TY - JOUR A1 - Bronstert, Axel A1 - Krol, Marten S. A1 - Jaeger, Annekathrin A1 - Güntner, Andreas A1 - Hauschild, M. A1 - Döll, P. T1 - Integrated modelling of water availability an management in the semi-arid Notheast of Brazil Y1 - 2000 ER - TY - JOUR A1 - Bronstert, Axel A1 - Güntner, Andreas T1 - A large-scale hydrological model for the semi-arid environment of north-eastern Brazil Y1 - 2000 ER - TY - JOUR A1 - Güntner, Andreas A1 - Olsson, J. A1 - Calver, Ann A1 - Gannon, B. T1 - Cascade-based disaggregation of continuous rainfall time series : the influence of climate Y1 - 2001 ER - TY - JOUR A1 - Güntner, Andreas A1 - Bronstert, Axel T1 - WAVES - Water availability, vulnerability of ecosystems and society in the northeast of Brazil : sub-project large-scale hydrological modelling Y1 - 2001 ER - TY - JOUR A1 - Güntner, Andreas A1 - Bronstert, Axel T1 - Modelling the effects of climate change on water availability in the semi-arid of North-East Brazil Y1 - 2001 ER - TY - JOUR A1 - Bronstert, Axel A1 - Krol, Marten S. A1 - Jaeger, Annekathrin A1 - Güntner, Andreas T1 - Integrated modelling of climate, water, soil, agricultural and socio-economic processes : a general introduction to the methodology and some exemplary results from the semi-arid Northeast of Brazil Y1 - 2002 ER - TY - JOUR A1 - Güntner, Andreas A1 - Bronstert, Axel T1 - Process-based modelling of large-scale water availability in a semi-arid environment : process representation and scaling issues Y1 - 2002 ER - TY - JOUR A1 - Güntner, Andreas A1 - Bronstert, Axel T1 - Representation of landscape variability and lateral redistribution processes for large-scale hydrological modelling in semi-arid areas N2 - The spatial variability of landscape features such as topography, soils and vegetation defines the spatial pattern of hydrological state variables like soil moisture. Spatial variability thereby controls the functional behaviour of the landscape in terms of its runoff response. A consequence of spatial variability is that exchange processes between landscape patches can occur at various spatial scales ranging from the plot to the basin scale. In semi-arid areas, the lateral redistribution of surface runoff between adjacent landscape patches is an important process. For applications to large river basins of 10(4)-10(5) km(2) in size, a multi-scale landscape discretization scheme is presented in this paper. The landscape is sub-divided into modelling units within a hierarchy of spatial scale levels. By delineating areas characterized by a typical toposequence, organised and random variability of landscape characteristics is captured in the model. Using runoff-runon relationships with transition frequencies based on areal fractions of modelling units, lateral surface and subsurface water fluxes between modelling units at the hillslope scale are represented. Thus, the new approach allows for a manageable description of interactions between fine-scale landscape features for inclusion in coarse-scale models. Model applications for the State of Ceara (148,000 km(2)) in the north- east of Brazil demonstrate the importance of taking into account landscape variability and interactions between landscape patches in a semi-arid environment. Using mean landscape characteristics leads to a considerable underestimation of infiltration-excess surface runoff and total simulated runoff. Re-infiltration of surface runoff and lateral redistribution processes between landscape patches cause a reduction of runoff volumes at the basin scale and contribute to the amplification of variations in runoff volumes relative to variations in rainfall volumes for semi-arid areas. (C) 2004 Elsevier B.V. All rights reserved Y1 - 2004 SN - 0022-1694 ER - TY - JOUR A1 - Güntner, Andreas A1 - Krol, Marten S. A1 - de Arajo, José Carlos A1 - Bronstert, Axel T1 - Simple water balance modelling of surface reservoir systems in a large data-scarce semiarid region N2 - Water resources in dryland areas are often provided by numerous surface reservoirs. As a basis for securing future water supply, the dynamics of reservoir systems need to be simulated for large river basins, accounting for environmental change and an increasing water demand. For the State of Ceara in semiarid Northeast Brazil, with several thousands of reservoirs, a simple deterministic water balance model is presented. Within a cascade-type approach, the reservoirs are grouped into six classes according to storage capacity, rules for flow routing between reservoirs of different size are defined, and water withdrawal and return flow due to human water use is accounted for. While large uncertainties in model applications exist, particularly in terms of reservoir operation rules, model validation against observed reservoir storage volumes shows that the approach is a reasonable simplification to assess surface water availability in large river basins. The results demonstrate the large impact of reservoir storage on downstream flow and stress the need for a coupled simulation of runoff generation, network redistribution and water use Y1 - 2004 SN - 0262-6667 ER - TY - JOUR A1 - De Araujo, Josè Carlos A1 - Güntner, Andreas A1 - Bronstert, Axel T1 - Loss of reservoir volume by sediment deposition and its impact on water availability in semiarid Brazil N2 - A methodology is presented to assess the impact of reservoir silting oil water availability for semiarid environments, applied to seven representative watersheds in the state of Ceara, Brazil. Water yield is computed using stochastic modelling for several reliability levels and water yield reduction is quantified for the focus areas. The yield-volume elasticity concept, which indicates the relative yield reduction in terms of relative storage capacity of the reservoirs, is presented and applied. Results chow that storage capacity was reduced by 0.2% year(-1) due to silting, that the risk of water shortage almost doubled in less than 50 years for the most critical reservoir, and that reduction of storage capacity had three times more impact oil yield reduction than the increase in evaporation. Average 90% reliable yield-volume elasticity was 0.8, which means that the global water yield (Q(90)) in Ceara is expected to diminish yearly by 388 L s(-1) due to reservoir silting Y1 - 2006 UR - http://www.atypon-link.com/IAHS/loi/hysj U6 - https://doi.org/10.1623/hysj.51.1.157 SN - 0262-6667 ER - TY - JOUR A1 - Krol, Maarten A1 - Jaeger, Annekathrin A1 - Bronstert, Axel A1 - Güntner, Andreas T1 - Integrated modelling of climate, water, soil, agricultural and socio-economic processes: A general introduction of the methodology and some exemplary results from the semi-arid north-east of Brazil JF - Journal of hydrology N2 - Many semi-arid regions are characterised by water scarcity and vulnerability of natural resources, pronounced climatic variability and social stress. Integrated studies including climatotogy, hydrology, and socio-econornic studies are required both for analysing the dynamic natural conditions and to assess possible strategies to make semi-arid regions Less vulnerable to the present and changing climate. The model introduced here dynamically describes the retationships between climate forcing, water availability, agriculture and selected societal processes. The model has been tailored to simulate the rather complex situation in the semi-and north-eastern Brazil in a quantitative manner including the sensitivity to external forcing, such as climate change. The selected results presented show the general functioning of the integrated model, with a primary focus on climate change impacts. It becomes evident that due to Large differences in regional climate scenarios, it is still impossible to give quantitative values for the most probable development, e.g., to assign probabilities to the simulated results. However, it becomes clear that water is a very crucial factor, and that an efficient and ecologically sound water management is a key question for the further development of that semi-arid region. The simulation results show that, independent of the differences in climate change scenarios, rain-fed farming is more vulnerable to drought impacts compared to irrigated farming. However, the capacity of irrigation and other water infrastructure systems to enhance resilience in respect to climatic fluctuations is significantly constrained given a significant negative precipitation trend. (c) 2005 Elsevier B.V. All rights reserved. KW - integrated modelling KW - integrated river basin management KW - water resources management KW - semi-arid hydrology KW - climate change Y1 - 2006 U6 - https://doi.org/10.1016/j.jhydrol.2005.12.021 SN - 0022-1694 VL - 328 IS - 3-4 SP - 417 EP - 431 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Nguyen Nghia Hung, A1 - Delgado, José Miguel Martins A1 - Güntner, Andreas A1 - Merz, Bruno A1 - Bardossy, Andras A1 - Apel, Heiko T1 - Sedimentation in the floodplains of the Mekong Delta, Vietnam. Part I: suspended sediment dynamics JF - Hydrological processes N2 - Suspended sediment is the primary source for a sustainable agro-ecosystem in the Mekong Delta by providing nutrient input for the subsequent cropping season. In addition, the suspended sediment concentration (SSC) plays an important role in the erosion and deposition processes in the Delta; that is, it influences the morphologic development and may counteract the deltaic subsidence and sea level rise. Despite this importance, little is known about the dynamics of suspended sediment in the floodplains of the Mekong Delta. In particular, quantitative analyses are lacking mainly because of data scarcity with respect to the inundation processes in the floodplains. In 2008, therefore, a comprehensive in situ system to monitor the dynamics of suspended sediment in a study area located in the Plain of Reeds was established, aiming at the characterization and quantification of suspended sediment dynamics in the deeply inundated parts of the Vietnamese part of the Mekong Delta. The monitoring system was equipped with seven water quality-monitoring stations. They have a robust design and autonomous power supply suitable for operation on inundated floodplains, enabling the collection of reliable data over a long period of time with a high temporal resolution. The data analysis shows that the general seasonal dynamics of suspended sediment transport in the Delta is controlled by two main mechanisms: the flood wave of the Mekong River and the tidal backwater influences from the coast. In the channel network, SSC decreases exponentially with distance from the Mekong River. The anthropogenic influence on SSC could also be identified for two periods: at the start of the floodplain inundation and at the end of the flood period, when subsequent paddy rice crops are prepared. Based on the results, we recommend an operation scheme for the sluice gates, which intends to distribute the sediment and thus the nutrients equally over the floodplain. KW - Mekong Delta KW - floodplain KW - suspended sediment KW - sediment dynamics KW - floodplain sedimentation Y1 - 2014 U6 - https://doi.org/10.1002/hyp.9856 SN - 0885-6087 SN - 1099-1085 VL - 28 IS - 7 SP - 3132 EP - 3144 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Duethmann, Doris A1 - Bolch, Tobias A1 - Farinotti, Daniel A1 - Kriegel, David A1 - Vorogushyn, Sergiy A1 - Merz, Bruno A1 - Pieczonka, Tino A1 - Jiang, Tong A1 - Su, Buda A1 - Güntner, Andreas T1 - Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia JF - Water resources research N2 - Observed streamflow of headwater catchments of the Tarim River (Central Asia) increased by about 30% over the period 1957-2004. This study aims at assessing to which extent these streamflow trends can be attributed to changes in air temperature or precipitation. The analysis includes a data-based approach using multiple linear regression and a simulation-based approach using a hydrological model. The hydrological model considers changes in both glacier area and surface elevation. It was calibrated using a multiobjective optimization algorithm with calibration criteria based on glacier mass balance and daily and interannual variations of discharge. The individual contributions to the overall streamflow trends from changes in glacier geometry, temperature, and precipitation were assessed using simulation experiments with a constant glacier geometry and with detrended temperature and precipitation time series. The results showed that the observed changes in streamflow were consistent with the changes in temperature and precipitation. In the Sari-Djaz catchment, increasing temperatures and related increase of glacier melt were identified as the dominant driver, while in the Kakshaal catchment, both increasing temperatures and increasing precipitation played a major role. Comparing the two approaches, an advantage of the simulation-based approach is the fact that it is based on process-based relationships implemented in the hydrological model instead of statistical links in the regression model. However, data-based approaches are less affected by model parameter and structural uncertainties and typically fast to apply. A complementary application of both approaches is recommended. KW - trend analysis KW - data-based KW - simulation-based KW - multiobjective calibration KW - hydrological modeling KW - glacier melt Y1 - 2015 U6 - https://doi.org/10.1002/2014WR016716 SN - 0043-1397 SN - 1944-7973 VL - 51 IS - 6 SP - 4727 EP - 4750 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Singh, Alka A1 - Seitz, Florian A1 - Eicker, Annette A1 - Güntner, Andreas T1 - Water Budget Analysis within the Surrounding of Prominent Lakes and Reservoirs from Multi-Sensor Earth Observation Data and Hydrological Models: Case Studies of the Aral Sea and Lake Mead JF - Remote sensing N2 - The hydrological budget of a region is determined based on the horizontal and vertical water fluxes acting in both inward and outward directions. These integrated water fluxes vary, altering the total water storage and consequently the gravitational force of the region. The time-dependent gravitational field can be observed through the Gravity Recovery and Climate Experiment (GRACE) gravimetric satellite mission, provided that the mass variation is above the sensitivity of GRACE. This study evaluates mass changes in prominent reservoir regions through three independent approaches viz. fluxes, storages, and gravity, by combining remote sensing products, in-situ data and hydrological model outputs using WaterGAP Global Hydrological Model (WGHM) and Global Land Data Assimilation System (GLDAS). The results show that the dynamics revealed by the GRACE signal can be better explored by a hybrid method, which combines remote sensing-based reservoir volume estimates with hydrological model outputs, than by exclusive model-based storage estimates. For the given arid/ semi-arid regions, GLDAS based storage estimations perform better than WGHM. KW - GRACE KW - water budget KW - reservoir KW - water fluxes KW - GLDAS KW - WGHM KW - Aral Sea KW - Lake Mead Y1 - 2016 U6 - https://doi.org/10.3390/rs8110953 SN - 2072-4292 VL - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Francke, Till A1 - Förster, Saskia A1 - Brosinsky, Arlena A1 - Sommerer, Erik A1 - Lopez-Tarazonl, Jose Andres A1 - Güntner, Andreas A1 - Batalla, Ramon J. A1 - Bronstert, Axel T1 - Water and sediment fluxes in Mediterranean mountainous regions BT - comprehensive dataset for hydro-sedimentological analyses and modelling in a mesoscale catchment (River Isabena, NE Spain) JF - Earth System Science Data N2 - A comprehensive hydro-sedimentological dataset for the Isabena catchment, northeastern (NE) Spain, for the period 2010-2018 is presented to analyse water and sediment fluxes in a Mediterranean mesoscale catchment. The dataset includes rainfall data from 12 rain gauges distributed within the study area complemented by meteorological data of 12 official meteo-stations. It comprises discharge data derived from water stage measurements as well as suspended sediment concentrations (SSCs) at six gauging stations of the River Isabena and its sub-catchments. Soil spectroscopic data from 351 suspended sediment samples and 152 soil samples were collected to characterize sediment source regions and sediment properties via fingerprinting analyses. The Isabena catchment (445 km(2)) is located in the southern central Pyrenees ranging from 450 m to 2720 m a.s.l.; together with a pronounced topography, this leads to distinct temperature and precipitation gradients. The River Isabena shows marked discharge variations and high sediment yields causing severe siltation problems in the downstream Barasona Reservoir. The main sediment source is badland areas located on Eocene marls that are well connected to the river network. The dataset features a comprehensive set of variables in a high spatial and temporal resolution suitable for the advanced process understanding of water and sediment fluxes, their origin and connectivity and sediment budgeting and for the evaluation and further development of hydro-sedimentological models in Mediterranean mesoscale mountainous catchments. Y1 - 2018 U6 - https://doi.org/10.5194/essd-10-1063-2018 SN - 1866-3508 SN - 1866-3516 VL - 10 IS - 2 SP - 1063 EP - 1075 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Heinrich, Ingo A1 - Balanzategui, Daniel A1 - Bens, Oliver A1 - Blasch, Gerald A1 - Blume, Theresa A1 - Boettcher, Falk A1 - Borg, Erik A1 - Brademann, Brian A1 - Brauer, Achim A1 - Conrad, Christopher A1 - Dietze, Elisabeth A1 - Dräger, Nadine A1 - Fiener, Peter A1 - Gerke, Horst H. A1 - Güntner, Andreas A1 - Heine, Iris A1 - Helle, Gerhard A1 - Herbrich, Marcus A1 - Harfenmeister, Katharina A1 - Heussner, Karl-Uwe A1 - Hohmann, Christian A1 - Itzerott, Sibylle A1 - Jurasinski, Gerald A1 - Kaiser, Knut A1 - Kappler, Christoph A1 - Koebsch, Franziska A1 - Liebner, Susanne A1 - Lischeid, Gunnar A1 - Merz, Bruno A1 - Missling, Klaus Dieter A1 - Morgner, Markus A1 - Pinkerneil, Sylvia A1 - Plessen, Birgit A1 - Raab, Thomas A1 - Ruhtz, Thomas A1 - Sachs, Torsten A1 - Sommer, Michael A1 - Spengler, Daniel A1 - Stender, Vivien A1 - Stüve, Peter A1 - Wilken, Florian T1 - Interdisciplinary Geo-ecological Research across Time Scales in the Northeast German Lowland Observatory (TERENO-NE) JF - Vadose zone journal N2 - The Northeast German Lowland Observatory (TERENO-NE) was established to investigate the regional impact of climate and land use change. TERENO-NE focuses on the Northeast German lowlands, for which a high vulnerability has been determined due to increasing temperatures and decreasing amounts of precipitation projected for the coming decades. To facilitate in-depth evaluations of the effects of climate and land use changes and to separate the effects of natural and anthropogenic drivers in the region, six sites were chosen for comprehensive monitoring. In addition, at selected sites, geoarchives were used to substantially extend the instrumental records back in time. It is this combination of diverse disciplines working across different time scales that makes the observatory TERENO-NE a unique observation platform. We provide information about the general characteristics of the observatory and its six monitoring sites and present examples of interdisciplinary research activities at some of these sites. We also illustrate how monitoring improves process understanding, how remote sensing techniques are fine-tuned by the most comprehensive ground-truthing site DEMMIN, how soil erosion dynamics have evolved, how greenhouse gas monitoring of rewetted peatlands can reveal unexpected mechanisms, and how proxy data provides a long-term perspective of current ongoing changes. Y1 - 2018 U6 - https://doi.org/10.2136/vzj2018.06.0116 SN - 1539-1663 VL - 17 IS - 1 PB - Soil Science Society of America CY - Madison ER - TY - JOUR A1 - Mikolaj, Michal A1 - Reich, Marvin A1 - Güntner, Andreas T1 - Resolving geophysical signals by terrestrial gravimetry BT - a time domain assessment of the correction-induced uncertainty JF - Journal of geophysical research : Solid earth N2 - Terrestrial gravimetry is increasingly used to monitor mass transport processes in geophysics boosted by the ongoing technological development of instruments. Resolving a particular phenomenon of interest, however, requires a set of gravity corrections of which the uncertainties have not been addressed up to now. In this study, we quantify the time domain uncertainty of tide, global atmospheric, large-scale hydrological, and nontidal ocean loading corrections. The uncertainty is assessed by comparing the majority of available global models for a suite of sites worldwide. The average uncertainty expressed as root-mean-square error equals 5.1nm/s(2), discounting local hydrology or air pressure. The correction-induced uncertainty of gravity changes over various time periods of interest ranges from 0.6nm/s(2) for hours up to a maximum of 6.7nm/s(2) for 6months. The corrections are shown to be significant and should be applied for most geophysical applications of terrestrial gravimetry. From a statistical point of view, however, resolving subtle gravity effects in the order of few nanometers per square second is challenged by the uncertainty of the corrections. Plain Language Summary Many scientists are exploring ways to benefit from gravity measurements in fields of high societal relevance such as monitoring of volcanoes or measuring the amount of water in underground. Any application of such new methods, however, requires careful preparation of the gravity measurements. The intention of the preparation process is to ensure that the measurements do not contain information about processes that are not of interest. For that reason, the influence of atmosphere, ocean, tides, and hydrology needs to be reduced from the gravity. In this study, we investigate how this reduction process influences the quality of the measurement. We found that the precision degrades especially owing to the hydrology. The ocean plays an important role at sites close to the coast and the atmosphere at sites located in mountains. The overall errors of the reductions may complicate a reliable use of gravity measurements in certain studies focusing on very small signals. Nevertheless, the precision of gravity reductions alone does not obstruct a meaningful use of gravity measurements in most research fields. Details specifying the reduction precision are provided in this study allowing scientist dealing with gravity measurements to decide if their signal of interest can be reliably resolved. KW - gravity observations KW - Earth tides KW - atmosphere KW - hydrology KW - nontidal ocean loading Y1 - 2019 U6 - https://doi.org/10.1029/2018JB016682 SN - 2169-9313 SN - 2169-9356 VL - 124 IS - 2 SP - 2153 EP - 2165 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Mikolaj, Michal A1 - Güntner, Andreas A1 - Brunini, Claudio A1 - Wziontek, Hartmut A1 - Gende, Mauricio A1 - Schröder, Stephan A1 - Cassino, Augusto M. A1 - Pasquare, Alfredo A1 - Reich, Marvin A1 - Hartmann, Anne A1 - Oreiro, Fernando Ariel A1 - Pendiuk, Jonathan A1 - Guarracino, Luis A1 - Antokoletz, Ezequiel D. T1 - Hydrometeorological and gravity signals at the Argentine-German Geodetic Observatory (AGGO) in La Plata JF - Earth system science data N2 - The Argentine-German Geodetic Observatory (AGGO) is one of the very few sites in the Southern Hemisphere equipped with comprehensive cutting-edge geodetic instrumentation. The employed observation techniques are used for a wide range of geophysical applications. The data set provides gravity time series and selected gravity models together with the hydrometeorological monitoring data of the observatory. These parameters are of great interest to the scientific community, e.g. for achieving accurate realization of terrestrial and celestial reference frames. Moreover, the availability of the hydrometeorological products is beneficial to inhabitants of the region as they allow for monitoring of environmental changes and natural hazards including extreme events. The hydrological data set is composed of time series of groundwater level, modelled and observed soil moisture content, soil temperature, and physical soil properties and aquifer properties. The meteorological time series include air temperature, humidity, pressure, wind speed, solar radiation, precipitation, and derived reference evapotranspiration. These data products are extended by gravity models of hydrological, oceanic, La Plata estuary, and atmospheric effects. The quality of the provided meteorological time series is tested via comparison to the two closest WMO (World Meteorological Organization) sites where data are available only in an inferior temporal resolution. The hydrological series are validated by comparing the respective forward-modelled gravity effects to independent gravity observations reduced up to a signal corresponding to local water storage variation. Most of the time series cover the time span between April 2016 and November 2018 with either no or only few missing data points. The data set is available at https://doi.org/10.588/GFZ.5.4.2018.001 (Mikolaj et al., 2018). Y1 - 2019 U6 - https://doi.org/10.5194/essd-11-1501-2019 SN - 1866-3508 SN - 1866-3516 VL - 11 IS - 4 SP - 1501 EP - 1513 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Boergens, Eva A1 - Güntner, Andreas A1 - Dobslaw, Henryk A1 - Dahle, Christoph T1 - Quantifying the Central European droughts in 2018 and 2019 with GRACE Follow-On JF - Geophysical research letters : GRL N2 - The GRACE-FO satellites launched in May 2018 are able to quantify the water mass deficit in Central Europe during the two consecutive summer droughts of 2018 and 2019. Relative to the long-term climatology, the water mass deficits were-112 +/- 10.5 Gt in 2018 and-145 +/- 12 Gt in 2019. These deficits are 73% and 94% of the mean amplitude of seasonal water storage variations, which is so severe that a recovery cannot be expected within 1 year. The water deficits in 2018 and 2019 are the largest in the whole GRACE and GRACE-FO time span. Globally, the data do not show an offset between the two missions, which proves the successful continuation of GRACE by GRACE-FO and thus the reliability of the observed extreme events in Central Europe. This allows for a joint assessment of the four Central European droughts in 2003, 2015, 2018, and 2019 in terms of total water storage deficits. KW - GRACE-FO KW - GRACE KW - drought KW - Central European drought 2018 KW - Central European drought 2019 Y1 - 2020 U6 - https://doi.org/10.1029/2020GL087285 SN - 0094-8276 SN - 1944-8007 VL - 47 IS - 14 PB - American Geophysical Union CY - Washington, DC ER - TY - JOUR A1 - Ganguli, Poulomi A1 - Paprotny, Dominik A1 - Hasan, Mehedi A1 - Güntner, Andreas A1 - Merz, Bruno T1 - Projected changes in compound flood hazard from riverine and coastal floods in northwestern Europe JF - Earth's future N2 - Compound flooding in coastal regions, that is, the simultaneous or successive occurrence of high sea levels and high river flows, is expected to increase in a warmer world. To date, however, there is no robust evidence on projected changes in compound flooding for northwestern Europe. We combine projected storm surges and river floods with probabilistic, localized relative sea-level rise (SLR) scenarios to assess the future compound flood hazard over northwestern coastal Europe in the high (RCP8.5) emission scenario. We use high-resolution, dynamically downscaled regional climate models (RCM) to drive a storm surge model and a hydrological model, and analyze the joint occurrence of high coastal water levels and associated river peaks in a multivariate copula-based approach. The RCM-forced multimodel mean reasonably represents the observed spatial pattern of the dependence strength between annual maxima surge and peak river discharge, although substantial discrepancies exist between observed and simulated dependence strength. All models overestimate the dependence strength, possibly due to limitations in model parameterizations. This bias affects compound flood hazard estimates and requires further investigation. While our results suggest decreasing compound flood hazard over the majority of sites by 2050s (2040-2069) compared to the reference period (1985-2005), an increase in projected compound flood hazard is limited to around 34% of the sites. Further, we show the substantial role of SLR, a driver of compound floods, which has frequently been neglected. Our findings highlight the need to be aware of the limitations of the current generation of Earth system models in simulating coastal compound floods. KW - compound flood KW - storm surge KW - river floods KW - sea level rise KW - climate KW - change KW - Europe Y1 - 2020 U6 - https://doi.org/10.1029/2020EF001752 SN - 2328-4277 VL - 8 IS - 11 PB - Wiley-Blackwell CY - Hoboken, NJ ER - TY - JOUR A1 - Reich, Marvin A1 - Mikolaj, Michal A1 - Blume, Theresa A1 - Güntner, Andreas T1 - Field-scale subsurface flow processes inferred from continuous gravity monitoring during a sprinkling experiment JF - Water resources research : WRR / American Geophysical Union N2 - Field-scale subsurface flow processes are difficult to observe and monitor. We investigated the value of gravity time series to identify subsurface flow processes by carrying out a sprinkling experiment in the direct vicinity of a superconducting gravimeter. We demonstrate how different water mass distributions in the subsoil affect the gravity signal and show the benefit of using the shape of the gravity response curve to identify different subsurface flow processes. For this purpose, a simple hydro-gravimetric model was set up to test different scenarios in an optimization approach, including the processes macropore flow, preferential flow, wetting front advancement (WFA), bypass flow and perched water table rise. Besides the gravity observations, electrical resistivity and soil moisture data were used for evaluation. For the study site, the process combination of preferential flow and WFA led to the best correspondence to the observations in a multi-criteria assessment. We argue that the approach of combining field-scale sprinkling experiments in combination with gravity monitoring can be transferred to other sites for process identification, and discuss related uncertainties including limitations of the simple model used here. The study stresses the value of advancing terrestrial gravimetry as an integrative and non-invasive monitoring technique for assessing hydrological states and dynamics. KW - Hydrogravimetry Y1 - 2021 U6 - https://doi.org/10.1029/2021WR030044 SN - 0043-1397 SN - 1944-7973 VL - 57 IS - 10 PB - Wiley CY - New York ER - TY - JOUR A1 - Blume, Theresa A1 - Schneider, Lisa A1 - Güntner, Andreas T1 - Comparative analysis of throughfall observations in six different forest stands BT - Influence of seasons, rainfall- and stand characteristics JF - Hydrological processes N2 - Throughfall, that is, the fraction of rainfall that passes through the forest canopy, is strongly influenced by rainfall and forest stand characteristics which are in turn both subject to seasonal dynamics. Disentangling the complex interplay of these controls is challenging, and only possible with long-term monitoring and a large number of throughfall events measured in parallel at different forest stands. We therefore based our analysis on 346 rainfall events across six different forest stands at the long-term terrestrial environmental observatory TERENO Northeast Germany. These forest stands included pure stands of beech, pine and young pine, and mixed stands of oak-beech, pine-beech and pine-oak-beech. Throughfall was overall relatively low, with 54-68% of incident rainfall in summer. Based on the large number of events it was possible to not only investigate mean or cumulative throughfall but also its statistical distribution. The distributions of throughfall fractions show distinct differences between the three types of forest stands (deciduous, mixed and pine). The distributions of the deciduous stands have a pronounced peak at low throughfall fractions and a secondary peak at high fractions in summer, as well as a pronounced peak at higher throughfall fractions in winter. Interestingly, the mixed stands behave like deciduous stands in summer and like pine stands in winter: their summer distributions are similar to the deciduous stands but the winter peak at high throughfall fractions is much less pronounced. The seasonal comparison further revealed that the wooden components and the leaves behaved differently in their throughfall response to incident rainfall, especially at higher rainfall intensities. These results are of interest for estimating forest water budgets and in the context of hydrological and land surface modelling where poor simulation of throughfall would adversely impact estimates of evaporative recycling and water availability for vegetation and runoff. KW - forest hydrology KW - forest stand characteristics KW - interception KW - leaf area KW - index KW - rainfall characteristics KW - seasonal effects KW - stratified event KW - analysis KW - throughfall KW - tree species effects Y1 - 2021 U6 - https://doi.org/10.1002/hyp.14461 SN - 0885-6087 SN - 1099-1085 VL - 36 IS - 3 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Heistermann, Maik A1 - Bogena, Heye A1 - Francke, Till A1 - Güntner, Andreas A1 - Jakobi, Jannis A1 - Rasche, Daniel A1 - Schrön, Martin A1 - Döpper, Veronika A1 - Fersch, Benjamin A1 - Groh, Jannis A1 - Patil, Amol A1 - Pütz, Thomas A1 - Reich, Marvin A1 - Zacharias, Steffen A1 - Zengerle, Carmen A1 - Oswald, Sascha T1 - Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach JF - Earth System Science Data (ESSD) N2 - Cosmic-ray neutron sensing (CRNS) has become an effective method to measure soil moisture at a horizontal scale of hundreds of metres and a depth of decimetres. Recent studies proposed operating CRNS in a network with overlapping footprints in order to cover root-zone water dynamics at the small catchment scale and, at the same time, to represent spatial heterogeneity. In a joint field campaign from September to November 2020 (JFC-2020), five German research institutions deployed 15 CRNS sensors in the 0.4 km2 Wüstebach catchment (Eifel mountains, Germany). The catchment is dominantly forested (but includes a substantial fraction of open vegetation) and features a topographically distinct catchment boundary. In addition to the dense CRNS coverage, the campaign featured a unique combination of additional instruments and techniques: hydro-gravimetry (to detect water storage dynamics also below the root zone); ground-based and, for the first time, airborne CRNS roving; an extensive wireless soil sensor network, supplemented by manual measurements; and six weighable lysimeters. Together with comprehensive data from the long-term local research infrastructure, the published data set (available at https://doi.org/10.23728/b2share.756ca0485800474e9dc7f5949c63b872; Heistermann et al., 2022) will be a valuable asset in various research contexts: to advance the retrieval of landscape water storage from CRNS, wireless soil sensor networks, or hydrogravimetry; to identify scale-specific combinations of sensors and methods to represent soil moisture variability; to improve the understanding and simulation of land–atmosphere exchange as well as hydrological and hydrogeological processes at the hillslope and the catchment scale; and to support the retrieval of soil water content from airborne and spaceborne remote sensing platforms. Y1 - 2022 U6 - https://doi.org/10.5194/essd-14-2501-2022 SN - 1866-3516 VL - 14 SP - 2501 EP - 2519 PB - Copernicus CY - Katlenburg-Lindau ER - TY - JOUR A1 - Trautmann, Tina A1 - Koirala, Sujan A1 - Carvalhais, Nuno A1 - Güntner, Andreas A1 - Jung, Martin T1 - The importance of vegetation in understanding terrestrial water storage variations JF - Hydrology and Earth System Sciences N2 - So far, various studies have aimed at decomposing the integrated terrestrial water storage variations observed by satellite gravimetry (GRACE, GRACE-FO) with the help of large-scale hydrological models. While the results of the storage decomposition depend on model structure, little attention has been given to the impact of the way that vegetation is represented in these models. Although vegetation structure and activity represent the crucial link between water, carbon, and energy cycles, their representation in large-scale hydrological models remains a major source of uncertainty. At the same time, the increasing availability and quality of Earth-observation-based vegetation data provide valuable information with good prospects for improving model simulations and gaining better insights into the role of vegetation within the global water cycle. In this study, we use observation-based vegetation information such as vegetation indices and rooting depths for spatializing the parameters of a simple global hydrological model to define infiltration, root water uptake, and transpiration processes. The parameters are further constrained by considering observations of terrestrial water storage anomalies (TWS), soil moisture, evapotranspiration (ET) and gridded runoff ( Q) estimates in a multi-criteria calibration approach. We assess the implications of including varying vegetation characteristics on the simulation results, with a particular focus on the partitioning between water storage components. To isolate the effect of vegetation, we compare a model experiment in which vegetation parameters vary in space and time to a baseline experiment in which all parameters are calibrated as static, globally uniform values. Both experiments show good overall performance, but explicitly including varying vegetation data leads to even better performance and more physically plausible parameter values. The largest improvements regarding TWS and ET are seen in supply-limited (semi-arid) regions and in the tropics, whereas Q simulations improve mainly in northern latitudes. While the total fluxes and storages are similar, accounting for vegetation substantially changes the contributions of different soil water storage components to the TWS variations. This suggests an important role of the representation of vegetation in hydrological models for interpreting TWS variations. Our simulations further indicate a major effect of deeper moisture storages and groundwater-soil moisture-vegetation interactions as a key to understanding TWS variations. We highlight the need for further observations to identify the adequate model structure rather than only model parameters for a reasonable representation and interpretation of vegetation-water interactions. Y1 - 2022 U6 - https://doi.org/10.5194/hess-26-1089-2022 SN - 1027-5606 SN - 1607-7938 VL - 26 IS - 4 SP - 1089 EP - 1109 PB - Copernicus CY - Göttingen ER -