TY - JOUR A1 - Mueller, Megan A. A1 - Licht, Alexis A1 - Campbell, C. A1 - Ocakoglu, F. A1 - Taylor, Marc Hollis A1 - Burch, L. A1 - Ugrai, Tamas A1 - Kaya, M. A1 - Kurtoglu, B. A1 - Coster, P. M. C. A1 - Metais, Mustafa Yücel A1 - Beard, Kenneth Christopher T1 - Collision Chronology Along the Izmir-Ankara-Erzincan Suture Zone: Insights From the Saricakaya Basin, Western Anatolia JF - Tectonics N2 - Debate persists concerning the timing and geodynamics of intercontinental collision, style of syncollisional deformation, and development of topography and fold-and-thrust belts along the >1,700-km-long Izmir-Ankara-Erzincan suture zone (IAESZ) in Turkey. Resolving this debate is a necessary precursor to evaluating the integrity of convergent margin models and kinematic, topographic, and biogeographic reconstructions of the Mediterranean domain. Geodynamic models argue either for a synchronous or diachronous collision during either the Late Cretaceous and/or Eocene, followed by Eocene slab breakoff and postcollisional magmatism. We investigate the collision chronology in western Anatolia as recorded in the sedimentary archives of the 90-km-long Saricakaya Basin perched at shallow structural levels along the IAESZ. Based on new zircon U-Pb geochronology and depositional environment and sedimentary provenance results, we demonstrate that the Saricakaya Basin is an Eocene sedimentary basin with sediment sourced from both the IAESZ and Sogut Thrust fault to the south and north, respectively, and formed primarily by flexural loading from north-south shortening along the syncollisional Sogut Thrust. Our results refine the timing of collision between the Anatolides and Pontide terranes in western Anatolia to Maastrichtian-Middle Paleocene and Early Eocene crustal shortening and basin formation. Furthermore, we demonstrate contemporaneous collision, deformation, and magmatism across the IAESZ, supporting synchronous collision models. We show that regional postcollisional magmatism can be explained by renewed underthrusting instead of slab breakoff. This new IAESZ chronology provides additional constraints for kinematic, geodynamic, and biogeographic reconstructions of the Mediterranean domain. KW - Anatolia KW - geochronology KW - collision KW - Eocene KW - detrital zircons Y1 - 2019 U6 - https://doi.org/10.1029/2019TC005683 SN - 0278-7407 SN - 1944-9194 VL - 38 IS - 10 SP - 3652 EP - 3674 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Aichner, Bernhard A1 - Makhmudov, Zafar A1 - Rajabov, Iljomjon A1 - Zhang, Qiong A1 - Pausata, Francesco Salvatore R. A1 - Werner, Martin A1 - Heinecke, Liv A1 - Kuessner, Marie L. A1 - Feakins, Sarah J. A1 - Sachse, Dirk A1 - Mischke, Steffen T1 - Hydroclimate in the Pamirs Was Driven by Changes in Precipitation-Evaporation Seasonality Since theLast Glacial Period JF - Geophysical research letters N2 - The Central Asian Pamir Mountains (Pamirs) are a high-altitude region sensitive to climatic change, with only few paleoclimatic records available. To examine the glacial-interglacial hydrological changes in the region, we analyzed the geochemical parameters of a 31-kyr record from Lake Karakul and performed a set of experiments with climate models to interpret the results. delta D values of terrestrial biomarkers showed insolation-driven trends reflecting major shifts of water vapor sources. For aquatic biomarkers, positive delta D shifts driven by changes in precipitation seasonality were observed at ca. 31-30, 28-26, and 17-14 kyr BP. Multiproxy paleoecological data and modelling results suggest that increased water availability, induced by decreased summer evaporation, triggered higher lake levels during those episodes, possibly synchronous to northern hemispheric rapid climate events. We conclude that seasonal changes in precipitation-evaporation balance significantly influenced the hydrological state of a large waterbody such as Lake Karakul, while annual precipitation amount and inflows remained fairly constant. KW - climate KW - biomarker KW - geochemistry KW - modelling KW - paleoclimate KW - hydrology Y1 - 2019 U6 - https://doi.org/10.1029/2019GL085202 SN - 0094-8276 SN - 1944-8007 VL - 46 IS - 23 SP - 13972 EP - 13983 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Markowska, Monika A1 - Fohlmeister, Jens Bernd A1 - Treble, Pauline C. A1 - Baker, Andy A1 - Andersen, Martin S. A1 - Hua, Quan T1 - Modelling the C-14 bomb-pulse in young speleothems using a soil carbon continuum model JF - Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society N2 - The ‘bomb-pulse’ method is a chronological approach to further constrain the age of speleothems that grew between 1950 CE – present. Establishing dependable chronological constraints is crucial for modern calibration studies of speleothems to instrumental climate records, which provides the basis for paleoclimate interpretations. However, a large unknown is how 14C is transferred from the atmosphere to any individual speleothem owing to the site-specific residence times of organic matter above cave systems. Here, we employ the bomb-pulse method to build chronologies from 14C measurements in combination with a new unsaturated zone C model which considers C decomposition as a continuum, to better understand unsaturated zone 14C dynamics. The bomb-pulse curves of eight speleothems from southern Australia in three contrasting climatic regions; the semi-arid Wellington Caves site, the mediterranean Golgotha Cave site and the montane Yarrangobilly Caves site, are investigated. Overall, the modelled 14C bomb-pulse curves produce excellent fits with measured 14C speleothem data (r2 = 0.82–0.99). The C modelling reveals that unsaturated zone C is predominately young at the semi-arid site, with a weighted-mean residence time of 32 years and that tree root respiration is likely an important source of vadose CO2. At the montane site, ∼39% of C is young (<1 years), but the weighted-mean C ages are older (145–220 years). The mediterranean site has very little contribution from young C (<12%: 0–1 years), with weighted-mean ages between 157 and 245 years, likely due to greater adsorption of organic matter in the upper vadose zone during matrix flow, and remobilisation of C from young syngenetic karst. New end members for low speleothem Dead Carbon Proportion (DCP) are identified (2.19% and 1.65%, respectively) for Australian montane and semi-arid zone speleothems, where oversupply of modern CO2 in the vadose zone leads to lower DCP. It is also demonstrated that DCP can be quite variable over small time scales, that processes may be difficult to untangle and a constant DCP assumption is likely invalid. DCP variability over time is mainly controlled by the changes vadose zone CO2, where vegetation regeneration, wild-fires and karst hydrology play an important role. KW - Carbon 14 KW - speleothems KW - vadose zone KW - modelling Y1 - 2019 U6 - https://doi.org/10.1016/j.gca.2019.04.029 SN - 0016-7037 SN - 1872-9533 VL - 261 SP - 342 EP - 367 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Saltikoff, Elena A1 - Friedrich, Katja A1 - Soderholm, Joshua A1 - Lengfeld, Katharina A1 - Nelson, Brian A1 - Becker, Andreas A1 - Hollmann, Rainer A1 - Urban, Bernard A1 - Heistermann, Maik A1 - Tassone, Caterina T1 - An Overview of Using Weather Radar for Climatological Studies: Successes, Challenges, and Potential JF - Bulletin of the American Meteorological Society N2 - Weather radars have been widely used to detect and quantify precipitation and nowcast severe weather for more than 50 years. Operational weather radars generate huge three-dimensional datasets that can accumulate to terabytes per day. So it is essential to review what can be done with existing vast amounts of data, and how we should manage the present datasets for the future climatologists. All weather radars provide the reflectivity factor, and this is the main parameter to be archived. Saving reflectivity as volumetric data in the original spherical coordinates allows for studies of the three-dimensional structure of precipitation, which can be applied to understand a number of processes, for example, analyzing hail or thunderstorm modes. Doppler velocity and polarimetric moments also have numerous applications for climate studies, for example, quality improvement of reflectivity and rain rate retrievals, and for interrogating microphysical and dynamical processes. However, observational data alone are not useful if they are not accompanied by sufficient metadata. Since the lifetime of a radar ranges between 10 and 20 years, instruments are typically replaced or upgraded during climatologically relevant time periods. As a result, present metadata often do not apply to past data. This paper outlines the work of the Radar Task Team set by the Atmospheric Observation Panel for Climate (AOPC) and summarizes results from a recent survey on the existence and availability of long time series. We also provide recommendations for archiving current and future data and examples of climatological studies in which radar data have already been used. Y1 - 2019 U6 - https://doi.org/10.1175/BAMS-D-18-0166.1 SN - 0003-0007 SN - 1520-0477 VL - 100 IS - 9 SP - 1739 EP - 1751 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Hudson, Paul A1 - Botzen, W. J. Wouter A1 - Aerts, Jeroen C. J. H. T1 - Flood insurance arrangements in the European Union for future flood risk under climate and socioeconomic change JF - Global environmental change : human and policy dimensions N2 - Flood risk will increase in many areas around the world due to climate change and increase in economic exposure. This implies that adequate flood insurance schemes are needed to adapt to increasing flood risk and to minimise welfare losses for households in flood-prone areas. Flood insurance markets may need reform to offer sufficient and affordable financial protection and incentives for risk reduction. Here, we present the results of a study that aims to evaluate the ability of flood insurance arrangements in Europe to cope with trends in flood risk, using criteria that encompass common elements of the policy debate on flood insurance reform. We show that the average risk-based flood insurance premium could double between 2015 and 2055 in the absence of more risk reduction by households exposed to flooding. We show that part of the expected future increase in flood risk could be limited by flood insurance mechanisms that better incentivise risk reduction by policyholders, which lowers vulnerability. The affordability of flood insurance can be improved by introducing the key features of public-private partnerships (PPPs), which include public reinsurance, limited premium cross-subsidisation between low- and high-risk households, and incentives for policyholder-level risk reduction. These findings were evaluated in a comprehensive sensitivity analysis and support ongoing reforms in Europe and abroad that move towards risk-based premiums and link insurance with risk reduction, strengthen purchase requirements, and engage in multi-stakeholder partnerships. KW - Climate change adaptation KW - Flood risk KW - Insurance KW - Public-private partnerships KW - Risk reduction Y1 - 2019 U6 - https://doi.org/10.1016/j.gloenvcha.2019.101966 SN - 0959-3780 SN - 1872-9495 VL - 58 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kornher, Lukas A1 - Kalkuhl, Matthias T1 - The gains of coordination - When does regional cooperation for food security make sense? JF - Global Food Security - AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT N2 - With the onset of the global food crisis, the discussion about the use and misuse of agricultural market interventions regained academic attention. As a result of economies of scale, centralized policy implementation at the regional level has the potential to reduce the budgetary costs of policies. Borrowing from the literature on international unions and international policy coordination, we develop a conceptual framework to analyze when regional policy implementation makes sense. This is the case whenever spill-overs from centralization are large and policy preferences, driven by country-specific characteristics, are homogeneous. Subsequently, we examine the advantageousness of centralized policy implementation for the West African region regarding the most common food security policies. We show that centralization of trade policies and emergency food reserves is beneficial, while buffer stocks, safety net policies, and producer support policies should be implemented at the national level. KW - Food security KW - Regional cooperation KW - West Africa KW - International unions Y1 - 2019 U6 - https://doi.org/10.1016/j.gfs.2019.09.004 SN - 2211-9124 VL - 22 SP - 37 EP - 45 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Margirier, Audrey A1 - Braun, Jean A1 - Gautheron, Cecile A1 - Carcaillet, Julien A1 - Schwartz, Stephane A1 - Jamme, Rosella Pinna A1 - Stanley, Jessica T1 - Climate control on Early Cenozoic denudation of the Namibian margin as deduced from new thermochronological constraints JF - Earth & planetary science letters N2 - The processes that control long term landscape evolution in continental interiors and, in particular, along passive margins such as in southern Africa, are still the subject of much debate (e.g. Braun, 2018). Although today the Namibian margin is characterized by an arid climate, it has experienced climatic fluctuations during the Cenozoic and, yet, to date no study has documented the potential role of climate on its erosion history. In western Namibia, the Brandberg Massif, an erosional remnant or inselberg, provides a good opportunity to document the Cenozoic denudation history of the margin using the relationship between rock cooling or exhumation ages and their elevation. Here we provide new apatite (UThSm)/He dates on the Brandberg Inselberg that range from 151 +/- 12 to 30 +/- 2 Ma. Combined with existing apatite fission track data, they yield new constraints on the denudation history of the margin. These data document two main cooling phases since continental break-up 130 Myr ago, a rapid one (similar to 10 degrees C/Myr) following break-up and a slower one (similar to 12 degrees C/Myr) between 65 and 35 Ma. We interpret them respectively to be related to escarpment erosion following rifting and continental break-up and as a phase of enhanced denudation during the Early Eocene Climatic Optimum. We propose that during the Early Eocene Climatic Optimum chemical weathering was important and contributed significantly to the denudation of the Namibian margin and the formation of a pediplain around the Brandberg and enhanced valley incision within the massif. Additionally, aridification of the region since 35 Ma has resulted in negligible denudation rates since that time. (C) 2019 Elsevier B.V. All rights reserved. KW - climate KW - Early Eocene Climatic Optimum KW - apatite (U-Th-Sm)/He thermochronology KW - denudation KW - weathering KW - Namibian passive margin Y1 - 2019 U6 - https://doi.org/10.1016/j.epsl.2019.115779 SN - 0012-821X SN - 1385-013X VL - 527 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pena, Carlos A1 - Heidbach, Oliver A1 - Moreno, Marcos A1 - Bedford, Jonathan A1 - Ziegler, Moritz 0. A1 - Tassara, Andres Ollero A1 - Oncken, Onno T1 - Role of Lower Crust in the Postseismic Deformation of the 2010 Maule Earthquake: Insights from a Model with Power-Law Rheology JF - Pure and applied geophysics N2 - The surface deformation associated with the 2010 M-w 8.8 Maule earthquake in Chile was recorded in great detail before, during and after the event. The high data quality of the continuous GPS (cGPS) observations has facilitated a number of studies that model the postseismic deformation signal with a combination of relocking, afterslip and viscoelastic relaxation using linear rheology for the upper mantle. Here, we investigate the impact of using linear Maxwell or power-law rheology with a 2D geomechanical-numerical model to better understand the relative importance of the different processes that control the postseismic deformation signal. Our model results reveal that, in particular, the modeled cumulative vertical postseismic deformation pattern in the near field (< 300 km from the trench) is very sensitive to the location of maximum afterslip and choice of rheology. In the model with power-law rheology, the afterslip maximum is located at 20-35 km rather than > 50 km depth as suggested in previous studies. The explanation for this difference is that in the model with power-law rheology the relaxation of coseismically imposed differential stresses occurs mainly in the lower crust. However, even though the model with power-law rheology probably has more potential to explain the vertical postseismic signal in the near field, the uncertainty of the applied temperature field is substantial, and this needs further investigations and improvements. Y1 - 2019 U6 - https://doi.org/10.1007/s00024-018-02090-3 SN - 0033-4553 SN - 1420-9136 VL - 176 IS - 9 SP - 3913 EP - 3928 PB - Springer CY - Basel ER - TY - JOUR A1 - Foster, William J. A1 - Lehrmann, Daniel J. A1 - Yu, Meiyi A1 - Martindale, Rowan C. T1 - Facies selectivity of benthic invertebrates in a Permian/Triassic boundary microbialite succession: Implications for the "microbialite refuge" hypothesis JF - Geobiology N2 - Thrombolite and stromatolite habitats are becoming increasingly recognized as important refuges for invertebrates during Phanerozoic Oceanic Anoxic Events (OAEs); it is posited that oxygenic photosynthesis by cyanobacteria in these microbialites provided a refuge from anoxic conditions (i.e., the "microbialite refuge" hypothesis). Here, we test this hypothesis by investigating the distribution of ~34, 500 benthic invertebrate fossils found in ~100 samples from a microbialite succession that developed following the latest Permian mass extinction event on the Great Bank of Guizhou (South China), representing microbial (stromatolites and thrombolites) and non-microbial facies. The stromatolites were the least taxonomically diverse facies, and the thrombolites also recorded significantly lower diversities when compared to the non-microbial facies. Based on the distribution and ornamentation of the bioclasts within the thrombolites and stromatolites, the bioclasts are inferred to have been transported and concentrated in the non-microbial fabrics, that is, cavities around the microbial framework. Therefore, many of the identified metazoans from the post-extinction microbialites are not observed to have been living within a microbial mat. Furthermore, the lifestyle of many of the taxa identified from the microbialites was not suited for, or even amenable to, life within a benthic microbial mat. The high diversity of oxygen-dependent metazoans in the non-microbial facies on the Great Bank of Guizhou, and inferences from geochemical records, suggests that the microbialites and benthic communities developed in oxygenated environments, which disproves that the microbes were the source of the oxygenation. Instead, we posit that microbialite successions represent a taphonomic window for exceptional preservation of the biota, similar to a Konzentrat-Lagerstatte, which has allowed for diverse fossil assemblages to be preserved during intervals of poor preservation. KW - anoxia KW - extinction KW - microbialite KW - Permian KW - Triassic KW - refuge Y1 - 2019 U6 - https://doi.org/10.1111/gbi.12343 SN - 1472-4677 SN - 1472-4669 VL - 17 IS - 5 SP - 523 EP - 535 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Wenzlaff, Christian A1 - Winterleitner, Gerd A1 - Schutz, Felina T1 - Controlling parameters of a mono-well high-temperature aquifer thermal energy storage in porous media, northern Oman JF - Petroleum geoscience N2 - Aquifer thermal energy storage (ATES) as a complement to fluctuating renewable energy systems is a reliable technology to guarantee continuous energy supply for heating and air conditioning. We investigated a high-temperature (HT) mono-well system (c. 100 degrees C), where the well screens are separated vertically within the aquifer, as an alternative to conventional doublet ATES systems for an underground storage in northern Oman. We analysed the impact of thermal inference between injection and extraction well screens on the heat recovery factor (HRF) in order to define the optimal screento-screen distance for best possible systems efficiency. Two controlling interference parameters were considered: the vertical screen-to-screen distance and aquifer heterogeneities. The sensitivity study shows that with decreasing screen-to-screen distances, thermal interference increases storage performance. A turning point is reached if the screen distance is too close, causing either water breakthrough or negative thermal interference between the screens. Our simulations show that a combined heat plume with spherical geometry results in the highest heat recovery factors due to the lowest surface area to volume ratios. Thick aquifers for mono-well HT-ATES are thus not mandatory Our study shows that a HT-ATES mono-well system is a feasible storage design with high heat recovery factors for continuous cooling or heating purposes. Y1 - 2019 U6 - https://doi.org/10.1144/petgeo2018-104 SN - 1354-0793 VL - 25 IS - 3 SP - 337 EP - 349 PB - Geological Soc. Publ. House CY - Bath ER -