TY - THES A1 - Galushchinskiy, Alexey T1 - Carbon nitride: a flexible platform for net-oxidative and net-neutral photocatalysis BT - Kohlenstoffnitrid: Eine flexible Plattform für netzoxidative und netzneutrale Photokatalyse N2 - Solar photocatalysis is the one of leading concepts of research in the current paradigm of sustainable chemical industry. For actual practical implementation of sunlight-driven catalytic processes in organic synthesis, a cheap, efficient, versatile and robust heterogeneous catalyst is necessary. Carbon nitrides are a class of organic semiconductors who are known to fulfill these requirements. First, current state of solar photocatalysis in economy, industry and lab research is overviewed, outlining EU project funding, prospective synthetic and reforming bulk processes, small scale solar organic chemistry, and existing reactor designs and prototypes, concluding feasibility of the approach. Then, the photocatalytic aerobic cleavage of oximes to corresponding aldehydes and ketones by anionic poly(heptazine imide) carbon nitride is discussed. The reaction provides a feasible method of deprotection and formation of carbonyl compounds from nitrosation products and serves as a convenient model to study chromoselectivity and photophysics of energy transfer in heterogeneous photocatalysis. Afterwards, the ability of mesoporous graphitic carbon nitride to conduct proton-coupled electron transfer was utilized for the direct oxygenation of 1,3-oxazolidin-2-ones to corresponding 1,3-oxazlidine-2,4-diones. This reaction provides an easier access to a key scaffold of diverse types of drugs and agrochemicals. Finally, a series of novel carbon nitrides based on poly(triazine imide) and poly(heptazine imide) structure was synthesized from cyanamide and potassium rhodizonate. These catalysts demonstrated a good performance in a set of photocatalytic benchmark reactions, including aerobic oxidation, dual nickel photoredox catalysis, hydrogen peroxide evolution and chromoselective transformation of organosulfur precursors. Concluding, the scope of carbon nitride utilization for net-oxidative and net-neutral photocatalytic processes was expanded, and a new tunable platform for catalyst synthesis was discovered. N2 - Die solare Photokatalyse ist eines der führenden Forschungskonzepte im aktuellen Paradigma der nachhaltigen chemischen Industrie. Für die praktische Umsetzung von sonnenlichtgetriebenen katalytischen Prozessen in der organischen Synthese ist ein billiger, effizienter, vielseitiger und robuster heterogener Katalysator erforderlich. Kohlenstoffnitride sind eine Klasse von organischen Halbleitern, von denen bekannt ist, dass sie diese Anforderungen erfüllen. Zunächst wird ein Überblick über den aktuellen Stand der solaren Photokatalyse in Wirtschaft, Industrie und Laborforschung gegeben, wobei die Finanzierung von EU-Projekten, künftige Synthese- und Reformierungsprozesse in großen Mengen, organische Solarchemie in kleinem Maßstab sowie bestehende Reaktorkonstruktionen und -prototypen beschrieben und die Durchführbarkeit des Ansatzes erläutert werden. Anschließend wird die photokatalytische aerobe Spaltung von Oximen in die entsprechenden Aldehyde und Ketone durch anionisches Poly(heptazinimid)-Kohlenstoffnitrid diskutiert. Die Reaktion stellt eine praktikable Methode zur Entschützung und Bildung von Carbonylverbindungen aus Nitrosierungsprodukten dar und dient als geeignetes Modell zur Untersuchung der Chromoselektivität und der Photophysik der Energieübertragung in der heterogenen Photokatalyse. Anschließend wurde die Fähigkeit von mesoporösem graphitischem Kohlenstoffnitrid, protonengekoppelten Elektronentransfer zu leiten, für die direkte Oxygenierung von 1,3-Oxazolidin-2-onen zu den entsprechenden 1,3-Oxazlidin-2,4-Dionen genutzt. Diese Reaktion ermöglicht einen leichteren Zugang zu einem wichtigen Gerüst für verschiedene Arten von Medikamenten und Agrochemikalien. Schließlich wurde eine Reihe neuartiger Kohlenstoffnitride auf der Basis von Poly(triazinimid)- und Poly(heptazinimid)-Strukturen aus Cyanamid und Kaliumrhodizonat synthetisiert. Diese Katalysatoren zeigten eine gute Leistung in einer Reihe von photokatalytischen Benchmark-Reaktionen, einschließlich aerober Oxidation, dualer Nickel-Photoredox-Katalyse, Wasserstoffperoxid-Evolution und chromoselektiver Umwandlung von Organoschwefel-Vorläufern. Abschließend wurde der Anwendungsbereich von Kohlenstoffnitrid für netzoxidative und netzneutrale photokatalytische Prozesse erweitert und eine neue abstimmbare Plattform für die Katalysatorsynthese entdeckt. KW - carbon nitrides KW - Kohlenstoffnitriden KW - heterogeneous photocatalysis KW - heterogene Photokatalyse KW - organic synthesis KW - organische Synthese Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-610923 ER - TY - JOUR A1 - López-Salas, Nieves A1 - Albero, Josep T1 - CxNy BT - new carbon nitride organic photocatalysts JF - Frontiers in Materials N2 - The search for metal-free and visible light-responsive materials for photocatalytic applications has attracted the interest of not only academics but also the industry in the last decades. Since graphitic carbon nitride (g-C3N4) was first reported as a metal-free photocatalyst, this has been widely investigated in different light-driven reactions. However, the high recombination rate, low electrical conductivity, and lack of photoresponse in most of the visible range have elicited the search for alternatives. In this regard, a broad family of carbon nitride (CxNy) materials was anticipated several decades ago. However, the attention of the researchers in these materials has just been awakened in the last years due to the recent success in the syntheses of some of these materials (i.e., C3N3, C2N, C3N, and C3N5, among others), together with theoretical simulations pointing at the excellent physico-chemical properties (i.e., crystalline structure and chemical morphology, electronic configuration and semiconducting nature, or high refractive index and hardness, among others) and optoelectronic applications of these materials. The performance of CxNy, beyond C3N4, has been barely evaluated in real applications, including energy conversion, storage, and adsorption technologies, and further work must be carried out, especially experimentally, in order to confirm the high expectations raised by simulations and theoretical calculations. Herein, we have summarized the scarce literature related to recent results reporting the synthetic routes, structures, and performance of these materials as photocatalysts. Moreover, the challenges and perspectives at the forefront of this field using CxNy materials are disclosed. We aim to stimulate the research of this new generation of CxNy-based photocatalysts, beyond C3N4, with improved photocatalytic efficiencies by harnessing the striking structural, electronic, and optical properties of this new family of materials. KW - CXNY KW - carbon nitrides KW - C2N KW - C3N KW - C1N1 KW - C3N5 KW - photocatalysis Y1 - 2021 U6 - https://doi.org/10.3389/fmats.2021.772200 SN - 2296-8016 VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - THES A1 - Mazzanti, Stefano T1 - Novel photocatalytic processes mediated by carbon nitride photocatalysis T1 - Neuartige photokatalytische Prozesse vermittelt durch Kohlenstoffnitrid-Photokatalyse N2 - The key to reduce the energy required for specific transformations in a selective manner is the employment of a catalyst, a very small molecular platform that decides which type of energy to use. The field of photocatalysis exploits light energy to shape one type of molecules into others, more valuable and useful. However, many challenges arise in this field, for example, catalysts employed usually are based on metal derivatives, which abundance is limited, they cannot be recycled and are expensive. Therefore, carbon nitrides materials are used in this work to expand horizons in the field of photocatalysis. Carbon nitrides are organic materials, which can act as recyclable, cheap, non-toxic, heterogeneous photocatalysts. In this thesis, they have been exploited for the development of new catalytic methods, and shaped to develop new types of processes. Indeed, they enabled the creation of a new photocatalytic synthetic strategy, the dichloromethylation of enones by dichloromethyl radical generated in situ from chloroform, a novel route for the making of building blocks to be used for the productions of active pharmaceutical compounds. Then, the ductility of these materials allowed to shape carbon nitride into coating for lab vials, EPR capillaries, and a cell of a flow reactor showing the great potential of such flexible technology in photocatalysis. Afterwards, their ability to store charges has been exploited in the reduction of organic substrates under dark conditions, gaining new insights regarding multisite proton coupled electron transfer processes. Furthermore, the combination of carbon nitrides with flavins allowed the development of composite materials with improved photocatalytic activity in the CO2 photoreduction. Concluding, carbon nitrides are a versatile class of photoactive materials, which may help to unveil further scientific discoveries and to develop a more sustainable future. N2 - Der Schlüssel zur selektiven Reduzierung des Energieverbrauchs für bestimmte Reaktionen ist der Einsatz eines Katalysators, der entscheidet, welche Art von Energie verwendet werden soll. Bei der Photokatalyse wird Lichtenergie verwendet, um eine Art von Molekülen in andere umzuwandeln, die wertvoller und nützlicher sind. Im Gebiet der Photokatalyse gibt es jedoch viele Herausforderungen. Beispielsweise besitzen die verwendeten Katalysatoren üblicherweise eine Basis aus seltenen Erden, deren Verfügbarkeit begrenzt ist, die teuer sind und die nicht recycelt werden können. Daher werden in dieser Arbeit Kohlenstoffnitridmaterialien verwendet, um den Horizont der Photokatalyse zu erweitern. Kohlenstoffnitride sind organische Materialien, die als recycelbare, billige, ungiftige, heterogene Photokatalysatoren fungieren können. In dieser Arbeit wurden sie für die Entwicklung neuer katalytischer Methoden und in neuen Prozesstypen eingesetzt. Es konnte gezeigt werden, dass Kohlenstoffnitride für die Dichlormethylierung von Enonen, durch in-situ aus Chloroform erzeugte Dichlormethylradikale, benutzt werden können. Dies stellt eine neue photokatalytische Synthesestrategie dar und kann zur Herstellung von Bausteinen für pharmazeutische Wirkstoffe verwendet werden. Die Eigenschaften von Kohlenstoffnitriden ermöglichten es, Laborfläschchen, EPR-Kapillaren und die Zelle eines Durchflussreaktors damit zu beschichten, was ein großes Potenzial in der Photokatalyse darstellt. Im Weiteren wurde die Fähigkeit der Kohlenstoffnitride, Ladungen zu speichern, bei der Reduktion organischer Substrate unter lichtfreien Bedingungen genutzt, um neue Erkenntnisse über protonengekoppelte Elektronentransferprozesse an mehreren katalytischen Zentren zu gewinnen. Zusätzlich konnte gezeigt werden, dass aus Kohlenstoffnitriden und Flavinen Verbundwerkstoffen mit verbesserter photokatalytischer Aktivität bei der CO2-Photoreduktion hergestellt werden können. Zusammenfassend lässt sich sagen, dass Kohlenstoffnitride eine vielversprechende Klasse photoaktiver Materialien sind, die dazu beitragen können eine nachhaltigere Zukunft zu gestalten. KW - heterogeneous photocatalysis KW - carbon nitrides KW - organic synthesis KW - heterogene Photokatalyse KW - Kohlenstoffnitriden KW - organische Synthese Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-542099 ER - TY - THES A1 - Jordan, Thomas T1 - CxNy-materials from supramolecular precursors for “All-Carbon” composite materials T1 - CxNy-Materialien aus supramolekularen Precursoren für „All-Carbon“-Komposit-Materialien N2 - Among modern functional materials, the class of nitrogen-containing carbons combines non-toxicity and sustainability with outstanding properties. The versatility of this materials class is based on the opportunity to tune electronic and catalytic properties via the nitrogen content and –motifs: This ranges from the electronically conducting N-doped carbon, where few carbon atoms in the graphitic lattice are substituted by nitrogen, to the organic semiconductor graphitic carbon nitride (g-C₃N₄), with a structure based on tri-s-triazine units. In general, composites can reveal outstanding catalytic properties due to synergistic behavior, e.g. the formation of electronic heterojunctions. In this thesis, the formation of an “all-carbon” heterojunction was targeted, i.e. differences in the electronic properties of the single components were achieved by the introduction of different nitrogen motives into the carbon lattice. Such composites are promising as metal-free catalysts for the photocatalytic water splitting. Here, hydrogen can be generated from water by light irradiation with the use of a photocatalyst. As first part of the heterojunction, the organic semiconductor g-C₃N₄ was employed, because of its suitable band structure for photocatalytic water splitting, high stability and non-toxicity. The second part was chosen as C₂N, a recently discovered semiconductor. Compared to g-C₃N₄, the less nitrogen containing C₂N has a smaller band gap and a higher absorption coefficient in the visible light range, which is expected to increase the optical absorption in the composite eventually leading to an enhanced charge carrier separation due to the formation of an electronic heterojunction. The aim of preparing an “all-carbon” composite included the research on appropriate precursors for the respective components g-C₃N₄ and C₂N, as well as strategies for appropriate structuring. This was targeted by applying precursors which can form supramolecular pre-organized structures. This allows for more control over morphology and atom patterns during the carbonization process. In the first part of this thesis, it was demonstrated how the photocatalytic activity of g-C₃N₄ can be increased by the targeted introduction of defects or surface terminations. This was achieved by using caffeine as a “growth stopping” additive during the formation of the hydrogen-bonded supramolecular precursor complexes. The increased photocatalytic activity of the obtained materials was demonstrated with dye degradation experiments. The second part of this thesis was focused on the synthesis of the second component C₂N. Here, a deep eutectic mixture from hexaketocyclohexane and urea was structured using the biopolymer chitosan. This scaffolding resulted in mesoporous nitrogen-doped carbon monoliths and beads. CO₂- and dye-adsorption experiments with the obtained monolith material revealed a high isosteric heat of CO₂-adsorption and showed the accessibility of the monolithic pore system to larger dye molecules. Furthermore, a novel precursor system for C₂N was explored, based on organic crystals from squaric acid and urea. The respective C₂N carbon with an unusual sheet-like morphology could be synthesized by carbonization of the crystals at 550 °C. With this precursor system, also microporous C₂N carbon with a BET surface area of 865 m²/g was obtained by “salt-templating” with ZnCl₂. Finally, the preparation of a g-C₃N₄/C₂N “all carbon” composite heterojunction was attempted by the self-assembly of g-C₃N₄ and C₂N nanosheets and tested for photocatalytic water splitting. Indeed, the composites revealed high rates of hydrogen evolution when compared to bulk g-C₃N₄. However, the increased catalytic activity was mainly attributed to the high surface area of the nanocomposites rather than to the composition. With regard to alternative composite synthesis ways, first experiments indicated N-Methyl-2-pyrrolidon to be suitable for higher concentrated dispersion of C₂N nanosheets. Eventually, the results obtained in this thesis provide precious synthetic contributions towards the preparation and processing of carbon/nitrogen compounds for energy applications. N2 - Eine interessante Materialklasse für technologische Anwendungen sind Kohlenstoff/Stickstoff-Materialien, die sich durch Ungiftigkeit und Umweltfreundlichkeit bei gleichzeitig interessanten katalytischen Eigenschaften auszeichnen. Die Vielseitigkeit dieser Materialkasse basiert auf der Möglichkeit ihre katalytischen und elektronischen Eigenschaften über Stickstoff-Anteil und –Funktionalitäten zu beeinflussen. Die vorliegende Arbeit fokussierte sich auf Komposite zwischen verschiedenen Kohlenstoff/Stickstoff-Derivaten, für welche aufgrund ihrer unterschiedlichen elektronischen Eigenschaften die Bildung elektronischer Heteroübergänge erwartet werden kann. Solche Komposite sind vielversprechende Materialien für die Erzeugung von Wasserstoff durch die photokatalytische Spaltung von Wasser. Für die eine Komponente des Komposits wurde das graphitische Kohlenstoffnitrid g-C₃N₄ eingesetzt, welches durch seine elektronische Struktur und Stabilität ein geeignetes Material für die photokatalytische Wasserspaltung ist. Für die andere Komponente des Komposits wurde eine erst kürzlich erstmalig beschriebene Kohlenstoff/Stickstoff Verbindung eingesetzt, das Kohlenstoffnitrid C₂N. Für dieses Komposit ist eine im Vergleich zu den einzelnen Komponenten stark erhöhte photokatalytische Aktivität zu erwarten. Neben dem Ziel der Herstellung eines solchen Komposits, fokussierte sich diese Arbeit auch darauf, neue Wege zur Synthese und Strukturierung der einzelnen Komponenten zu entwickeln. Dies sollte über supramolekulare Präkursor-Komplexe erfolgen, mit welchen eine erhöhte Einflussnahme auf Karbonisierungsprozesse erlangt werden kann. Im ersten Teil der Arbeit, welcher auf das graphitische Kohlenstoffnitrid g-C₃N₄ fokussiert war, wurde gezeigt wie die photokatalytische Aktivität dieser Komponente durch den gezielten Einbau von Defekten erhöht werden kann. Dies wurde über einen durch Koffein modifizierten supramolekularen Komplex als Präkursor erreicht. Die erhöhte photokatalytische Aktivität wurde über Farbstoff-Zersetzung nachgewiesen. Der zweite Teil der Arbeit war auf die Herstellung und Strukturierung der neuartigen Verbindung C₂N fokussiert. Hier wurde gezeigt, wie eine eutektische Mischung zwischen Hexaketocyclohexan und Harnstoff als C₂N-Präkursor mit dem Polysaccharid Chitosan strukturiert werden kann. Hierbei wurden poröse Stickstoffhaltige Kohlenstoff-Monolithen und -Perlen erhalten, die eine hohe Adsorptionswärme für die CO₂-Adsorption zeigten. Weiterhin wurde ein neuartiger Präkursor für C₂N vorgestellt, eine organisch-kristalline Verbindung zwischen Quadratsäure und Harnstoff. Durch Karbonisation dieser Verbindung bei 550 °C wurde ein Material mit einer Zusammensetzung von C₂N und einer ungewöhnlichen, schichtartigen Morphologie erhalten. Über eine eutektische Salzschmelze mit Zinkchlorid, konnte mit diesem Präkursor-System auch mikroporöser C₂N-Kohlenstoff mit einer BET-Oberfläche von 865 m²/g hergestellt werden. Im letzten Teil dieser Arbeit wurde die Herstellung des g-C₃N₄/C₂N-Komposits versucht, über die Selbstassemblierung von kolloidal dispergierten g-C₃N₄- und C₂N-Nanopartikeln. Die Nanopartikel wurden über Ultraschall-Behandlungen von Dispersionen dieser Komponenten hergestellt. Die erhaltenen Komposite zeigten eine hohe Aktivität zur photokatalytischen Wasserspaltung, wobei dies eher auf die hohe Oberfläche der Nanopartikel als auf ihre Zusammensetzung zurückgeführt wurde. Im Hinblick auf mögliche Alternativen zur Kompositherstellung, wurden erste Experimente zu höher konzentrierten kolloidalen Dispersionen von C₂N in dem organischen Lösungsmittel N-Methyl-2-pyrrolidon durchgeführt. Zusammenfassend, die Ergebnisse die in dieser Arbeit erhalten wurden, liefern einen wertvollen Beitrag zur Synthese und Strukturierung von Kohlenstoff/Stickstoff-Materialien sowie deren Anwendungen im Bereich alternative Energien. KW - carbon nitrides KW - supramolecular chemistry KW - porous materials KW - composite materials KW - photocatalysis KW - Kohlenstoffnitride KW - supramolekulare Chemie KW - poröse Materialien KW - Komposite KW - Photokatalyse Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-398855 ER -