TY - JOUR A1 - Wong, Kevin A1 - Mason, Emily A1 - Brune, Sascha A1 - East, Madison A1 - Edmonds, Marie A1 - Zahirovic, Sabin T1 - Deep Carbon Cycling Over the Past 200 Million Years: A Review of Fluxes in Different Tectonic Settings JF - Frontiers in Earth Science KW - deep carbon cycle KW - carbonate assimilation KW - solid Earth degassing KW - plate reconstructions KW - carbon dioxide KW - subduction zone Y1 - 2019 U6 - https://doi.org/10.3389/feart.2019.00263 SN - 2296-6463 VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Winter, Benjamin A1 - Schneeberger, Klaus A1 - Dung, N. V. A1 - Huttenlau, M. A1 - Achleitner, S. A1 - Stötter, J. A1 - Merz, Bruno A1 - Vorogushyn, Sergiy T1 - A continuous modelling approach for design flood estimation on sub-daily time scale JF - Hydrological sciences journal = Journal des sciences hydrologiques N2 - Design flood estimation is an essential part of flood risk assessment. Commonly applied are flood frequency analyses and design storm approaches, while the derived flood frequency using continuous simulation has been getting more attention recently. In this study, a continuous hydrological modelling approach on an hourly time scale, driven by a multi-site weather generator in combination with a -nearest neighbour resampling procedure, based on the method of fragments, is applied. The derived 100-year flood estimates in 16 catchments in Vorarlberg (Austria) are compared to (a) the flood frequency analysis based on observed discharges, and (b) a design storm approach. Besides the peak flows, the corresponding runoff volumes are analysed. The spatial dependence structure of the synthetically generated flood peaks is validated against observations. It can be demonstrated that the continuous modelling approach can achieve plausible results and shows a large variability in runoff volume across the flood events. KW - derived flood frequency KW - continuous modelling KW - temporal disaggregation KW - flood hazard KW - synthetic flood events Y1 - 2019 U6 - https://doi.org/10.1080/02626667.2019.1593419 SN - 0262-6667 SN - 2150-3435 VL - 64 IS - 5 SP - 539 EP - 554 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Wickert, Andrew D. A1 - Schildgen, Taylor F. T1 - Long-profile evolution of transport-limited gravel-bed rivers JF - Earth surface dynamics N2 - Alluvial and transport-limited bedrock rivers constitute the majority of fluvial systems on Earth. Their long profiles hold clues to their present state and past evolution. We currently possess first-principles-based governing equations for flow, sediment transport, and channel morphodynamics in these systems, which we lack for detachment-limited bedrock rivers. Here we formally couple these equations for transport-limited gravel-bed river long-profile evolution. The result is a new predictive relationship whose functional form and parameters are grounded in theory and defined through experimental data. From this, we produce a power-law analytical solution and a finite-difference numerical solution to long-profile evolution. Steady-state channel concavity and steepness are diagnostic of external drivers: concavity decreases with increasing uplift rate, and steepness increases with an increasing sediment-to-water supply ratio. Constraining free parameters explains common observations of river form: to match observed channel concavities, gravel-sized sediments must weather and fine - typically rapidly - and valleys typically should widen gradually. To match the empirical square-root width-discharge scaling in equilibrium-width gravel-bed rivers, downstream fining must occur. The ability to assign a cause to such observations is the direct result of a deductive approach to developing equations for landscape evolution. Y1 - 2019 U6 - https://doi.org/10.5194/esurf-7-17-2019 SN - 2196-6311 SN - 2196-632X VL - 7 IS - 1 SP - 17 EP - 43 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Wetterich, Sebastian A1 - Rudaya, Natalia A1 - Kuznetsov, Vladislav A1 - Maksimov, Fedor A1 - Opel, Thomas A1 - Meyer, Hanno A1 - Günther, Frank A1 - Bobrov, Anatoly A1 - Raschke, Elena A1 - Zimmermann, Heike Hildegard A1 - Strauss, Jens A1 - Starikova, Anna A1 - Fuchs, Margret A1 - Schirrmeister, Lutz T1 - Ice Complex formation on Bol'shoy Lyakhovsky Island (New Siberian Archipelago, East Siberian Arctic) since about 200 ka JF - Quaternary research : an interdisciplinary journal N2 - Late Quaternary landscapes of unglaciated Beringia were largely shaped by ice-wedge polygon tundra. Ice Complex (IC) strata preserve such ancient polygon formations. Here we report on the Yukagir IC from Bol'shoy Lyakhovsky Island in northeastern Siberia and suggest that new radioisotope disequilibria (230Th/U) dates of the Yukagir IC peat confirm its formation during the Marine Oxygen Isotope Stage (MIS) 7a–c interglacial period. The preservation of the ice-rich Yukagir IC proves its resilience to last interglacial and late glacial–Holocene warming. This study compares the Yukagir IC to IC strata of MIS 5, MIS 3, and MIS 2 ages exposed on Bol'shoy Lyakhovsky Island. Besides high intrasedimental ice content and syngenetic ice wedges intersecting silts, sandy silts, the Yukagir IC is characterized by high organic matter (OM) accumulation and low OM decomposition of a distinctive Drepanocladus moss-peat. The Yukagir IC pollen data reveal grass-shrub-moss tundra indicating rather wet summer conditions similar to modern ones. The stable isotope composition of Yukagir IC wedge ice is similar to those of the MIS 5 and MIS 3 ICs pointing to similar atmospheric moisture generation and transport patterns in winter. IC data from glacial and interglacial periods provide insights into permafrost and climate dynamics since about 200 ka. KW - Cryostratigraphy KW - Ice wedges KW - Stable isotopes KW - Pollen KW - Radioisotope disequilibria dating KW - Beringia Y1 - 2019 U6 - https://doi.org/10.1017/qua.2019.6 SN - 0033-5894 SN - 1096-0287 VL - 92 IS - 2 SP - 530 EP - 548 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Westerweel, Jan A1 - Roperch, Pierrick A1 - Licht, Alexis A1 - Dupont-Nivet, Guillaume A1 - Win, Zaw A1 - Poblete, Fernando A1 - Ruffet, Gilles A1 - Swe, Hnin Hnin A1 - Thi, Myat Kai A1 - Aung, Day Wa T1 - Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data JF - Nature geoscience N2 - Convergence between the Indian and Asian plates has reshaped large parts of Asia, changing regional climate and biodiversity, yet geodynamic models fundamentally diverge on how convergence was accommodated since the India-Asia collision. Here we report palaeomagnetic data from the Burma Terrane, which is at the eastern edge of the collision zone and is famous for its Cretaceous amber biota, to better determine the evolution of the India-Asia collision. The Burma Terrane was part of a Trans-Tethyan island arc and stood at a near-equatorial southern latitude at similar to 95 Ma, suggesting island endemism for the Burmese amber biota. The Burma Terrane underwent significant clockwise rotation between similar to 80 and 50 Ma, causing its subduction margin to become hyper-oblique. Subsequently, it was translated northward on the Indian Plate by an exceptional distance of at least 2,000 km along a dextral strike-slip fault system in the east. Our reconstructions are only compatible with geodynamic models involving an initial collision of India with a near-equatorial Trans-Tethyan subduction system at similar to 60 Ma, followed by a later collision with the Asian margin. Y1 - 2019 U6 - https://doi.org/10.1038/s41561-019-0443-2 SN - 1752-0894 SN - 1752-0908 VL - 12 IS - 10 SP - 863 EP - 868 PB - Nature Publ. Group CY - New York ER - TY - JOUR A1 - Wenzlaff, Christian A1 - Winterleitner, Gerd A1 - Schutz, Felina T1 - Controlling parameters of a mono-well high-temperature aquifer thermal energy storage in porous media, northern Oman JF - Petroleum geoscience N2 - Aquifer thermal energy storage (ATES) as a complement to fluctuating renewable energy systems is a reliable technology to guarantee continuous energy supply for heating and air conditioning. We investigated a high-temperature (HT) mono-well system (c. 100 degrees C), where the well screens are separated vertically within the aquifer, as an alternative to conventional doublet ATES systems for an underground storage in northern Oman. We analysed the impact of thermal inference between injection and extraction well screens on the heat recovery factor (HRF) in order to define the optimal screento-screen distance for best possible systems efficiency. Two controlling interference parameters were considered: the vertical screen-to-screen distance and aquifer heterogeneities. The sensitivity study shows that with decreasing screen-to-screen distances, thermal interference increases storage performance. A turning point is reached if the screen distance is too close, causing either water breakthrough or negative thermal interference between the screens. Our simulations show that a combined heat plume with spherical geometry results in the highest heat recovery factors due to the lowest surface area to volume ratios. Thick aquifers for mono-well HT-ATES are thus not mandatory Our study shows that a HT-ATES mono-well system is a feasible storage design with high heat recovery factors for continuous cooling or heating purposes. Y1 - 2019 U6 - https://doi.org/10.1144/petgeo2018-104 SN - 1354-0793 VL - 25 IS - 3 SP - 337 EP - 349 PB - Geological Soc. Publ. House CY - Bath ER - TY - JOUR A1 - Weithoff, Guntram A1 - Neumann, Catherin A1 - Seiferth, Jacqueline A1 - Weisse, Thomas T1 - Living on the edge: reproduction, dispersal potential, maternal effects and local adaptation in aquatic, extremophilic invertebrates JF - Aquatic sciences : research across boundaries N2 - Isolated extreme habitats are ideally suited to investigate pivotal ecological processes such as niche use, local adaptation and dispersal. Extremophilic animals living in isolated habitats face the problem that dispersal is limited through the absence of suitable dispersal corridors, which in turn facilitates local adaptation. We used five rotifer isolates from extremely acidic mining lakes with a pH of below 3 as model organisms to test whether these isolates are acidotolerant or acidophilic, whether they survive and reproduce at their niche edges (here pH 2 and circum-neutral pH) and whether local adaptation has evolved. To evaluate potential dispersal limitation, we tested whether animals and their parthenogenetic eggs survive and remain reproductive or viable at unfavourable pH-conditions. All five isolates were acidophilic with a pH-optimum in the range of 4-6, which is well above the pH (< 3) of their lakes of origin. At unfavourable high pH, in four out of the five isolates parthenogenetic females produced a high number of non-viable eggs. Females and eggs produced at favourable pH (4) remained vital at an otherwise unfavourable pH of 7, indicating that for dispersal no acidic dispersal corridors are necessary. Common garden experiments revealed no clear evidence for local adaptation in any of the five isolates. Despite their acidophilic nature, all five isolates can potentially disperse via circum-neutral water bodies as long as their residence time is short, suggesting a broader dispersal niche than their realized niche. Local adaptation might have been hampered by the low population sizes of the rotifers in their isolated habitat and the short time span the mining lakes have existed. KW - Common garden experiments KW - Extreme habitats KW - Extremophiles KW - Rotifers KW - Zooplankton Y1 - 2019 U6 - https://doi.org/10.1007/s00027-019-0638-z SN - 1015-1621 SN - 1420-9055 VL - 81 IS - 3 PB - Springer CY - Basel ER - TY - JOUR A1 - Weiss, Jonathan R. A1 - Qiu, Qiang A1 - Barbot, Sylvain A1 - Wright, Tim J. A1 - Foster, James H. A1 - Saunders, Alexander A1 - Brooks, Benjamin A. A1 - Bevis, Michael A1 - Kendrick, Eric A1 - Ericksen, Todd L. A1 - Avery, Jonathan A1 - Smalley, Robert A1 - Cimbaro, Sergio R. A1 - Lenzano, Luis Eduardo A1 - Baron, Jorge A1 - Carlos Baez, Juan A1 - Echalar, Arturo T1 - Illuminating subduction zone rheological properties in the wake of a giant earthquake JF - Science Advances N2 - Deformation associated with plate convergence at subduction zones is accommodated by a complex system involving fault slip and viscoelastic flow. These processes have proven difficult to disentangle. The 2010 M-w 8.8 Maule earthquake occurred close to the Chilean coast within a dense network of continuously recording Global Positioning System stations, which provide a comprehensive history of surface strain. We use these data to assemble a detailed picture of a structurally controlled megathrust fault frictional patchwork and the three-dimensional rheological and time-dependent viscosity structure of the lower crust and upper mantle, all of which control the relative importance of afterslip and viscoelastic relaxation during postseismic deformation. These results enhance our understanding of subduction dynamics including the interplay of localized and distributed deformation during the subduction zone earthquake cycle. Y1 - 2019 U6 - https://doi.org/10.1126/sciadv.aax6720 SN - 2375-2548 VL - 5 IS - 12 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Weger, Lindsey B. A1 - Lupaşcu, Aura A1 - Cremonese, Lorenzo A1 - Butler, Tim T1 - Modeling the impact of a potential shale gas industry in Germany and the United Kingdom on ozone with WRF-Chem JF - Elementa-sccience of the anthropocene N2 - Germany and the United Kingdom have domestic shale gas reserves which they may exploit in the future to complement their national energy strategies. However gas production releases volatile organic compounds (VOC) and nitrogen oxides (NOx), which through photochemical reaction form ground-level ozone, an air pollutant that can trigger adverse health effects e.g. on the respiratory system. This study explores the range of impacts of a potential shale gas industry in these two countries on local and regional ambient ozone. To this end, comprehensive emission scenarios are used as the basis for input to an online-coupled regional chemistry transport model (WRF-Chem). Here we simulate shale gas scenarios over summer (June, July, August) 2011, exploring the effects of varying VOC emissions, gas speciation, and concentration of NOx emissions over space and time, on ozone formation. An evaluation of the model setup is performed, which exhibited the model’s ability to predict surface meteorological and chemical variables well compared with observations, and consistent with other studies. When different shale gas scenarios were employed, the results show a peak increase in maximum daily 8-hour average ozone from 3.7 to 28.3 μg m–3. In addition, we find that shale gas emissions can force ozone exceedances at a considerable percentage of regulatory measurement stations locally (up to 21% in Germany and 35% in the United Kingdom) and in distant countries through long-range transport, and increase the cumulative health-related metric SOMO35 (maximum percent increase of ~28%) throughout the region. Findings indicate that VOC emissions are important for ozone enhancement, and to a lesser extent NOx, meaning that VOC regulation for a future European shale gas industry will be of especial importance to mitigate unfavorable health outcomes. Overall our findings demonstrate that shale gas production in Europe can worsen ozone air quality on both the local and regional scales. KW - Shale gas KW - WRF-Chem KW - European air quality KW - Ozone KW - Methane leakage KW - Emission scenarios Y1 - 2019 U6 - https://doi.org/10.1525/elementa.387 SN - 2325-1026 VL - 7 PB - Univ California Press CY - Oakland ER - TY - JOUR A1 - Wang, Xiaoxi A1 - Foster, William J. A1 - Yan, J. A1 - Li, A. A1 - Mutti, Maria T1 - Delayed recovery of metazoan reefs on the Laibin-Heshan platform margin following the Middle Permian (Capitanian) mass extinction JF - Global and planetary change N2 - Following the Middle Permian (Capitanian) mass extinction there was a global ‘reef eclipse’, and this event had an important role in the Paleozoic-Mesozoic transition of reef ecosystems. Furthermore, the recovery pattern of reef ecosystems in the Wuchiapingian of South China, before the radiation of Changhsingian reefs, is poorly understood. Here, we present a detailed sedimentological account of the Tieqiao section, South China, which records the only known Wuchiapingian reef setting from South China. Six reef growing phases were identified within six transgressive-regressive cycles. The cycles represent changes of deposition in a shallow basin to a subtidal outer platform setting, and the reefal build-ups are recorded in the shallowest part of the cycles above wave base in the euphotic zone. Our results show that the initial reef recovery started from the shallowing up part of the 1st cycle, within the Clarkina leveni conodont zone, which is two conodont zones earlier than previously recognized. In addition, even though metazoans, such as sponges, do become important in the development of the reef bodies, they are not a major component until later in the Wuchiapingian in the 5th and 6th transgressive-regressive cycles. This suggests a delayed recovery of metazoan reef ecosystems following the Middle Permian extinction. Furthermore, even though sponges do become abundant within the reefs, it is the presence and growth of the encrusters Archaeolithoporella and Tubiphytes and abundance of microbial micrites that play an important role in stabilizing the reef structures that form topographic highs. KW - Reefs KW - Mass extinction KW - Wuchiapingian KW - Archaeolithoporella KW - Permian Y1 - 2019 U6 - https://doi.org/10.1016/j.gloplacha.2019.05.005 SN - 0921-8181 SN - 1872-6364 VL - 180 SP - 1 EP - 15 PB - Elsevier CY - Amsterdam ER -