2005 American Institute of Physics Y1 - 2005 ER - TY - JOUR A1 - Pietsch, Ullrich A1 - Panzner, Tobias A1 - Leitenberger, Wolfram A1 - Vartanyants, Ivan A. T1 - Coherence experiments at the EDR-beamline of BESSY II Y1 - 2005 ER - TY - JOUR A1 - Leitenberger, Wolfram A1 - Pietsch, Ullrich T1 - A monolithic Fresnel bimirror for hard X-rays and its application for coherence measurements N2 - Experiments using a simple X-ray interferometer to measure the degree of spatial coherence of hard X-rays are reported. A monolithic Fresnel bimirror is used at small incidence angles to investigate synchrotron radiation in the energy interval 5-50 keV with monochromatic and white beam. The experimental setup was equivalent to a Young's double-slit experiment for hard X-rays with slit dimensions in the micrometre range. From the high-contrast interference pattern the degree of coherence was determined. Y1 - 2007 UR - http://journals.iucr.org/s/issues/2007/02/00/wl5137/wl5137.pdf U6 - https://doi.org/10.1107/S0909049507003846 SN - 0909-0495 ER -