TY - JOUR A1 - Sander, Andreas Alexander Christoph A1 - Shenar, Tomer A1 - Hainich, Rainer A1 - Gimenez-Garcia, Ana A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer T1 - On the consistent treatment of the quasi-hydrostatic layers in hot star atmospheres JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Spectroscopic analysis remains the most common method to derive masses of massive stars, the most fundamental stellar parameter. While binary orbits and stellar pulsations can provide much sharper constraints on the stellar mass, these methods are only rarely applicable to massive stars. Unfortunately, spectroscopic masses of massive stars heavily depend on the detailed physics of model atmospheres. Aims. We demonstrate the impact of a consistent treatment of the radiative pressure on inferred gravities and spectroscopic masses of massive stars. Specifically, we investigate the contribution of line and continuum transitions to the photospheric radiative pressure. We further explore the effect of model parameters, e.g., abundances, on the deduced spectroscopic mass. Lastly, we compare our results with the plane-parallel TLUSTY code, commonly used for the analysis of massive stars with photospheric spectra. Methods. We calculate a small set of O-star models with the Potsdam Wolf-Rayet (PoWR) code using different approaches for the quasi-hydrostatic part. These models allow us to quantify the effect of accounting for the radiative pressure consistently. We further use PoWR models to show how the Doppler widths of line profiles and abundances of elements such as iron affect the radiative pressure, and, as a consequence, the derived spectroscopic masses. Results. Our study implies that errors on the order of a factor of two in the inferred spectroscopic mass are to be expected when neglecting the contribution of line and continuum transitions to the radiative acceleration in the photosphere. Usage of implausible microturbulent velocities, or the neglect of important opacity sources such as Fe, may result in errors of approximately 50% in the spectroscopic mass. A comparison with TLUSTY model atmospheres reveals a very good agreement with PoWR at the limit of low mass-loss rates. KW - stars: early-type KW - stars: mass-loss KW - stars: winds, outflows KW - stars: atmospheres KW - stars: fundamental parameters KW - stars: massive Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201425356 SN - 0004-6361 SN - 1432-0746 VL - 577 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Todt, Helge Tobias A1 - Sander, Angelika A1 - Hainich, Rainer A1 - Hamann, Wolf-Rainer A1 - Quade, Markus A1 - Shenar, Tomer T1 - Potsdam Wolf-Rayet model atmosphere grids for WN stars JF - Astronomy and astrophysics : an international weekly journal N2 - We present new grids of Potsdam Wolf-Rayet (PoWR) model atmospheres for Wolf-Rayet stars of the nitrogen sequence (WN stars). The models have been calculated with the latest version of the PoWR stellar atmosphere code for spherical stellar winds. The WN model atmospheres include the non-LTE solutions of the statistical equations for complex model atoms, as well as the radiative transfer equation in the co-moving frame. Iron-line blanketing is treated with the help of the superlevel approach, while wind inhomogeneities are taken into account via optically thin clumps. Three of our model grids are appropriate for Galactic metallicity. The hydrogen mass fraction of these grids is 50%, 20%, and 0%, thus also covering the hydrogen-rich late-type WR stars that have been discovered in recent years. Three grids are adequate for LMC WN stars and have hydrogen fractions of 40%, 20%, and 0%. Recently, additional grids with SMC metallicity and with 60%, 40%, 20%, and 0% hydrogen have been added. We provide contour plots of the equivalent widths of spectral lines that are usually used for classification and diagnostics. KW - stars: evolution KW - stars: mass-loss KW - stars: winds, outflows KW - stars: Wolf-Rayet KW - stars: atmospheres KW - stars: massive Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201526253 SN - 0004-6361 SN - 1432-0746 VL - 579 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Gimenez-Garcia, Angel A1 - Torrejon, Jose Miguel A1 - Eikmann, Wiebke A1 - Martinez-Nunez, Silvia A1 - Oskinova, Lida A1 - Rodes-Roca, Jose Joaquin A1 - Bernabeu, Guillermo T1 - An XMM-Newton view of FeK alpha in high-mass X-ray binaries JF - Astronomy and astrophysics : an international weekly journal N2 - We present a comprehensive analysis of the whole sample of available XMM-Newton observations of high-mass X-ray binaries (HMXBs) until August 2013, focusing on the FeK alpha emission line. This line is key to better understanding the physical properties of the material surrounding the X-ray source within a few stellar radii (the circumstellar medium). We collected observations from 46 HMXBs and detected FeK alpha in 21 of them. We used the standard classification of HMXBs to divide the sample into different groups. We find that (1) different classes of HMXBs display different qualitative behaviours in the FeK alpha spectral region. This is visible especially in SGXBs (showing ubiquitous Fe fluorescence but not recombination Fe lines) and in gamma Cass analogues (showing both fluorescent and recombination Fe lines). (2) FeK alpha is centred at a mean value of 6.42 keV. Considering the instrumental and fits uncertainties, this value is compatible with ionization states that are lower than Fe xviii. (3) The flux of the continuum is well correlated with the flux of the line, as expected. Eclipse observations show that the Fe fluorescence emission comes from an extended region surrounding the X-ray source. (4) We observe an inverse correlation between the X-ray luminosity and the equivalent width of FeK alpha (EW). This phenomenon is known as the X-ray Baldwin effect. (5) FeK alpha is narrow (sigma(line) < 0.15 keV), reflecting that the reprocessing material does not move at high speeds. We attempt to explain the broadness of the line in terms of three possible broadening phenomena: line blending, Compton scattering, and Doppler shifts (with velocities of the reprocessing material V similar to 1000 km s(-1)). (6) The equivalent hydrogen column (N-H) directly correlates to the EW of FeK alpha, displaying clear similarities to numerical simulations. It highlights the strong link between the absorbing and the fluorescent matter. (7) The observed NH in supergiant X-ray binaries (SGXBs) is in general higher than in supergiant fast X-ray transients (SFXTs). We suggest two possible explanations: different orbital configurations or a different interaction compact object - wind. (8) Finally, we analysed the sources IGR J16320-4751 and 4U 1700-37 in more detail, covering several orbital phases. The observed variation in NH between phases is compatible with the absorption produced by the wind of their optical companions. The results clearly point to a very important contribution of the donor's wind in the FeK alpha emission and the absorption when the donor is a supergiant massive star. KW - surveys KW - X-rays: binaries KW - binaries: general KW - circumstellar matter KW - stars: winds, outflows KW - stars: early-type Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201425004 SN - 0004-6361 SN - 1432-0746 VL - 576 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Torrejon, Jose M. A1 - Schulz, Norbert S. A1 - Nowak, Michael A. A1 - Oskinova, Lida A1 - Rodes-Roca, Jose J. A1 - Shenar, Tomer A1 - Wilms, Jörn T1 - On the radial onset of clumping in the wind of the B0I massive star QV nor JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present an analysis of a 78 ks Chandra high-energy transmission gratings observation of the B0I star QV Nor, the massive donor of the wind-accreting pulsar 4U1538-52. The neutron star (NS) orbits its companion in a very close orbit (r < 1.4R(*), in units of the stellar radii), thereby allowing probing of the innermost wind regions. The flux of the Fe K alpha line during eclipse reduces to only similar to 30% of the flux measured out of eclipse. This indicates that the majority of Fe fluorescence must be produced in regions close to the NS, at distances smaller than 1R(*) from its surface. The fact that the flux of the continuum decreases to only similar to 3% during eclipse allows for a high contrast of the Fe Ka line fluorescence during eclipse. The line is not resolved and centered at lambda = 1.9368(-0.0018)(+0.0032) angstrom. From the inferred plasma speed limit of v < c Delta lambda/lambda < 800 km s(-1) and range of ionization parameters of log xi =[-1, 2], together with the stellar density profile, we constrain the location of the cold, dense material in the stellar wind of QV Nor using simple geometrical considerations. We then use the Fe K alpha line fluorescence as a tracer of wind clumps and determine that these clumps in the stellar wind of QV Nor (B0I) must already be present at radii r < 1.25R(*), close to the photosphere of the star. KW - stars: individual (QV Nor, 4U1538+52) KW - stars: winds, outflows KW - X-rays: binaries Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/810/2/102 SN - 0004-637X SN - 1538-4357 VL - 810 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Toala, Jesús Alberto A1 - Guerrero, Martín A. A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer A1 - Chu, Y.-H. A1 - Gruendl, R. A. A1 - Schönberner, Detlef A1 - Oskinova, Lida A1 - Marquez-Lugo, R. A. A1 - Fang, X. A1 - Ramos-Larios, Gerardo T1 - The born-again Planetary nebula A78: an X-RAY twin of A30 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present the XMM-Newton discovery of X-ray emission from the planetary nebula (PN) A78, the second born-again PN detected in X-rays apart from A30. These two PNe share similar spectral and morphological characteristics: they harbor diffuse soft X-ray emission associated with the interaction between the H-poor ejecta and the current fast stellar wind and a point-like source at the position of the central star (CSPN). We present the spectral analysis of the CSPN, using for the first time an NLTE code for expanding atmospheres that takes line blanketing into account for the UV and optical spectra. The wind abundances are used for the X-ray spectral analysis of the CSPN and the diffuse emission. The X-ray emission from the CSPN in A78 can be modeled by a single C VI emission line, while the X-ray emission from its diffuse component is better described by an optically thin plasma emission model with a temperature of kT = 0.088 keV (T approximate to 1.0 x 10(6) K). We estimate X-ray luminosities in the 0.2-2.0 keV energy band of L-X,L-CSPN =(1.2 +/- 0.3) x 10(31) erg s(-1) and L-X,L-DIFF =(9.2 +/- 2.3) x 10(30) erg s(-1) for the CSPN and diffuse components, respectively. KW - planetary nebulae: general KW - planetary nebulae: individual (A78) KW - stars: winds, outflows KW - X-rays: ISM Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/799/1/67 SN - 0004-637X SN - 1538-4357 VL - 799 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Richardson, Noel D. A1 - Shenar, Tomer A1 - Roy-Loubier, Olivier A1 - Schaefer, Gail A1 - Moffat, Anthony F. J. A1 - St-Louis, Nicole A1 - Gies, Douglas R. A1 - Farrington, Chris A1 - Hill, Grant M. A1 - Williams, Peredur M. A1 - Gordon, Kathryn A1 - Pablo, Herbert A1 - Ramiaramanantsoa, Tahina T1 - The CHARA Array resolves the long-period Wolf-Rayet binaries WR 137 and WR 138 JF - Monthly notices of the Royal Astronomical Society N2 - We report on interferometric observations with the CHARAArray of two classical Wolf-Rayet (WR) stars in suspected binary systems, namely WR 137 and WR 138. In both cases, we resolve the component stars to be separated by a few milliarcseconds. The data were collected in the H band, and provide a measure of the fractional flux for both stars in each system. We find that the WR star is the dominant H-band light source in both systems (fWR, 137 = 0.59 +/- 0.04; fWR, 138 = 0.67 +/- 0.01), which is confirmed through both comparisons with estimated fundamental parameters for WR stars and O dwarfs, as well as through spectral modelling of each system. Our spectral modelling also provides fundamental parameters for the stars and winds in these systems. The results on WR 138 provide evidence that it is a binary system which may have gone through a previous mass-transfer episode to create the WR star. The separation and position of the stars in the WR 137 system together with previous results from the IOTA interferometer provides evidence that the binary is seen nearly edgeon. The possible edge-on orbit of WR 137 aligns well with the dust production site imaged by the Hubble Space Telescope during a previous periastron passage, showing that the dust production may be concentrated in the orbital plane. KW - binaries: visual KW - stars: individual: WR 137 KW - stars: individual: WR 138 KW - stars: mass-loss KW - stars: winds, outflows KW - stars: Wolf-Rayet Y1 - 2016 U6 - https://doi.org/10.1093/mnras/stw1585 SN - 0035-8711 SN - 1365-2966 VL - 461 SP - 4115 EP - 4124 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Gimenez-Garcia, Ana A1 - Shenar, Tomer A1 - Torrejon, J. M. A1 - Oskinova, Lida A1 - Martinez-Nunez, S. A1 - Hamann, Wolf-Rainer A1 - Rodes-Roca, J. J. A1 - González-Galan, A. A1 - Alonso-Santiago, J. A1 - González-Fernández, C. A1 - Bernabeu, Guillermo A1 - Sander, Andreas Alexander Christoph T1 - Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in supergiant fast X-ray transient and classical supergiant X-ray binaries JF - Siberian Mathematical Journal N2 - Aims. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J175442619 (SFXT) and Vela X-1 (SGXB). We analyze the spectra of each star in detail and derive their stellar and wind properties. As a next step, we compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. Methods. We use archival infrared, optical and ultraviolet observations, and analyze them with the non-local thermodynamic equilibrium (NLTE) Potsdam Wolf-Rayet model atmosphere code. We derive the physical properties of the stars and their stellar winds, accounting for the influence of X-rays on the stellar winds. Results. We find that the stellar parameters derived from the analysis generally agree well with the spectral types of the two donors: O9I (IGR J17544-2619) and B0.5Iae (Vela X-1). The distance to the sources have been revised and also agree well with the estimations already available in the literature. In IGR J17544-2619 we are able to narrow the uncertainty to d = 3.0 +/- 0.2 kpc. From the stellar radius of the donor and its X-ray behavior, the eccentricity of IGR J17544-2619 is constrained to e < 0.25. The derived chemical abundances point to certain mixing during the lifetime of the donors. An important difference between the stellar winds of the two stars is their terminal velocities (v(infinity) = 1500 km s(-1) in IGR J17544-2619 and v(infinity) = 700 km s(-1) in Vela X-1), which have important consequences on the X-ray luminosity of these sources. Conclusions. The donors of IGR J17544-2619 and Vela X-1 have similar spectral types as well as similar parameters that physically characterize them and their spectra. In addition, the orbital parameters of the systems are similar too, with a nearly circular orbit and short orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion to propeller regimes when combined with other parameters. KW - accretion, accretion disks KW - methods: observational KW - techniques: spectroscopic KW - stars: atmospheres KW - X-rays: binaries KW - stars: winds, outflows Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527551 SN - 1432-0746 VL - 591 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hamaguchi, K. A1 - Oskinova, Lida A1 - Russell, C. M. P. A1 - Petre, R. A1 - Enoto, T. A1 - Morihana, K. A1 - Ishida, M. T1 - DISCOVERY OF RAPIDLY MOVING PARTIAL X-RAY ABSORBERS WITHIN GAMMA CASSIOPEIAE JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - detected six rapid X-ray spectral hardening events called "softness dips" in a similar to 100 ks observation in 2011. All the softness dip events show symmetric softness-ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either similar to 40% or similar to 70% partial covering absorption to kT similar to 12 keV plasma emission by matter with a neutral hydrogen column density of similar to(2-8) x 10(21) cm(-2), while the spectrum outside these dips is almost free of absorption. This result suggests the presence of two distinct X-ray-emitting spots in the.. Cas system, perhaps on a white dwarf (WD) companion with dipole mass accretion. The partial covering absorbers may be blobs in the Be stellar wind, the Be disk, or rotating around the WD companion. Weak correlations of the softness ratios to the hard X-ray flux suggest the presence of stable plasmas at kT similar to 0.9 and 5 keV, which may originate from the Be or WD winds. The formation of a Be star and WD binary system requires mass transfer between two stars; gamma Cas may have experienced such activity in the past. KW - blue stragglers KW - stars: emission-line, Be KW - stars: individual (gamma Cassiopeiae) KW - stars: winds, outflows KW - white dwarfs KW - X-rays: stars Y1 - 2016 U6 - https://doi.org/10.3847/0004-637X/832/2/140 SN - 0004-637X SN - 1538-4357 VL - 832 SP - 33 EP - 49 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Toala, Jesús Alberto A1 - Oskinova, Lida A1 - Gonzalez-Galan, Ana A1 - Guerrero, Martín A. A1 - Ignace, R. A1 - Pohl, Martin T1 - X-RAY OBSERVATIONS OF BOW SHOCKS AROUND RUNAWAY O STARS. THE CASE OF zeta OPH AND BD+43 degrees 3654 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Non-thermal radiation has been predicted within bow shocks around runaway stars by recent theoretical works. We present X-ray observations toward the runaway stars zeta Oph by Chandra and Suzaku and of BD+43 degrees 3654 by XMM-Newton to search for the presence of non-thermal X-ray emission. We found no evidence of non-thermal emission spatially coincident with the bow shocks; nonetheless, diffuse emission was detected in the vicinity of zeta Oph. After a careful analysis of its spectral characteristics, we conclude that this emission has a thermal nature with a plasma temperature of T approximate to 2 x 10(6) K. The cometary shape of this emission seems to be in line with recent predictions of radiation-hydrodynamic models of runaway stars. The case of BD+43 degrees 3654 is puzzling, as non-thermal emission has been reported in a previous work for this source. KW - stars: individual (zeta Oph, BD+43 degrees 3654) KW - stars: winds, outflows Y1 - 2016 U6 - https://doi.org/10.3847/0004-637X/821/2/79 SN - 0004-637X SN - 1538-4357 VL - 821 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Grinberg, Victoria A1 - Hell, Natalie A1 - El Mellah, Ileyk A1 - Neilsen, Joseph A1 - Sander, Andreas Alexander Christoph A1 - Leutenegger, Maurice A1 - Fürst, Felix A1 - Huenemoerder, David P. A1 - Kretschmar, Peter A1 - Kuehnel, Matthias A1 - Martinez-Nunez, Silvia A1 - Niu, Shu A1 - Pottschmidt, Katja A1 - Schulz, Norbert S. A1 - Wilms, Joern A1 - Nowak, Michael A. T1 - The clumpy absorber in the high-mass X-ray binary Vela X-1 JF - Astronomy and astrophysics : an international weekly journal N2 - Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase similar to 0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannot be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium, and neon whose strengths and presence depend on the overall level of absorption. These features imply a co-existence of cool and hot gas phases in the system, which we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries. KW - X-rays: individuals: Vela X-1 KW - X-rays: binaries KW - stars: winds, outflows KW - stars: massive Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201731843 SN - 1432-0746 VL - 608 PB - EDP Sciences CY - Les Ulis ER -