TY - JOUR A1 - Schütt, Heiko Herbert A1 - Rothkegel, Lars Oliver Martin A1 - Trukenbrod, Hans Arne A1 - Engbert, Ralf A1 - Wichmann, Felix A. T1 - Disentangling bottom-up versus top-down and low-level versus high-level influences on eye movements over time JF - Journal of vision N2 - Bottom-up and top-down as well as low-level and high-level factors influence where we fixate when viewing natural scenes. However, the importance of each of these factors and how they interact remains a matter of debate. Here, we disentangle these factors by analyzing their influence over time. For this purpose, we develop a saliency model that is based on the internal representation of a recent early spatial vision model to measure the low-level, bottom-up factor. To measure the influence of high-level, bottom-up features, we use a recent deep neural network-based saliency model. To account for top-down influences, we evaluate the models on two large data sets with different tasks: first, a memorization task and, second, a search task. Our results lend support to a separation of visual scene exploration into three phases: the first saccade, an initial guided exploration characterized by a gradual broadening of the fixation density, and a steady state that is reached after roughly 10 fixations. Saccade-target selection during the initial exploration and in the steady state is related to similar areas of interest, which are better predicted when including high-level features. In the search data set, fixation locations are determined predominantly by top-down processes. In contrast, the first fixation follows a different fixation density and contains a strong central fixation bias. Nonetheless, first fixations are guided strongly by image properties, and as early as 200 ms after image onset, fixations are better predicted by high-level information. We conclude that any low-level, bottom-up factors are mainly limited to the generation of the first saccade. All saccades are better explained when high-level features are considered, and later, this high-level, bottom-up control can be overruled by top-down influences. KW - saliency KW - fixations KW - natural scenes KW - visual search KW - eye movements Y1 - 2019 U6 - https://doi.org/10.1167/19.3.1 SN - 1534-7362 VL - 19 IS - 3 PB - Association for Research in Vision and Opthalmology CY - Rockville ER - TY - JOUR A1 - Schotter, Elizabeth Roye A1 - von der Malsburg, Titus Raban A1 - Leinenger, Mallorie T1 - Forced Fixations, Trans-Saccadic Integration, and Word Recognition BT - Evidence for a Hybrid Mechanism of Saccade Triggering in Reading JF - Journal of experimental psychology : Learning, memory, and cognition N2 - Recent studies using the gaze-contingent boundary paradigm reported a reversed preview benefit- shorter fixations on a target word when an unrelated preview was easier to process than the fixated target (Schotter & Leinenger, 2016). This is explained viaforeedfixatiotzs-short fixations on words that would ideally be skipped (because lexical processing has progressed enough) but could not be because saccade planning reached a point of no return. This contrasts with accounts of preview effects via trans-saccadic integration-shorter fixations on a target word when the preview is more similar to it (see Cutter. Drieghe, & Liversedge, 2015). In addition, if the previewed word-not the fixated target-determines subsequent eye movements, is it also this word that enters the linguistic processing stream? We tested these accounts by having 24 subjects read 150 sentences in the boundary paradigm in which both the preview and target were initially plausible but later one, both, or neither became implausible, providing an opportunity to probe which one was linguistically encoded. In an intervening buffer region, both words were plausible, providing an opportunity to investigate trans-saccadic integration. The frequency of the previewed word affected progressive saccades (i.e.. forced fixations) as well as when transsaccadic integration failure increased regressions, but, only the implausibility of the target word affected semantic encoding. These data support a hybrid account of saccadic control (Reingold, Reichle. Glaholt, & Sheridan, 2012) driven by incomplete (often parafoveal) word recognition, which occurs prior to complete (often foveal) word recognition. KW - parafoveal processing KW - word recognition KW - regressive saccades KW - eye movements KW - reading Y1 - 2019 U6 - https://doi.org/10.1037/xlm0000617 SN - 0278-7393 SN - 1939-1285 VL - 45 IS - 4 SP - 677 EP - 688 PB - American Psychological Association CY - Washington ER - TY - THES A1 - Abdelwahab Hussein Abdelwahab Elsayed, Ahmed T1 - Probabilistic, deep, and metric learning for biometric identification from eye movements N2 - A central insight from psychological studies on human eye movements is that eye movement patterns are highly individually characteristic. They can, therefore, be used as a biometric feature, that is, subjects can be identified based on their eye movements. This thesis introduces new machine learning methods to identify subjects based on their eye movements while viewing arbitrary content. The thesis focuses on probabilistic modeling of the problem, which has yielded the best results in the most recent literature. The thesis studies the problem in three phases by proposing a purely probabilistic, probabilistic deep learning, and probabilistic deep metric learning approach. In the first phase, the thesis studies models that rely on psychological concepts about eye movements. Recent literature illustrates that individual-specific distributions of gaze patterns can be used to accurately identify individuals. In these studies, models were based on a simple parametric family of distributions. Such simple parametric models can be robustly estimated from sparse data, but have limited flexibility to capture the differences between individuals. Therefore, this thesis proposes a semiparametric model of gaze patterns that is flexible yet robust for individual identification. These patterns can be understood as domain knowledge derived from psychological literature. Fixations and saccades are examples of simple gaze patterns. The proposed semiparametric densities are drawn under a Gaussian process prior centered at a simple parametric distribution. Thus, the model will stay close to the parametric class of densities if little data is available, but it can also deviate from this class if enough data is available, increasing the flexibility of the model. The proposed method is evaluated on a large-scale dataset, showing significant improvements over the state-of-the-art. Later, the thesis replaces the model based on gaze patterns derived from psychological concepts with a deep neural network that can learn more informative and complex patterns from raw eye movement data. As previous work has shown that the distribution of these patterns across a sequence is informative, a novel statistical aggregation layer called the quantile layer is introduced. It explicitly fits the distribution of deep patterns learned directly from the raw eye movement data. The proposed deep learning approach is end-to-end learnable, such that the deep model learns to extract informative, short local patterns while the quantile layer learns to approximate the distributions of these patterns. Quantile layers are a generic approach that can converge to standard pooling layers or have a more detailed description of the features being pooled, depending on the problem. The proposed model is evaluated in a large-scale study using the eye movements of subjects viewing arbitrary visual input. The model improves upon the standard pooling layers and other statistical aggregation layers proposed in the literature. It also improves upon the state-of-the-art eye movement biometrics by a wide margin. Finally, for the model to identify any subject — not just the set of subjects it is trained on — a metric learning approach is developed. Metric learning learns a distance function over instances. The metric learning model maps the instances into a metric space, where sequences of the same individual are close, and sequences of different individuals are further apart. This thesis introduces a deep metric learning approach with distributional embeddings. The approach represents sequences as a set of continuous distributions in a metric space; to achieve this, a new loss function based on Wasserstein distances is introduced. The proposed method is evaluated on multiple domains besides eye movement biometrics. This approach outperforms the state of the art in deep metric learning in several domains while also outperforming the state of the art in eye movement biometrics. N2 - Die Art und Weise, wie wir unsere Augen bewegen, ist individuell charakteristisch. Augenbewegungen können daher zur biometrischen Identifikation verwendet werden. Die Dissertation stellt neuartige Methoden des maschinellen Lernens zur Identifzierung von Probanden anhand ihrer Blickbewegungen während des Betrachtens beliebiger visueller Inhalte vor. Die Arbeit konzentriert sich auf die probabilistische Modellierung des Problems, da dies die besten Ergebnisse in der aktuellsten Literatur liefert. Die Arbeit untersucht das Problem in drei Phasen. In der ersten Phase stützt sich die Arbeit bei der Entwicklung eines probabilistischen Modells auf Wissen über Blickbewegungen aus der psychologischen Literatur. Existierende Studien haben gezeigt, dass die individuelle Verteilung von Blickbewegungsmustern verwendet werden kann, um Individuen genau zu identifizieren. Existierende probabilistische Modelle verwenden feste Verteilungsfamilien in Form von parametrischen Modellen, um diese Verteilungen zu approximieren. Die Verwendung solcher einfacher Verteilungsfamilien hat den Vorteil, dass sie robuste Verteilungsschätzungen auch auf kleinen Mengen von Beobachtungen ermöglicht. Ihre Flexibilität, Unterschiede zwischen Personen zu erfassen, ist jedoch begrenzt. Die Arbeit schlägt daher eine semiparametrische Modellierung der Blickmuster vor, die flexibel und dennoch robust individuelle Verteilungen von Blickbewegungsmustern schätzen kann. Die modellierten Blickmuster können als Domänenwissen verstanden werden, das aus der psychologischen Literatur abgeleitet ist. Beispielsweise werden Verteilungen über Fixationsdauern und Sprungweiten (Sakkaden) bei bestimmten Vor- und Rücksprüngen innerhalb des Textes modelliert. Das semiparametrische Modell bleibt nahe des parametrischen Modells, wenn nur wenige Daten verfügbar sind, kann jedoch auch vom parametrischen Modell abweichen, wenn genügend Daten verfügbar sind, wodurch die Flexibilität erhöht wird. Die Methode wird auf einem großen Datenbestand evaluiert und zeigt eine signifikante Verbesserung gegenüber dem Stand der Technik der Forschung zur biometrischen Identifikation aus Blickbewegungen. Später ersetzt die Dissertation die zuvor untersuchten aus der psychologischen Literatur abgeleiteten Blickmuster durch ein auf tiefen neuronalen Netzen basierendes Modell, das aus den Rohdaten der Augenbewegungen informativere komplexe Muster lernen kann. Tiefe neuronale Netze sind eine Technik des maschinellen Lernens, bei der in komplexen, mehrschichtigen Modellen schrittweise abstraktere Merkmale aus Rohdaten extrahiert werden. Da frühere Arbeiten gezeigt haben, dass die Verteilung von Blickbewegungsmustern innerhalb einer Blickbewegungssequenz informativ ist, wird eine neue Aggrgationsschicht für tiefe neuronale Netze eingeführt, die explizit die Verteilung der gelernten Muster schätzt. Die vorgeschlagene Aggregationsschicht für tiefe neuronale Netze ist nicht auf die Modellierung von Blickbewegungen beschränkt, sondern kann als Verallgemeinerung von existierenden einfacheren Aggregationsschichten in beliebigen Anwendungen eingesetzt werden. Das vorgeschlagene Modell wird in einer umfangreichen Studie unter Verwendung von Augenbewegungen von Probanden evaluiert, die Videomaterial unterschiedlichen Inhalts und unterschiedlicher Länge betrachten. Das Modell verbessert die Identifikationsgenauigkeit im Vergleich zu tiefen neuronalen Netzen mit Standardaggregationsschichten und existierenden probabilistischen Modellen zur Identifikation aus Blickbewegungen. Damit das Modell zum Anwendungszeitpunkt beliebige Probanden identifizieren kann, und nicht nur diejenigen Probanden, mit deren Daten es trainiert wurde, wird ein metrischer Lernansatz entwickelt. Beim metrischen Lernen lernt das Modell eine Funktion, mit der die Ähnlichkeit zwischen Blickbewegungssequenzen geschätzt werden kann. Das metrische Lernen bildet die Instanzen in einen neuen Raum ab, in dem Sequenzen desselben Individuums nahe beieinander liegen und Sequenzen verschiedener Individuen weiter voneinander entfernt sind. Die Dissertation stellt einen neuen metrischen Lernansatz auf Basis tiefer neuronaler Netze vor. Der Ansatz repäsentiert eine Sequenz in einem metrischen Raum durch eine Menge von Verteilungen. Das vorgeschlagene Verfahren ist nicht spezifisch für die Blickbewegungsmodellierung, und wird in unterschiedlichen Anwendungsproblemen empirisch evaluiert. Das Verfahren führt zu genaueren Modellen im Vergleich zu existierenden metrischen Lernverfahren und existierenden Modellen zur Identifikation aus Blickbewegungen. KW - probabilistic deep metric learning KW - probabilistic deep learning KW - biometrics KW - eye movements KW - biometrische Identifikation KW - Augenbewegungen KW - probabilistische tiefe neuronale Netze KW - probabilistisches tiefes metrisches Lernen Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-467980 ER -