TY - GEN A1 - Batsios, Petros A1 - Ren, Xiang A1 - Baumann, Otto A1 - Larochelle, Denis A. A1 - Gräf, Ralph T1 - Src1 is a Protein of the Inner Nuclear Membrane Interacting with the Dictyostelium Lamin NE81 N2 - The nuclear envelope (NE) consists of the outer and inner nuclear membrane (INM), whereby the latter is bound to the nuclear lamina. Src1 is a Dictyostelium homologue of the helix-extension-helix family of proteins, which also includes the human lamin-binding protein MAN1. Both endogenous Src1 and GFP-Src1 are localized to the NE during the entire cell cycle. Immuno-electron microscopy and light microscopy after differential detergent treatment indicated that Src1 resides in the INM. FRAP experiments with GFP-Src1 cells suggested that at least a fraction of the protein could be stably engaged in forming the nuclear lamina together with the Dictyostelium lamin NE81. Both a BioID proximity assay and mis-localization of soluble, truncated mRFP-Src1 at cytosolic clusters consisting of an intentionally mis-localized mutant of GFP-NE81 confirmed an interaction of Src1 and NE81. Expression GFP-Src11–646, a fragment C-terminally truncated after the first transmembrane domain, disrupted interaction of nuclear membranes with the nuclear lamina, as cells formed protrusions of the NE that were dependent on cytoskeletal pulling forces. Protrusions were dependent on intact microtubules but not actin filaments. Our results indicate that Src1 is required for integrity of the NE and highlight Dictyostelium as a promising model for the evolution of nuclear architecture. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 263 KW - Dictyostelium KW - HeH-protein KW - LEM-domain protein KW - lamin KW - nuclear lamina KW - nucleolus KW - nucleus Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-97033 ER - TY - JOUR A1 - Batsios, Petros A1 - Ren, Xiang A1 - Baumann, Otto A1 - Larochelle, Denis A. A1 - Gräf, Ralph T1 - Src1 is a Protein of the Inner Nuclear Membrane Interacting with the Dictyostelium Lamin NE81 JF - Cells N2 - The nuclear envelope (NE) consists of the outer and inner nuclear membrane (INM), whereby the latter is bound to the nuclear lamina. Src1 is a Dictyostelium homologue of the helix-extension-helix family of proteins, which also includes the human lamin-binding protein MAN1. Both endogenous Src1 and GFP-Src1 are localized to the NE during the entire cell cycle. Immuno-electron microscopy and light microscopy after differential detergent treatment indicated that Src1 resides in the INM. FRAP experiments with GFP-Src1 cells suggested that at least a fraction of the protein could be stably engaged in forming the nuclear lamina together with the Dictyostelium lamin NE81. Both a BioID proximity assay and mis-localization of soluble, truncated mRFP-Src1 at cytosolic clusters consisting of an intentionally mis-localized mutant of GFP-NE81 confirmed an interaction of Src1 and NE81. Expression GFP-Src11–646, a fragment C-terminally truncated after the first transmembrane domain, disrupted interaction of nuclear membranes with the nuclear lamina, as cells formed protrusions of the NE that were dependent on cytoskeletal pulling forces. Protrusions were dependent on intact microtubules but not actin filaments. Our results indicate that Src1 is required for integrity of the NE and highlight Dictyostelium as a promising model for the evolution of nuclear architecture. KW - Dictyostelium KW - lamin KW - nuclear lamina KW - nucleus KW - nucleolus KW - HeH-protein KW - LEM-domain protein Y1 - 2016 U6 - https://doi.org/10.3390/cells5010013 SN - 2073-4409 VL - 5 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Richter, Katharina Natalia A1 - Rolke, Daniel A1 - Blenau, Wolfgang A1 - Baumann, Otto T1 - Secretory cells in honeybee hypopharyngeal gland: polarized organization and age-dependent dynamics of plasma membrane JF - Cell & tissue research N2 - The honeybee hypopharyngeal gland consists in numerous units, each comprising a secretory cell and a canal cell. The secretory cell discharges its products into a convoluted tubular membrane system, the canaliculus, which is surrounded at regular intervals by rings of actin filaments. Using probes for various membrane components, we analyze the organization of the secretory cells relative to the apicobasal configuration of epithelial cells. The canaliculus was defined by labeling with an antibody against phosphorylated ezrin/radixin/moesin (pERM), a marker protein for the apical membrane domain of epithelial cells. Anti-phosphotyrosine visualizes the canalicular system, possibly by staining the microvillar tips. The open end of the canaliculus leads to a region in which the secretory cell is attached to the canal cell by adherens and septate junctions. The remaining plasma membrane stains for Na,K-ATPase and spectrin and represents the basolateral domain. We also used fluorophore-tagged phalloidin, anti-phosphotyrosine and anti-pERM as probes for the canaliculus in order to describe fine-structural changes in the organization of the canalicular system during the adult life cycle. These probes in conjunction with fluorescence microscopy allow the fast and detailed three-dimensional analysis of the canalicular membrane system and its structural changes in a developmental mode or in response to environmental factors. KW - Hypopharyngeal gland KW - Cell polarity KW - Moesin KW - Actin cytoskeleton KW - Honeybee Y1 - 2016 U6 - https://doi.org/10.1007/s00441-016-2423-9 SN - 0302-766X SN - 1432-0878 VL - 366 SP - 163 EP - 174 PB - Springer CY - New York ER -