TY - JOUR A1 - Glatzel, Stefan A1 - Laschewsky, André A1 - Lutz, Jean-Francois T1 - Well-Defined uncharged polymers with a sharp UCST in water and in physiological milieu JF - Macromolecules : a publication of the American Chemical Society Y1 - 2011 U6 - https://doi.org/10.1021/ma102677k SN - 0024-9297 VL - 44 IS - 2 SP - 413 EP - 415 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Buller, Jens A1 - Laschewsky, André A1 - Lutz, Jean-Francois A1 - Wischerhoff, Erik T1 - Tuning the lower critical solution temperature of thermoresponsive polymers by biospecific recognition JF - Polymer Chemistry N2 - A thermosensitive statistical copolymer based on oligo(ethylene glycol) methacrylates incorporating biotin was synthesized by free radical copolymerisation. The influence of added avidin on its thermoresponsive behaviour was investigated. The specific binding of avidin to the biotinylated copolymers provoked a marked increase of the lower critical solution temperature. Y1 - 2011 U6 - https://doi.org/10.1039/c1py00001b SN - 1759-9954 VL - 2 IS - 7 SP - 1486 EP - 1489 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zehm, Daniel A1 - Laschewsky, André A1 - Heunemann, Peggy A1 - Gradzielski, Michael A1 - Prevost, Sylvain A1 - Liang, Hua A1 - Rabe, Jürgen P. A1 - Lutz, Jean-Francois T1 - Synthesis and self-assembly of amphiphilic semi-brush and dual brush block copolymers in solution and on surfaces JF - Polymer Chemistry N2 - The combination of two techniques of controlled free radical polymerization, namely the reversible addition fragmentation chain transfer (RAFT) and the atom transfer radical polymerization (ATRP) techniques, together with the use of a macromonomer allowed the synthesis of symmetrical triblock copolymers, designed as amphiphilic dual brushes. One type of brush was made of poly(n-butyl acrylate) as soft hydrophobic block, i.e. characterized by a low glass transition temperature, while the other one was made of hydrophilic poly(ethylene glycol) (PEG). The new triblock polymers represent "giant surfactants" according to their molecular architecture. The hydrophobic and hydrophilic blocks microphase separate in the bulk. In aqueous solution, they aggregate into globular micellar aggregates, their size being determined by the length of the stretched polymer molecules. As determined by the combination of various scattering techniques for the dual brush copolymer, a rather compact structure is formed, which is dominated by the large hydrophobic poly(n-butyl acrylate) block. The aggregation number for the dual brush is about 10 times larger than for the "semi-brush" precursor copolymer, due to the packing requirements for the much bulkier hydrophobic core. On mica surfaces the triblock copolymers adsorb with worm-like backbones and stretched out side chains. Y1 - 2011 U6 - https://doi.org/10.1039/c0py00200c SN - 1759-9954 VL - 2 IS - 1 SP - 137 EP - 147 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Wischerhoff, Erik A1 - Badi, Nezha A1 - Laschewsky, André A1 - Lutz, Jean-Francois ED - Börner, Hans Gerhard ED - Lutz, JF T1 - Smart polymer surfaces concepts and applications in biosciences JF - Advances in polymer science = Fortschritte der Hochpolymeren-Forschung JF - Advances in Polymer Science N2 - Stimuli-responsive macromolecules (i.e., pH-, thermo-, photo-, chemo-, and bioresponsive polymers) have gained exponential importance in materials science, nanotechnology, and biotechnology during the last two decades. This chapter describes the usefulness of this class of polymer for preparing smart surfaces (e.g., modified planar surfaces, particles surfaces, and surfaces of three-dimensional scaffolds). Some efficient pathways for connecting these macromolecules to inorganic, polymer, or biological substrates are described. In addition, some emerging bioapplications of smart polymer surfaces (e.g., antifouling surfaces, cell engineering, protein chromatography, tissue engineering, biochips, and bioassays) are critically discussed. KW - Antifouling surfaces KW - Bioactive surfaces KW - Biocompatible polymers KW - Bioseparation KW - Cell engineering KW - Polymer-modified surfaces KW - Stimuli-responsive polymers Y1 - 2011 SN - 978-3-642-20154-7 U6 - https://doi.org/10.1007/12_2010_88 SN - 0065-3195 VL - 240 IS - 1 SP - 1 EP - 33 PB - Springer CY - Berlin ER -