TY - JOUR A1 - Scheffler, Christiane A1 - Hermanussen, Michael T1 - Stunting does not impair physical fitness in Indonesian school children JF - Human biology and public health N2 - Background: Physical fitness is decreased in malnourished children and adults. Poor appearance and muscular flaccidity are among the first signs of malnutrition. Malnutrition is often associated with stunting. Objectives: We test the hypotheses that stunted children of low social strata are physically less fit than children of high social strata. Sample: We investigated 354 school girls and 369 school boys aged 5.83 to 13.83 (mean 9.54) years from three different social strata in Kupang (West-Timor, Indonesia) in 2020. Methods: We measured height, weight, and elbow breadth, calculated standard deviation (SDS) of height and weight according to CDC references, and the Frame index as an indicator of long-term physical fitness, and we tested physical fitness in standing long jump and hand grip strength. Results: Children of low social strata are physically fittest. They jump longer distances, and they have higher values in the Frame index. No association exists between height SDS and physical fitness, neither in respect to standing long jump, nor to hand grip strength. Conclusion: Stunting does not impair physical fitness in Indonesian school children. Our results support the concept that SEPE (social-economic-political-emotional) factors are involved in the regulation of human growth. KW - stunting KW - standing long jump KW - handgrip strength KW - SEPE KW - frame index Y1 - 2021 U6 - https://doi.org/10.52905/hbph.v2.19 SN - 2748-9957 IS - 2 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Scheffler, Christiane A1 - Nguyen, Thi Hong A1 - Hermanussen, Michael T1 - Vietnamese migrants are as tall as they want to be JF - Human biology and public health N2 - Background: Members of the same social group tent to have the same body height. Migrants tend to adjust in height to their host communities. Objectives: Social-Economic-Political-Emotional (SEPE) factors influence growth. We hypothesized that Vietnamese young adult migrants in Germany (1) are taller than their parents, (2) are as tall as their German peers, and (3) are as tall as predicted by height expectation at age 13 years. Sample: The study was conducted in 30 male and 54 female Vietnamese migrants (mean age 26.23 years. SD=4.96) in Germany in 2020. Methods: Information on age, sex, body height, school and education, job, height and ethnicity of best friend, migration history and cultural identification, parental height and education, and recalled information on their personal height expectations at age 13 years were obtained by questionnaire. The data were analyzed by St. Nicolas House Analysis (SNHA) and multiple regression. Results: Vietnamese young adults are taller than their parents (females 3.85cm, males 7.44cm), but do not fully attain height of their German peers. The body height is positively associated with the height of best friend (p < 0.001), the height expectation at age 13 year (p < 0.001), and father’s height (p=0.001). Conclusion: Body height of Vietnamese migrants in Germany reflects competitive growth and strategic growth adjustments. The magnitude of this intergenerational trend supports the concept that human growth depends on SEPE factors. KW - body height KW - regulation of growth KW - migrants KW - Social-Economic-Political-Emotional (SEPE) factors Y1 - 2021 U6 - https://doi.org/10.52905/hbph.v2.12 SN - 2748-9957 IS - 2 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Clegg, Mark R. A1 - Wacker, Alexander A1 - Spijkerman, Elly T1 - Phenotypic Diversity and Plasticity of Photoresponse Across an Environmentally Contrasting Family of Phytoflagellates JF - Frontiers in plant science : FPLS N2 - Organisms often employ ecophysiological strategies to exploit environmental conditions and ensure bio-energetic success. However, the many complexities involved in the differential expression and flexibility of these strategies are rarely fully understood. Therefore, for the first time, using a three-part cross-disciplinary laboratory experimental analysis, we investigated the diversity and plasticity of photoresponsive traits employed by one family of environmentally contrasting, ecologically important phytoflagellates. The results demonstrated an extensive inter-species phenotypic diversity of behavioural, physiological, and compositional photoresponse across the Chlamydomonadaceae, and a multifaceted intra-species phenotypic plasticity, involving a broad range of beneficial photoacclimation strategies, often attributable to environmental predisposition and phylogenetic differentiation. Deceptively diverse and sophisticated strong (population and individual cell) behavioural photoresponses were observed, with divergence from a general preference for low light (and flexibility) dictated by intra-familial differences in typical habitat (salinity and trophy) and phylogeny. Notably, contrasting lower, narrow, and flexible compared with higher, broad, and stable preferences were observed in freshwater vs. brackish and marine species. Complex diversity and plasticity in physiological and compositional photoresponses were also discovered. Metabolic characteristics (such as growth rates, respiratory costs and photosynthetic capacity, efficiency, compensation and saturation points) varied elaborately with species, typical habitat (often varying more in eutrophic species, such as Chlamydomonas reinhardtii), and culture irradiance (adjusting to optimise energy acquisition and suggesting some propensity for low light). Considerable variations in intracellular pigment and biochemical composition were also recorded. Photosynthetic and accessory pigments (such as chlorophyll a, xanthophyll-cycle components, chlorophyll a:b and chlorophyll a:carotenoid ratios, fatty acid content and saturation ratios) varied with phylogeny and typical habitat (to attune photosystem ratios in different trophic conditions and to optimise shade adaptation, photoprotection, and thylakoid architecture, particularly in freshwater environments), and changed with irradiance (as reaction and harvesting centres adjusted to modulate absorption and quantum yield). The complex, concomitant nature of the results also advocated an integrative approach in future investigations. Overall, these nuanced, diverse, and flexible photoresponsive traits will greatly contribute to the functional ecology of these organisms, addressing environmental heterogeneity and potentially shaping individual fitness, spatial and temporal distribution, prevalence, and ecosystem dynamics. KW - photoresponse KW - behaviour KW - physiology KW - composition KW - photosynthesis KW - acclimation KW - Chlamydomonas KW - ecophysiology Y1 - 2021 U6 - https://doi.org/10.3389/fpls.2021.707541 SN - 1664-462X IS - 12 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Wandt, Viktoria Klara Veronika A1 - Winkelbeiner, Nicola Lisa A1 - Bornhorst, Julia A1 - Witt, Barbara A1 - Raschke, Stefanie A1 - Simon, Luise A1 - Ebert, Franziska A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja T1 - A matter of concern BT - trace element dyshomeostasis and genomic stability in neurons JF - Redox Biology N2 - Neurons are post-mitotic cells in the brain and their integrity is of central importance to avoid neurodegeneration. Yet, the inability of self-replenishment of post-mitotic cells results in the need to withstand challenges from numerous stressors during life. Neurons are exposed to oxidative stress due to high oxygen consumption during metabolic activity in the brain. Accordingly, DNA damage can occur and accumulate, resulting in genome instability. In this context, imbalances in brain trace element homeostasis are a matter of concern, especially regarding iron, copper, manganese, zinc, and selenium. Although trace elements are essential for brain physiology, excess and deficient conditions are considered to impair neuronal maintenance. Besides increasing oxidative stress, DNA damage response and repair of oxidative DNA damage are affected by trace elements. Hence, a balanced trace element homeostasis is of particular importance to safeguard neuronal genome integrity and prevent neuronal loss. This review summarises the current state of knowledge on the impact of deficient, as well as excessive iron, copper, manganese, zinc, and selenium levels on neuronal genome stability Y1 - 2021 U6 - https://doi.org/10.1016/j.redox.2021.101877 SN - 2213-2317 VL - 41 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kahl, Sandra A1 - Kappel, Christian A1 - Joshi, Jasmin Radha A1 - Lenhard, Michael T1 - Phylogeography of a widely distributed plant species reveals cryptic genetic lineages with parallel phenotypic responses to warming and drought conditions JF - Ecology and Evolution N2 - To predict how widely distributed species will perform under future climate change, it is crucial to understand and reveal their underlying phylogenetics. However, detailed information about plant adaptation and its genetic basis and history remains scarce and especially widely distributed species receive little attention despite their putatively high adaptability. To examine the adaptation potential of a widely distributed species, we sampled the model plant Silene vulgaris across Europe. In a greenhouse experiment, we exposed the offspring of these populations to a climate change scenario for central Europe and revealed the population structure through whole-genome sequencing. Plants were grown under two temperatures (18°C and 21°C) and three precipitation regimes (65, 75, and 90 mm) to measure their response in biomass and fecundity-related traits. To reveal the population genetic structure, ddRAD sequencing was employed for a whole-genome approach. We found three major genetic clusters in S. vulgaris from Europe: one cluster comprising Southern European populations, one cluster of Western European populations, and another cluster containing central European populations. Population genetic diversity decreased with increasing latitude, and a Mantel test revealed significant correlations between FST and geographic distances as well as between genetic and environmental distances. Our trait analysis showed that the genetic clusters significantly differed in biomass-related traits and in the days to flowering. However, half of the traits showed parallel response patterns to the experimental climate change scenario. Due to the differentiated but parallel response patterns, we assume that phenotypic plasticity plays an important role for the adaptation of the widely distributed species S. vulgaris and its intraspecific genetic lineages. KW - climate adaptation KW - ddRAD KW - Silene vulgaris Y1 - 2021 U6 - https://doi.org/10.1002/ece3.8103 SN - 2045-7758 VL - 11 IS - 20 SP - 13986 EP - 14002 PB - John Wiley & Sons, Inc. CY - Hoboken ER - TY - JOUR A1 - Scharnweber, Inga Kristin A1 - Andersson, Matilda L. A1 - Chaguaceda, Fernando A1 - Eklöv, Peter T1 - Intraspecific differences in metabolic rates shape carbon stable isotope trophic discrimination factors of muscle tissue in the common teleost Eurasian perch (Perca fluviatilis) JF - Ecology and evolution N2 - Stable isotopes represent a unique approach to provide insights into the ecology of organisms. δ13C and δ15N have specifically been used to obtain information on the trophic ecology and food-web interactions. Trophic discrimination factors (TDF, Δ13C and Δ15N) describe the isotopic fractionation occurring from diet to consumer tissue, and these factors are critical for obtaining precise estimates within any application of δ13C and δ15N values. It is widely acknowledged that metabolism influences TDF, being responsible for different TDF between tissues of variable metabolic activity (e.g., liver vs. muscle tissue) or species body size (small vs. large). However, the connection between the variation of metabolism occurring within a single species during its ontogeny and TDF has rarely been considered. Here, we conducted a 9-month feeding experiment to report Δ13C and Δ15N of muscle and liver tissues for several weight classes of Eurasian perch (Perca fluviatilis), a widespread teleost often studied using stable isotopes, but without established TDF for feeding on a natural diet. In addition, we assessed the relationship between the standard metabolic rate (SMR) and TDF by measuring the oxygen consumption of the individuals. Our results showed a significant negative relationship of SMR with Δ13C, and a significant positive relationship of SMR with Δ15N of muscle tissue, but not with TDF of liver tissue. SMR varies inversely with size, which translated into a significantly different TDF of muscle tissue between size classes. In summary, our results emphasize the role of metabolism in shaping-specific TDF (i.e., Δ13C and Δ15N of muscle tissue) and especially highlight the substantial differences between individuals of different ontogenetic stages within a species. Our findings thus have direct implications for the use of stable isotope data and the applications of stable isotopes in food-web studies. KW - fractionation factors KW - metabolism KW - ontogeny KW - standard metabolic rate KW - tissue types KW - δ13C KW - δ15N Y1 - 2021 U6 - https://doi.org/10.1002/ece3.7809 SN - 2045-7758 VL - 11 IS - 14 SP - 9804 EP - 9814 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Malchow, Anne-Kathleen A1 - Bocedi, Greta A1 - Palmer, Stephen C. F. A1 - Travis, Justin M. J. A1 - Zurell, Damaris T1 - RangeShiftR: an R package for individual-based simulation of spatial eco-evolutionary dynamics and speciesu0027 responses to environmental changes JF - Ecography N2 - Reliably modelling the demographic and distributional responses of a species to environmental changes can be crucial for successful conservation and management planning. Process-based models have the potential to achieve this goal, but so far they remain underused for predictions of species' distributions. Individual-based models offer the additional capability to model inter-individual variation and evolutionary dynamics and thus capture adaptive responses to environmental change. We present RangeShiftR, an R implementation of a flexible individual-based modelling platform which simulates eco-evolutionary dynamics in a spatially explicit way. The package provides flexible and fast simulations by making the software RangeShifter available for the widely used statistical programming platform R. The package features additional auxiliary functions to support model specification and analysis of results. We provide an outline of the package's functionality, describe the underlying model structure with its main components and present a short example. RangeShiftR offers substantial model complexity, especially for the demographic and dispersal processes. It comes with elaborate tutorials and comprehensive documentation to facilitate learning the software and provide help at all levels. As the core code is implemented in C++, the computations are fast. The complete source code is published under a public licence, making adaptations and contributions feasible. The RangeShiftR package facilitates the application of individual-based and mechanistic modelling to eco-evolutionary questions by operating a flexible and powerful simulation model from R. It allows effortless interoperation with existing packages to create streamlined workflows that can include data preparation, integrated model specification and results analysis. Moreover, the implementation in R strengthens the potential for coupling RangeShiftR with other models. KW - connectivity KW - conservation KW - dispersal KW - evolution KW - population dynamics KW - range dynamics Y1 - 2021 U6 - https://doi.org/10.1111/ecog.05689 SN - 1600-0587 VL - 44 IS - 10 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Cahsan, Binia De A1 - Kiemel, Katrin A1 - Westbury, Michael V. A1 - Lauritsen, Maike A1 - Autenrieth, Marijke A1 - Gollmann, Günter A1 - Schweiger, Silke A1 - Stenberg, Marika A1 - Nyström, Per A1 - Drews, Hauke A1 - Tiedemann, Ralph T1 - Southern introgression increases adaptive immune gene variability in northern range margin populations of Fire-bellied toad JF - Ecology and Evolution N2 - Northern range margin populations of the European fire-bellied toad (Bombina bombina) have rapidly declined during recent decades. Extensive agricultural land use has fragmented the landscape, leading to habitat disruption and loss, as well as eutrophication of ponds. In Northern Germany (Schleswig-Holstein) and Southern Sweden (Skåne), this population decline resulted in decreased gene flow from surrounding populations, low genetic diversity, and a putative reduction in adaptive potential, leaving populations vulnerable to future environmental and climatic changes. Previous studies using mitochondrial control region and nuclear transcriptome-wide SNP data detected introgressive hybridization in multiple northern B. bombina populations after unreported release of toads from Austria. Here, we determine the impact of this introgression by comparing the body conditions (proxy for fitness) of introgressed and nonintrogressed populations and the genetic consequences in two candidate genes for putative local adaptation (the MHC II gene as part of the adaptive immune system and the stress response gene HSP70 kDa). We detected regional differences in body condition and observed significantly elevated levels of within individual MHC allele counts in introgressed Swedish populations, associated with a tendency toward higher body weight, relative to regional nonintrogressed populations. These differences were not observed among introgressed and nonintrogressed German populations. Genetic diversity in both MHC and HSP was generally lower in northern than Austrian populations. Our study sheds light on the potential benefits of translocations of more distantly related conspecifics as a means to increase adaptive genetic variability and fitness of genetically depauperate range margin populations without distortion of local adaptation. KW - Bombina bombina KW - heat shock protein KW - introgression KW - major histocompatibility complex KW - scaled mass index Y1 - 2021 U6 - https://doi.org/10.1002/ece3.7805 SN - 2045-7758 VL - 11 IS - 14 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Göthel, Markus A1 - Listek, Martin A1 - Messerschmidt, Katrin A1 - Schlör, Anja A1 - Hönow, Anja A1 - Hanack, Katja T1 - A New Workflow to Generate Monoclonal Antibodies against Microorganisms JF - Applied Sciences N2 - Monoclonal antibodies are used worldwide as highly potent and efficient detection reagents for research and diagnostic applications. Nevertheless, the specific targeting of complex antigens such as whole microorganisms remains a challenge. To provide a comprehensive workflow, we combined bioinformatic analyses with novel immunization and selection tools to design monoclonal antibodies for the detection of whole microorganisms. In our initial study, we used the human pathogenic strain E. coli O157:H7 as a model target and identified 53 potential protein candidates by using reverse vaccinology methodology. Five different peptide epitopes were selected for immunization using epitope-engineered viral proteins. The identification of antibody-producing hybridomas was performed by using a novel screening technology based on transgenic fusion cell lines. Using an artificial cell surface receptor expressed by all hybridomas, the desired antigen-specific cells can be sorted fast and efficiently out of the fusion cell pool. Selected antibody candidates were characterized and showed strong binding to the target strain E. coli O157:H7 with minor or no cross-reactivity to other relevant microorganisms such as Legionella pneumophila and Bacillus ssp. This approach could be useful as a highly efficient workflow for the generation of antibodies against microorganisms. KW - monoclonal antibody KW - antibody producing cell selection KW - hybridoma KW - epitope prediction Y1 - 2021 U6 - https://doi.org/10.3390/app11209359 SN - 1454-5101 VL - 11 IS - 20 PB - MDPI CY - Basel ER - TY - JOUR A1 - Romero Mujalli, Daniel A1 - Rochow, Markus A1 - Kahl, Sandra A1 - Paraskevopoulou, Sofia A1 - Folkertsma, Remco A1 - Jeltsch, Florian A1 - Tiedemann, Ralph T1 - Adaptive and nonadaptive plasticity in changing environments BT - Implications for sexual species with different life history strategies JF - Ecology and evolution N2 - Populations adapt to novel environmental conditions by genetic changes or phenotypic plasticity. Plastic responses are generally faster and can buffer fitness losses under variable conditions. Plasticity is typically modeled as random noise and linear reaction norms that assume simple one-to- one genotype–phenotype maps and no limits to the phenotypic response. Most studies on plasticity have focused on its effect on population viability. However, it is not clear, whether the advantage of plasticity depends solely on environmental fluctuations or also on the genetic and demographic properties (life histories) of populations. Here we present an individual-based model and study the relative importance of adaptive and nonadaptive plasticity for populations of sexual species with different life histories experiencing directional stochastic climate change. Environmental fluctuations were simulated using differentially autocorrelated climatic stochasticity or noise color, and scenarios of directiona climate change. Nonadaptive plasticity was simulated as a random environmental effect on trait development, while adaptive plasticity as a linear, saturating, or sinusoidal reaction norm. The last two imposed limits to the plastic response and emphasized flexible interactions of the genotype with the environment. Interestingly, this assumption led to (a) smaller phenotypic than genotypic variance in the population (many-to- one genotype–phenotype map) and the coexistence of polymorphisms, and (b) the maintenance of higher genetic variation—compared to linear reaction norms and genetic determinism—even when the population was exposed to a constant environment for several generations. Limits to plasticity led to genetic accommodation, when costs were negligible, and to the appearance of cryptic variation when limits were exceeded. We found that adaptive plasticity promoted population persistence under red environmental noise and was particularly important for life histories with low fecundity. Populations produing more offspring could cope with environmental fluctuations solely by genetic changes or random plasticity, unless environmental change was too fast. KW - developmental canalization KW - environmental change KW - genetic accommodation KW - Individual-based models KW - limits KW - many-to-one genotype–phenotype map KW - noise color KW - phenotypic plasticity KW - reaction norms KW - stochastic fluctuations Y1 - 2020 U6 - https://doi.org/10.1002/ece3.7485 SN - 2045-7758 VL - 11 IS - 11 SP - 6341 EP - 6357 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Cahsan, Binia De A1 - Westbury, Michael V. A1 - Paraskevopoulou, Sofia A1 - Drews, Hauke A1 - Ott, Moritz A1 - Gollmann, Günter A1 - Tiedemann, Ralph T1 - Genomic consequences of human-mediated translocations in margin populations of an endangered amphibian JF - Evolutionary Applications N2 - Due to their isolated and often fragmented nature, range margin populations are especially vulnerable to rapid environmental change. To maintain genetic diversity and adaptive potential, gene flow from disjunct populations might therefore be crucial to their survival. Translocations are often proposed as a mitigation strategy to increase genetic diversity in threatened populations. However, this also includes the risk of losing locally adapted alleles through genetic swamping. Human-mediated translocations of southern lineage specimens into northern German populations of the endangered European fire-bellied toad (Bombina bombina) provide an unexpected experimental set-up to test the genetic consequences of an intraspecific introgression from central population individuals into populations at the species range margin. Here, we utilize complete mitochondrial genomes and transcriptome nuclear data to reveal the full genetic extent of this translocation and the consequences it may have for these populations. We uncover signs of introgression in four out of the five northern populations investigated, including a number of introgressed alleles ubiquitous in all recipient populations, suggesting a possible adaptive advantage. Introgressed alleles dominate at the MTCH2 locus, associated with obesity/fat tissue in humans, and the DSP locus, essential for the proper development of epidermal skin in amphibians. Furthermore, we found loci where local alleles were retained in the introgressed populations, suggesting their relevance for local adaptation. Finally, comparisons of genetic diversity between introgressed and nonintrogressed northern German populations revealed an increase in genetic diversity in all German individuals belonging to introgressed populations, supporting the idea of a beneficial transfer of genetic variation from Austria into North Germany. KW - adaptive introgression KW - admixture KW - Bombina bombina KW - genetic rescue KW - mitogenomes KW - transcriptomics Y1 - 2020 U6 - https://doi.org/10.1111/eva.13229 SN - 1752-4563 VL - 14 IS - 6 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Wolff, Martin A1 - Gast, Klaus A1 - Evers, Andreas A1 - Kurz, Michael A1 - Pfeiffer-Marek, Stefania A1 - Schüler, Anja A1 - Seckler, Robert A1 - Thalhammer, Anja T1 - A Conserved Hydrophobic Moiety and Helix-Helix Interactions Drive the Self-Assembly of the Incretin Analog Exendin-4 JF - Biomolecules N2 - Exendin-4 is a pharmaceutical peptide used in the control of insulin secretion. Structural information on exendin-4 and related peptides especially on the level of quaternary structure is scarce. We present the first published association equilibria of exendin-4 directly measured by static and dynamic light scattering. We show that exendin-4 oligomerization is pH dependent and that these oligomers are of low compactness. We relate our experimental results to a structural hypothesis to describe molecular details of exendin-4 oligomers. Discussion of the validity of this hypothesis is based on NMR, circular dichroism and fluorescence spectroscopy, and light scattering data on exendin-4 and a set of exendin-4 derived peptides. The essential forces driving oligomerization of exendin-4 are helix–helix interactions and interactions of a conserved hydrophobic moiety. Our structural hypothesis suggests that key interactions of exendin-4 monomers in the experimentally supported trimer take place between a defined helical segment and a hydrophobic triangle constituted by the Phe22 residues of the three monomeric subunits. Our data rationalize that Val19 might function as an anchor in the N-terminus of the interacting helix-region and that Trp25 is partially shielded in the oligomer by C-terminal amino acids of the same monomer. Our structural hypothesis suggests that the Trp25 residues do not interact with each other, but with C-terminal Pro residues of their own monomers. KW - biophysics KW - diabetes KW - peptides KW - oligomerization KW - conformational change KW - molecular modeling KW - static and dynamic light scattering KW - spectroscopy Y1 - 2021 U6 - https://doi.org/10.3390/biom11091305 SN - 2218-273X VL - 11 IS - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Guljamow, Arthur A1 - Barchewitz, Tino A1 - Große, Rebecca A1 - Timm, Stefan A1 - Hagemann, Martin A1 - Dittmann, Elke T1 - Diel Variations of Extracellular Microcystin Influence the Subcellular Dynamics of RubisCO in Microcystis aeruginosa PCC 7806 JF - Microorganisms : open access journal N2 - The ubiquitous freshwater cyanobacterium Microcystis is remarkably successful, showing a high tolerance against fluctuations in environmental conditions. It frequently forms dense blooms which can accumulate significant amounts of the hepatotoxin microcystin, which plays an extracellular role as an infochemical but also acts intracellularly by interacting with proteins of the carbon metabolism, notably with the CO2 fixing enzyme RubisCO. Here we demonstrate a direct link between external microcystin and its intracellular targets. Monitoring liquid cultures of Microcystis in a diel experiment revealed fluctuations in the extracellular microcystin content that correlate with an increase in the binding of microcystin to intracellular proteins. Concomitantly, reversible relocation of RubisCO from the cytoplasm to the cell’s periphery was observed. These variations in RubisCO localization were especially pronounced with cultures grown at higher cell densities. We replicated these effects by adding microcystin externally to cultures grown under continuous light. Thus, we propose that microcystin may be part of a fast response to conditions of high light and low carbon that contribute to the metabolic flexibility and the success of Microcystis in the field. KW - cyanobacterial bloom KW - Microcystis KW - microcystin KW - RubisCO KW - extracellular signaling Y1 - 2021 U6 - https://doi.org/10.3390/microorganisms9061265 SN - 2076-2607 VL - 9 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Gurke, Marie A1 - Vidal-Gorosquieta, Amalia A1 - Pajimans, Johanna L. A. A1 - Wȩcek, Karolina A1 - Barlow, Axel A1 - González-Fortes, Gloria M. A1 - Hartmann, Stefanie A1 - Grandal-d’Anglade, Aurora A1 - Hofreiter, Michael T1 - Insight into the introduction of domestic cattle and the process of Neolithization to the Spanish region Galicia by genetic evidence JF - PLoS ONE N2 - Domestic cattle were brought to Spain by early settlers and agricultural societies. Due to missing Neolithic sites in the Spanish region of Galicia, very little is known about this process in this region. We sampled 18 cattle subfossils from different ages and different mountain caves in Galicia, of which 11 were subject to sequencing of the mitochondrial genome and phylogenetic analysis, to provide insight into the introduction of cattle to this region. We detected high similarity between samples from different time periods and were able to compare the time frame of the first domesticated cattle in Galicia to data from the connecting region of Cantabria to show a plausible connection between the Neolithization of these two regions. Our data shows a close relationship of the early domesticated cattle of Galicia and modern cow breeds and gives a general insight into cattle phylogeny. We conclude that settlers migrated to this region of Spain from Europe and introduced common European breeds to Galicia. KW - Haplogroups KW - Mitochondria KW - Cattle KW - Genomics KW - Domestic animals KW - Livestock KW - Single nucleotide polymorphisms KW - Neolithic period Y1 - 2020 U6 - https://doi.org/10.1371/journal.pone.0249537 SN - 1932-6203 VL - 16 IS - 4 PB - Public Library of Science CY - San Francisco ER - TY - JOUR A1 - Bergholz, Kolja A1 - Kober, Klarissa A1 - Jeltsch, Florian A1 - Schmidt, Kristina A1 - Weiß, Lina T1 - Trait means or variance BT - What determines plant species' local and regional occurrence in fragmented dry grasslands? JF - Ecology and evolution N2 - One of the few laws in ecology is that communities consist of few common and many rare taxa. Functional traits may help to identify the underlying mechanisms of this community pattern, since they correlate with different niche dimensions. However, comprehensive studies are missing that investigate the effects of species mean traits (niche position) and intraspecific trait variability (ITV, niche width) on species abundance. In this study, we investigated fragmented dry grasslands to reveal trait-occurrence relationships in plants at local and regional scales. We predicted that (a) at the local scale, species occurrence is highest for species with intermediate traits, (b) at the regional scale, habitat specialists have a lower species occurrence than generalists, and thus, traits associated with stress-tolerance have a negative effect on species occurrence, and (c) ITV increases species occurrence irrespective of the scale. We measured three plant functional traits (SLA = specific leaf area, LDMC = leaf dry matter content, plant height) at 21 local dry grassland communities (10 m × 10 m) and analyzed the effect of these traits and their variation on species occurrence. At the local scale, mean LDMC had a positive effect on species occurrence, indicating that stress-tolerant species are the most abundant rather than species with intermediate traits (hypothesis 1). We found limited support for lower specialist occurrence at the regional scale (hypothesis 2). Further, ITV of LDMC and plant height had a positive effect on local occurrence supporting hypothesis 3. In contrast, at the regional scale, plants with a higher ITV of plant height were less frequent. We found no evidence that the consideration of phylogenetic relationships in our analyses influenced our findings. In conclusion, both species mean traits (in particular LDMC) and ITV were differently related to species occurrence with respect to spatial scale. Therefore, our study underlines the strong scale-dependency of trait-abundance relationships. KW - LMA KW - niche width KW - plant functional trait KW - scale-dependency KW - species abundance KW - trait-environment relationship Y1 - 2020 U6 - https://doi.org/10.1002/ece3.7287 SN - 2045-7758 VL - 11 IS - 7 SP - 3357 EP - 3365 PB - John Wiley & Sons, Inc. ER - TY - JOUR A1 - Fedders, Ronja A1 - Muenzner, Matthias A1 - Weber, Pamela A1 - Sommerfeld, Manuela A1 - Knauer, Miriam A1 - Kedziora, Sarah A1 - Kast, Naomi A1 - Heidenreich, Steffi A1 - Raila, Jens A1 - Weger, Stefan A1 - Henze, Andrea A1 - Schupp, Michael T1 - Liver-secreted RBP4 does not impair glucose homeostasis in mice JF - The journal of biological chemistry N2 - Retinol-binding protein 4 (RBP4) is the major transport protein for retinol in blood. Recent evidence from genetic mouse models shows that circulating RBP4 derives exclusively from hepatocytes. Because RBP4 is elevated in obesity and associates with the development of glucose intolerance and insulin resistance, we tested whether a liver-specific overexpression of RBP4 in mice impairs glucose homeostasis. We used adeno-associated viruses (AAV) that contain a highly liver-specific promoter to drive expression of murine RBP4 in livers of adult mice. The resulting increase in serum RBP4 levels in these mice was comparable with elevated levels that were reported in obesity. Surprisingly, we found that increasing circulating RBP4 had no effect on glucose homeostasis. Also during a high-fat diet challenge, elevated levels of RBP4 in the circulation failed to aggravate the worsening of systemic parameters of glucose and energy homeostasis. These findings show that liver-secreted RBP4 does not impair glucose homeostasis. We conclude that a modest increase of its circulating levels in mice, as observed in the obese, insulin-resistant state, is unlikely to be a causative factor for impaired glucose homeostasis. KW - liver KW - retinoid-binding protein KW - glucose metabolism KW - insulin resistance KW - mouse KW - TTR Y1 - 2018 U6 - https://doi.org/10.1074/jbc.RA118.004294 SN - 1083-351X VL - 293 IS - 39 SP - 15269 EP - 15276 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER - TY - JOUR A1 - Liu, Qingting A1 - Li, Xiaoping A1 - Fettke, Jörg T1 - Starch granules in Arabidopsis thaliana mesophyll and guard cells show similar morphology but differences in size and number JF - International journal of molecular sciences N2 - Transitory starch granules result from complex carbon turnover and display specific situations during starch synthesis and degradation. The fundamental mechanisms that specify starch granule characteristics, such as granule size, morphology, and the number per chloroplast, are largely unknown. However, transitory starch is found in the various cells of the leaves of Arabidopsis thaliana, but comparative analyses are lacking. Here, we adopted a fast method of laser confocal scanning microscopy to analyze the starch granules in a series of Arabidopsis mutants with altered starch metabolism. This allowed us to separately analyze the starch particles in the mesophyll and in guard cells. In all mutants, the guard cells were always found to contain more but smaller plastidial starch granules than mesophyll cells. The morphological properties of the starch granules, however, were indiscernible or identical in both types of leaf cells. KW - starch granules KW - starch granule number per chloroplast KW - starch morphology KW - mesophyll cell KW - guard cell KW - LCSM KW - Arabidopsis thaliana KW - starch granule initiation KW - starch metabolism Y1 - 2021 U6 - https://doi.org/10.3390/ijms22115666 SN - 1422-0067 SN - 1661-6596 VL - 22 IS - 11 PB - Molecular Diversity Preservation International CY - Basel ER -