TY - JOUR A1 - Schreck, Simon A1 - Pietzsch, Annette A1 - Kennedy, Brian A1 - Sathe, Conny A1 - Miedema, Piter S. A1 - Techert, Simone A1 - Strocov, Vladimir N. A1 - Schmitt, Thorsten A1 - Hennies, Franz A1 - Rubensson, Jan-Erik A1 - Föhlisch, Alexander T1 - Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering JF - Scientific reports N2 - Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. Y1 - 2016 U6 - https://doi.org/10.1038/srep20054 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Eckert, Sebastian A1 - Miedema, P. S. A1 - Quevedo, W. A1 - Fondell, Mattis A1 - Beye, Martin A1 - Pietzsch, Annette A1 - Ross, M. A1 - Khalil, M. A1 - Föhlisch, Alexander T1 - Molecular structures and protonation state of 2-Mercaptopyridine in aqueous solution JF - Chemical physics letters N2 - The speciation of 2-Mercaptopyridine in aqueous solution has been investigated with nitrogen 1s Near Edge X-ray Absorption Fine Structure spectroscopy and time dependent Density Functional Theory. The prevalence of distinct species as a function of the solvent basicity is established. No indications of dimerization towards high concentrations are found. The determination of different molecular structures of 2-Mercaptopyridine in aqueous solution is put into the context of proton-transfer in keto-enol and thione-thiol tautomerisms. (C) 2016 The Authors. Published by Elsevier B.V. Y1 - 2016 U6 - https://doi.org/10.1016/j.cplett.2016.01.050 SN - 0009-2614 SN - 1873-4448 VL - 647 SP - 103 EP - 106 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schick, Daniel A1 - Le Guyader, Loic A1 - Pontius, Niko A1 - Radu, Ilie A1 - Kachel, Torsten A1 - Mitzner, Rolf A1 - Zeschke, Thomas A1 - Schuessler-Langeheine, Christian A1 - Föhlisch, Alexander A1 - Holldack, Karsten T1 - Analysis of the halo background in femtosecond slicing experiments JF - Journal of synchrotron radiation N2 - The slicing facility FemtoSpeX at BESSY II offers unique opportunities to study photo-induced dynamics on femtosecond time scales by means of X-ray magnetic circular dichroism, resonant and non-resonant X-ray diffraction, and X-ray absorption spectroscopy experiments in the soft X-ray regime. Besides femtosecond X-ray pulses, slicing sources inherently also produce a so-called `halo' background with a different time structure, polarization and pointing. Here a detailed experimental characterization of the halo radiation is presented, and a method is demonstrated for its correct and unambiguous removal from femtosecond time-resolved data using a special laser triggering scheme as well as analytical models. Examples are given for time-resolved measurements with corresponding halo correction, and errors of the relevant physical quantities caused by either neglecting or by applying a simplified model to describe this background are estimated. KW - femtosecond slicing KW - halo KW - pump-probe KW - XMCD KW - X-ray scattering Y1 - 2016 U6 - https://doi.org/10.1107/S160057751600401X SN - 1600-5775 VL - 23 SP - 700 EP - 711 PB - International Union of Crystallography CY - Chester ER - TY - JOUR A1 - Kunnus, Kristjan A1 - Josefsson, I. A1 - Rajkovic, Ivan A1 - Schreck, Simon A1 - Quevedo, Wilson A1 - Beye, Martin A1 - Weniger, C. A1 - Gruebel, S. A1 - Scholz, M. A1 - Nordlund, D. A1 - Zhang, W. A1 - Hartsock, R. W. A1 - Gaffney, K. J. A1 - Schlotter, W. F. A1 - Turner, J. J. A1 - Kennedy, B. A1 - Hennies, F. A1 - de Groot, F. M. F. A1 - Techert, S. A1 - Odelius, Michael A1 - Wernet, Ph. A1 - Föhlisch, Alexander T1 - Identification of the dominant photochemical pathways and mechanistic insights to the ultrafast ligand exchange of Fe(CO)(5) to Fe(CO)(4)EtOH JF - Structural dynamics N2 - We utilized femtosecond time-resolved resonant inelastic X-ray scattering and ab initio theory to study the transient electronic structure and the photoinduced molecular dynamics of a model metal carbonyl photocatalyst Fe(CO)(5) in ethanol solution. We propose mechanistic explanation for the parallel ultrafast intra-molecular spin crossover and ligation of the Fe(CO)(4) which are observed following a charge transfer photoexcitation of Fe(CO)(5) as reported in our previous study [ Wernet et al., Nature 520, 78 (2015)]. We find that branching of the reaction pathway likely happens in the (1)A(1) state of Fe(CO)(4). A sub-picosecond time constant of the spin crossover from B-1(2) to B-3(2) is rationalized by the proposed B-1(2) -> (1)A(1) -> B-3(2) mechanism. Ultrafast ligation of the B-1(2) Fe(CO)(4) state is significantly faster than the spin-forbidden and diffusion limited ligation process occurring from the B-3(2) Fe(CO)(4) ground state that has been observed in the previous studies. We propose that the ultrafast ligation occurs via B-1(2) -> (1)A(1) -> (1)A'Fe(CO)(4)EtOH pathway and the time scale of the (1)A(1) Fe(CO)(4) state ligation is governed by the solute-solvent collision frequency. Our study emphasizes the importance of understanding the interaction of molecular excited states with the surrounding environment to explain the relaxation pathways of photoexcited metal carbonyls in solution. (C) 2016 Author(s). Y1 - 2016 U6 - https://doi.org/10.1063/1.4941602 SN - 2329-7778 VL - 3 PB - American Institute of Physics CY - Washington ER - TY - JOUR A1 - Kunnus, Kristjan A1 - Zhang, Wenkai A1 - Delcey, Mickael G. A1 - Pinjari, Rahul V. A1 - Miedema, Piter S. A1 - Schreck, Simon A1 - Quevedo, Wilson A1 - Schröder, Henning A1 - Föhlisch, Alexander A1 - Gaffney, Kelly J. A1 - Lundberg, Marcus A1 - Odelius, Michael A1 - Wernet, Philippe T1 - Viewing the Valence Electronic Structure of Ferric and Ferrous Hexacyanide in Solution from the Fe and Cyanide Perspectives JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - The valence-excited states of ferric and ferrous hexacyanide ions in aqueous solution were mapped by resonant inelastic X-ray scattering (RIXS) at the Fe L-2,L-3 and N K edges. Probing of both the central Fe and the ligand N atoms enabled identification of the metal-and ligand-centered excited states, as well as ligand-to-metal and metal-to-ligand charge-transfer excited states. Ab initio calculations utilizing the RASPT2 method were used to simulate the Fe L-2,L-3-edge RIXS spectra and enabled quantification of the covalencies of both occupied and empty orbitals of pi and sigma symmetry. We found that pi back-donation in the ferric complex is smaller than that in the ferrous complex. This is evidenced by the relative amounts of Fe 3d character in the nominally 2 pi CN- molecular orbital of 7% and 9% in ferric and ferrous hexacyanide, respectively. Utilizing the direct sensitivity of Fe L-3-edge RIXS to the Fe 3d character in the occupied molecular orbitals, we also found that the donation interactions are dominated by sigma bonding. The latter was found to be stronger in the ferric complex, with an Fe 3d contribution to the nominally 5 sigma CN- molecular orbitals of 29% compared to 20% in the ferrous complex. These results are consistent with the notion that a higher charge at the central metal atom increases donation and decreases back-donation. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpcb.6b04751 SN - 1520-6106 VL - 120 SP - 7182 EP - 7194 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schick, Daniel A1 - Eckert, Sebastian A1 - Pontius, Niko A1 - Mitzner, Rolf A1 - Föhlisch, Alexander A1 - Holldack, Karsten A1 - Sorgenfrei, Florian T1 - Versatile soft X-ray-optical cross-correlator for ultrafast applications JF - Structural dynamics N2 - We present an X-ray-optical cross-correlator for the soft (> 150 eV) up to the hard X-ray regime based on a molybdenum-silicon superlattice. The cross-correlation is done by probing intensity and position changes of superlattice Bragg peaks caused by photoexcitation of coherent phonons. This approach is applicable for a wide range of X-ray photon energies as well as for a broad range of excitation wavelengths and requires no external fields or changes of temperature. Moreover, the cross-correlator can be employed on a 10 ps or 100 fs time scale featuring up to 50% total X-ray reflectivity and transient signal changes of more than 20%. (C) 2016 Author(s). Y1 - 2016 U6 - https://doi.org/10.1063/1.4964296 SN - 2329-7778 VL - 3 SP - 054304-1 EP - 054304-8 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Beye, Martin A1 - Öberg, Henrik A1 - Xin, Hongliang A1 - Dakovski, Georgi L. A1 - Föhlisch, Alexander A1 - Gladh, Jorgen A1 - Hantschmann, Markus A1 - Hieke, Florian A1 - Kaya, Sarp A1 - Kühn, Danilo A1 - LaRue, Jerry A1 - Mercurio, Giuseppe A1 - Minitti, Michael P. A1 - Mitra, Ankush A1 - Moeller, Stefan P. A1 - Ng, May Ling A1 - Nilsson, Anders A1 - Nordlund, Dennis A1 - Norskov, Jens A1 - Öström, Henrik A1 - Ogasawara, Hirohito A1 - Persson, Mats A1 - Schlotter, William F. A1 - Sellberg, Jonas A. A1 - Wolf, Martin A1 - Abild-Pedersen, Frank A1 - Pettersson, Lars G. M. A1 - Wurth, Wilfried T1 - Chemical Bond Activation Observed with an X-ray Laser JF - The journal of physical chemistry letters N2 - The concept of bonding and antibonding orbitals is fundamental in chemistry. The population of those orbitals and the energetic difference between the two reflect the strength of the bonding interaction. Weakening the bond is expected to reduce this energetic splitting, but the transient character of bond-activation has so far prohibited direct experimental access. Here we apply time-resolved soft X-ray spectroscopy at a free electron laser to directly observe the decreased bonding antibonding splitting following bond-activation using an ultrashort optical laser pulse. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpclett.6b01543 SN - 1948-7185 VL - 7 SP - 3647 EP - 3651 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kunnus, Kristjan A1 - Josefsson, Ida A1 - Rajkovic, Ivan A1 - Schreck, Simon A1 - Quevedo, Wilson A1 - Beye, Martin A1 - Grübel, Sebastian A1 - Scholz, Mirko A1 - Nordlund, Dennis A1 - Zhang, Wenkai A1 - Hartsock, Robert W. A1 - Gaffney, Kelly J. A1 - Schlotter, William F. A1 - Turner, Joshua J. A1 - Kennedy, Brian A1 - Hennies, Franz A1 - Techert, Simone A1 - Wernet, Philippe A1 - Odelius, Michael A1 - Föhlisch, Alexander T1 - Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics JF - NEW JOURNAL OF PHYSICS N2 - Ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbital and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)(5) in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given-which will be covered experimentally by upcoming transform-limited x-ray sources. KW - ultrafast photochemistry KW - excited state selectivity KW - anti-Stokes resonant x-ray raman scattering KW - free electron lasers KW - resonant inelastic x-ray scattering Y1 - 2016 U6 - https://doi.org/10.1088/1367-2630/18/10/103011 SN - 1367-2630 VL - 18 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Kroll, Thomas A1 - Kern, Jan A1 - Kubin, Markus A1 - Ratner, Daniel A1 - Gul, Sheraz A1 - Fuller, Franklin D. A1 - Löchel, Heike A1 - Krzywinski, Jacek A1 - Lutman, Alberto A1 - Ding, Yuantao A1 - Dakovski, Georgi L. A1 - Moeller, Stefan A1 - Turner, Joshua J. A1 - Alonso-Mori, Roberto A1 - Nordlund, Dennis L. A1 - Rehanek, Jens A1 - Weniger, Christian A1 - Firsov, Alexander A1 - Brzhezinskaya, Maria A1 - Chatterjee, Ruchira A1 - Lassalle-Kaiser, Benedikt A1 - Sierra, Raymond G. A1 - Laksmono, Hartawan A1 - Hill, Ethan A1 - Borovik, Andrew S. A1 - Erko, Alexei A1 - Föhlisch, Alexander A1 - Mitzner, Rolf A1 - Yachandra, Vittal K. A1 - Yano, Junko A1 - Wernet, Philippe A1 - Bergmann, Uwe T1 - X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser JF - Optics express : the international electronic journal of optics N2 - X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements. (C) 2016 Optical Society of America Y1 - 2016 U6 - https://doi.org/10.1364/OE.24.022469 SN - 1094-4087 VL - 24 SP - 22469 EP - 22480 PB - Optical Society of America CY - Washington ER -