TY - JOUR A1 - Balazadeh, Salma A1 - Siddiqui, Hamad A1 - Allu, Annapurna Devi A1 - Matallana-Ramirez, Lilian Paola A1 - Caldana, Camila A1 - Mehrnia, Mohammad A1 - Zanor, Maria-Inés A1 - Koehler, Barbara A1 - Müller-Röber, Bernd T1 - A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence N2 - P>The onset and progression of senescence are under genetic and environmental control. The Arabidopsis thaliana NAC transcription factor ANAC092 (also called AtNAC2 and ORE1) has recently been shown to control age-dependent senescence, but its mode of action has not been analysed yet. To explore the regulatory network administered by ANAC092 we performed microarray-based expression profiling using estradiol-inducible ANAC092 overexpression lines. Approximately 46% of the 170 genes up-regulated upon ANAC092 induction are known senescence-associated genes, suggesting that the NAC factor exerts its role in senescence through a regulatory network that includes many of the genes previously reported to be senescence regulated. We selected 39 candidate genes and confirmed their time-dependent response to enhanced ANAC092 expression by quantitative RT-PCR. We also found that the majority of them (24 genes) are up-regulated by salt stress, a major promoter of plant senescence, in a manner similar to that of ANAC092, which itself is salt responsive. Furthermore, 24 genes like ANAC092 turned out to be stage-dependently expressed during seed growth with low expression at early and elevated expression at late stages of seed development. Disruption of ANAC092 increased the rate of seed germination under saline conditions, whereas the opposite occurred in respective overexpression plants. We also detected a delay of salinity-induced chlorophyll loss in detached anac092-1 mutant leaves. Promoter-reporter (GUS) studies revealed transcriptional control of ANAC092 expression during leaf and flower ageing and in response to salt stress. We conclude that ANAC092 exerts its functions during senescence and seed germination through partly overlapping target gene sets. Y1 - 2010 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0960-7412 U6 - https://doi.org/10.1111/j.1365-313X.2010.04151.x SN - 0960-7412 ER - TY - JOUR A1 - Arvidsson, Samuel Janne A1 - Perez-Rodriguez, Paulino A1 - Müller-Röber, Bernd T1 - A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects JF - New phytologist : international journal of plant science N2 - To gain a deeper understanding of the mechanisms behind biomass accumulation, it is important to study plant growth behavior. Manually phenotyping large sets of plants requires important human resources and expertise and is typically not feasible for detection of weak growth phenotypes. Here, we established an automated growth phenotyping pipeline for Arabidopsis thaliana to aid researchers in comparing growth behaviors of different genotypes. The analysis pipeline includes automated image analysis of two-dimensional digital plant images and evaluation of manually annotated information of growth stages. It employs linear mixed-effects models to quantify genotype effects on total rosette area and relative leaf growth rate (RLGR) and ANOVAs to quantify effects on developmental times. Using the system, a single researcher can phenotype up to 7000 plants d(-1). Technical variance is very low (typically < 2%). We show quantitative results for the growth-impaired starch-excessmutant sex4-3 and the growth-enhancedmutant grf9. We show that recordings of environmental and developmental variables reduce noise levels in the phenotyping datasets significantly and that careful examination of predictor variables (such as d after sowing or germination) is crucial to avoid exaggerations of recorded phenotypes and thus biased conclusions. KW - development KW - growth KW - leaf area KW - modeling KW - phenotyping Y1 - 2011 U6 - https://doi.org/10.1111/j.1469-8137.2011.03756.x SN - 0028-646X VL - 191 IS - 3 SP - 895 EP - 907 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Dortay, Hakan A1 - Müller-Röber, Bernd T1 - A highly efficient pipeline for protein expression in Leishmania tarentolae using infrared fluorescence protein as marker N2 - Background: Leishmania tarentolae, a unicellular eukaryotic protozoan, has been established as a novel host for recombinant protein production in recent years. Current protocols for protein expression in Leishmania are, however, time consuming and require extensive lab work in order to identify well-expressing cell lines. Here we established an alternative protein expression work-flow that employs recently engineered infrared fluorescence protein (IFP) as a suitable and easy-to-handle reporter protein for recombinant protein expression in Leishmania. As model proteins we tested three proteins from the plant Arabidopsis thaliana, including a NAC and a type-B ARR transcription factor. Results: IFP and IFP fusion proteins were expressed in Leishmania and rapidly detected in cells by deconvolution microscopy and in culture by infrared imaging of 96-well microtiter plates using small cell culture volumes (2 mu L Y1 - 2010 UR - http://www.microbialcellfactories.com/home/ U6 - https://doi.org/10.1186/1475-2859-9-29 SN - 1475-2859 ER - TY - JOUR A1 - Xu, J. A1 - Brearley, C. A. A1 - Lin, W. H. A1 - Wang, Y. A1 - Ye, R. A1 - Müller-Röber, Bernd A1 - Xu, Z. H. A1 - Xue, H. W. T1 - A role of Arabidopsis inositol polyphosphate kinase, AtIPK2 alpha, in pollen germination and root growth N2 - Inositol polyphosphates, such as inositol trisphosphate, are pivotal intracellular signaling molecules in eukaryotic cells. In higher plants the mechanism for the regulation of the type and the level of these signaling molecules is poorly understood. In this study we investigate the physiological function of an Arabidopsis (Arabidopsis thaliana) gene encoding inositol polyphosphate kinase (AtIPK2alpha), which phosphorylates inositol 1,4,5-trisphosphate successively at the D-6 and D-3 positions, and inositol 1,3,4,5-tetrakisphosphate at D-6, resulting in the generation of inositol 1,3,4,5,6-pentakisphosphate. Semiquantitative reverse transcription-PCR and promoter-beta-glucuronidase reporter gene analyses showed that AtIPK2alpha is expressed in various tissues, including roots and root hairs, stem, leaf, pollen grains, pollen tubes, the flower stigma, and siliques. Transgenic Arabidopsis plants expressing the AtIPK2alpha antisense gene under its own promoter were generated. Analysis of several independent transformants exhibiting strong reduction in AtIPK2alpha transcript levels showed that both pollen germination and pollen tube growth were enhanced in the antisense lines compared to wild-type plants, especially in the presence of nonoptimal low Ca2+ concentrations in the culture medium. Furthermore, root growth and root hair development were also stimulated in the antisense lines, in the presence of elevated external Ca2+ concentration or upon the addition of EGTA. In addition, seed germination and early seedling growth was stimulated in the antisense lines. These observations suggest a general and important role of AtIPK2alpha, and hence inositol polyphosphate metabolism, in the regulation of plant growth most likely through the regulation of calcium signaling, consistent with the well-known function of inositol trisphosphate in the mobilization of intracellular calcium stores Y1 - 2005 SN - 0032-0889 ER - TY - JOUR A1 - Omidbakhshfard, Mohammad Amin A1 - Winck, Flavia Vischi A1 - Arvidsson, Samuel Janne A1 - Riano-Pachon, Diego M. A1 - Müller-Röber, Bernd T1 - A step-by-step protocol for formaldehyde-assisted isolation of regulatory elements from Arabidopsis thaliana JF - Journal of integrative plant biology N2 - The control of gene expression by transcriptional regulators and other types of functionally relevant DNA transactions such as chromatin remodeling and replication underlie a vast spectrum of biological processes in all organisms. DNA transactions require the controlled interaction of proteins with DNA sequence motifs which are often located in nucleosome-depleted regions (NDRs) of the chromatin. Formaldehyde-assisted isolation of regulatory elements (FAIRE) has been established as an easy-to-implement method for the isolation of NDRs from a number of eukaryotic organisms, and it has been successfully employed for the discovery of new regulatory segments in genomic DNA from, for example, yeast, Drosophila, and humans. Until today, however, FAIRE has only rarely been employed in plant research and currently no detailed FAIRE protocol for plants has been published. Here, we provide a step-by-step FAIRE protocol for NDR discovery in Arabidopsis thaliana. We demonstrate that NDRs isolated from plant chromatin are readily amenable to quantitative polymerase chain reaction and next-generation sequencing. Only minor modification of the FAIRE protocol will be needed to adapt it to other plants, thus facilitating the global inventory of regulatory regions across species. KW - Arabidopsis thaliana KW - chromatin KW - cis-regulatory elements KW - epigenomics KW - FAIRE-qPCR KW - FAIRE-seq KW - gene expression KW - gene regulatory network KW - transcription factor Y1 - 2014 U6 - https://doi.org/10.1111/jipb.12151 SN - 1672-9072 SN - 1744-7909 VL - 56 IS - 6 SP - 527 EP - 538 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Michard, Erwan A1 - Lacombe, Benoît A1 - Poree, Fabien A1 - Müller-Röber, Bernd A1 - Sentenac, Hervé A1 - Thibaud, Jean-Baptiste A1 - Dreyer, Ingo T1 - A unique voltage sensor sensitizes the potassium channel AKT2 to phosphoregulation N2 - Among all voltage-gated K+ channels from the model plant Arabidopsis thaliana, the weakly rectifying K+ channel (K-weak channel) AKT2 displays unique gating properties. AKT2 is exceptionally regulated by phosphorylation: when nonphosphorylated AKT2 behaves as an inward-rectifying potassium channel; phosphorylation of AKT2 abolishes inward rectification by shifting its activation threshold far positive (>200 mV) so that it closes only at voltages positive of + 100 mV. In its phosphorylated form, AKT2 is thus locked in the open state in the entire physiological voltage range. To understand the molecular grounds of this unique gating behavior, we generated chimeras between AKT2 and the conventional inward-rectifying channel KAT1. The transfer of the pore from KAT1 to AKT2 altered the permeation properties of the channel. However, the gating properties were unaffected, suggesting that the pore region of AKT2 is not responsible for the unique K-weak gating. Instead, a lysine residue in S4, highly conserved among all K-weak channels but absent from other plant K+ channels, was pinpointed in a site-directed mutagenesis approach. Substitution of the lysine by serine or aspartate abolished the "open-lock" characteristic and converted AKT2 into an inward- rectifying channel. Interestingly, phosphoregulation of the mutant AKT2-K197S appeared to be similar to that of the K-in channel KAT1: as suggested by mimicking the phosphorylated and dephosphorylated states, phosphorylation induced a shift of the activation threshold of AKT2-K197S by about +50 mV. We conclude that the lysine residue K197 sensitizes AKT2 to phosphoregulation. The phosphorylation-induced reduction of the activation energy in AKT2 is similar to 6 kT larger than in the K197S mutant. It is discussed that this hypersensitive response of AKT2 to phosphorylation equips a cell with the versatility to establish a potassium gradient and to make efficient use of it Y1 - 2005 ER - TY - JOUR A1 - Hasnat, Muhammad Abrar A1 - Zupok, Arkadiusz A1 - Olas-Apelt, Justyna Jadwiga A1 - Müller-Röber, Bernd A1 - Leimkühler, Silke T1 - A-type carrier proteins are involved in [4Fe-4S] cluster insertion into the radical S-adenosylmethionine protein MoaA for the synthesis of active molybdoenzymes JF - Journal of bacteriology N2 - Iron sulfur (Fe-S) clusters are important biological cofactors present in proteins with crucial biological functions, from photosynthesis to DNA repair, gene expression, and bioenergetic processes. For the insertion of Fe-S clusters into proteins, A-type carrier proteins have been identified. So far, three of them have been characterized in detail in Escherichia coli, namely, IscA, SufA, and ErpA, which were shown to partially replace each other in their roles in [4Fe-4S] cluster insertion into specific target proteins. To further expand the knowledge of [4Fe-4S] cluster insertion into proteins, we analyzed the complex Fe-S cluster-dependent network for the synthesis of the molybdenum cofactor (Moco) and the expression of genes encoding nitrate reductase in E. coli. Our studies include the identification of the A-type carrier proteins ErpA and IscA, involved in [4Fe-4S] cluster insertion into the radical Sadenosyl-methionine (SAM) enzyme MoaA. We show that ErpA and IscA can partially replace each other in their role to provide [4Fe-4S] clusters for MoaA. Since most genes expressing molybdoenzymes are regulated by the transcriptional regulator for fumarate and nitrate reduction (FNR) under anaerobic conditions, we also identified the proteins that are crucial to obtain an active FNR under conditions of nitrate respiration. We show that ErpA is essential for the FNR-dependent expression of the narGHJI operon, a role that cannot be compensated by IscA under the growth conditions tested. SufA does not appear to have a role in Fe-S cluster insertion into MoaA or FNR under anaerobic growth employing nitrate respiration, based on the low level of gene expression.
IMPORTANCE Understanding the assembly of iron-sulfur (Fe-S) proteins is relevant to many fields, including nitrogen fixation, photosynthesis, bioenergetics, and gene regulation. Remaining critical gaps in our knowledge include how Fe-S clusters are transferred to their target proteins and how the specificity in this process is achieved, since different forms of Fe-S clusters need to be delivered to structurally highly diverse target proteins. Numerous Fe-S carrier proteins have been identified in prokaryotes like Escherichia coli, including ErpA, IscA, SufA, and NfuA. In addition, the diverse Fe-S cluster delivery proteins and their target proteins underlie a complex regulatory network of expression, to ensure that both proteins are synthesized under particular growth conditions. KW - iron-sulfur clusters KW - Moco biosynthesis KW - MoaA KW - A-type carrier protein KW - FNR KW - nitrate reductase KW - molybdenum cofactor Y1 - 2021 U6 - https://doi.org/10.1128/JB.00086-21 SN - 1098-5530 VL - 203 IS - 12 PB - American Society for Microbiology CY - Washington ER - TY - JOUR A1 - Ribeiro, Dimas M. A1 - Araujo, Wagner L. A1 - Fernie, Alisdair R. A1 - Schippers, Jos H. M. A1 - Müller-Röber, Bernd T1 - Action of Gibberellins on growth and metabolism of arabidopsis plants Associated with high concentration of carbon dioxide JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Although the positive effect of elevated CO2 concentration [CO2] on plant growth is well known, it remains unclear whether global climate change will positively or negatively affect crop yields. In particular, relatively little is known about the role of hormone pathways in controlling the growth responses to elevated [CO2]. Here, we studied the impact of elevated [CO2] on plant biomass and metabolism in Arabidopsis (Arabidopsis thaliana) in relation to the availability of gibberellins (GAs). Inhibition of growth by the GA biosynthesis inhibitor paclobutrazol (PAC) at ambient [CO2] (350 mu mol CO2 mol(-1)) was reverted by elevated [CO2] (750 mu mol CO2 mol(-1)). Thus, we investigated the metabolic adjustment and modulation of gene expression in response to changes in growth of plants imposed by varying the GA regime in ambient and elevated [CO2]. In the presence of PAC (low-GA regime), the activities of enzymes involved in photosynthesis and inorganic nitrogen assimilation were markedly increased at elevated [CO2], whereas the activities of enzymes of organic acid metabolism were decreased. Under ambient [CO2], nitrate, amino acids, and protein accumulated upon PAC treatment; however, this was not the case when plants were grown at elevated [CO2]. These results suggest that only under ambient [CO2] is GA required for the integration of carbohydrate and nitrogen metabolism underlying optimal biomass determination. Our results have implications concerning the action of the Green Revolution genes in future environmental conditions. Y1 - 2012 U6 - https://doi.org/10.1104/pp.112.204842 SN - 0032-0889 VL - 160 IS - 4 SP - 1781 EP - 1794 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Sharma, Niharika A1 - Dang, Trang Minh A1 - Singh, Namrata A1 - Ruzicic, Slobodan A1 - Müller-Röber, Bernd A1 - Baumann, Ute A1 - Heuer, Sigrid T1 - Allelic variants of OsSUB1A cause differential expression of transcription factor genes in response to submergence in rice JF - Rice N2 - Background: Flooding during seasonal monsoons affects millions of hectares of rice-cultivated areas across Asia. Submerged rice plants die within a week due to lack of oxygen, light and excessive elongation growth to escape the water. Submergence tolerance was first reported in an aus-type rice landrace, FR13A, and the ethylene-responsive transcription factor (TF) gene SUB1A-1 was identified as the major tolerance gene. Intolerant rice varieties generally lack the SUB1A gene but some intermediate tolerant varieties, such as IR64, carry the allelic variant SUB1A-2. Differential effects of the two alleles have so far not been addressed. As a first step, we have therefore quantified and compared the expression of nearly 2500 rice TF genes between IR64 and its derived tolerant near isogenic line IR64-Sub1, which carries the SUB1A-1 allele. Gene expression was studied in internodes, where the main difference in expression between the two alleles was previously shown. Results: Nineteen and twenty-six TF genes were identified that responded to submergence in IR64 and IR64-Sub1, respectively. Only one gene was found to be submergence-responsive in both, suggesting different regulatory pathways under submergence in the two genotypes. These differentially expressed genes (DEGs) mainly included MYB, NAC, TIFY and Zn-finger TFs, and most genes were downregulated upon submergence. In IR64, but not in IR64-Sub1, SUB1B and SUB1C, which are also present in the Sub1 locus, were identified as submergence responsive. Four TFs were not submergence responsive but exhibited constitutive, genotype-specific differential expression. Most of the identified submergence responsive DEGs are associated with regulatory hormonal pathways, i.e. gibberellins (GA), abscisic acid (ABA), and jasmonic acid (JA), apart from ethylene. An in-silico promoter analysis of the two genotypes revealed the presence of allele-specific single nucleotide polymorphisms, giving rise to ABRE, DRE/CRT, CARE and Site II cis-elements, which can partly explain the observed differential TF gene expression. Conclusion: This study identified new gene targets with the potential to further enhance submergence tolerance in rice and provides insights into novel aspects of SUB1A-mediated tolerance. KW - Submergence tolerance KW - SUB1A KW - Rice KW - Transcription factors Y1 - 2018 U6 - https://doi.org/10.1186/s12284-017-0192-z SN - 1939-8425 SN - 1939-8433 VL - 11 IS - 2 PB - Springer Open CY - London ER - TY - JOUR A1 - Winck, Flavia Vischi A1 - Kwasniewski, Miroslaw A1 - Wienkoop, Stefanie A1 - Müller-Röber, Bernd T1 - An optimized method for the isolation of nuclei from chlamydomas Reinhardtii (Chlorophyceae) JF - Journal of phycology N2 - The cell nucleus harbors a large number of proteins involved in transcription, RNA processing, chromatin remodeling, nuclear signaling, and ribosome assembly. The nuclear genome of the model alga Chlamydomonas reinhardtii P. A. Dang. was recently sequenced, and many genes encoding nuclear proteins, including transcription factors and transcription regulators, have been identified through computational discovery tools. However, elucidating the specific biological roles of nuclear proteins will require support from biochemical and proteomics data. Cellular preparations with enriched nuclei are important to assist in such analyses. Here, we describe a simple protocol for the isolation of nuclei from Chlamydomonas, based on a commercially available kit. The modifications done in the original protocol mainly include alterations of the differential centrifugation parameters and detergent-based cell lysis. The nuclei-enriched fractions obtained with the optimized protocol show low contamination with mitochondrial and plastid proteins. The protocol can be concluded within only 3 h, and the proteins extracted can be used for gel-based and non-gel-based proteomic approaches. KW - 2D gel electrophoresis KW - algae KW - Chlamydomonas KW - nuclear proteins KW - nucleus KW - proteomics Y1 - 2011 U6 - https://doi.org/10.1111/j.1529-8817.2011.00967.x SN - 0022-3646 VL - 47 IS - 2 SP - 333 EP - 340 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Nguyen, Hung M. A1 - Schippers, Jos H. M. A1 - Goni-Ramos, Oscar A1 - Christoph, Mathias P. A1 - Dortay, Hakan A1 - van der Hoorn, Renier A. L. A1 - Müller-Röber, Bernd T1 - An upstream regulator of the 26S proteasome modulates organ size in Arabidopsis thaliana JF - The plant journal N2 - In both animal and plant kingdoms, body size is a fundamental but still poorly understood attribute of biological systems. Here we report that the Arabidopsis NAC transcription factor Regulator of Proteasomal Gene Expression' (RPX) controls leaf size by positively modulating proteasome activity. We further show that the cis-element recognized by RPX is evolutionarily conserved between higher plant species. Upon over-expression of RPX, plants exhibit reduced growth, which may be reversed by a low concentration of the pharmacological proteasome inhibitor MG132. These data suggest that the rate of protein turnover during growth is a critical parameter for determining final organ size. KW - Arabidopsis thaliana KW - organ size KW - evolution KW - leaf development KW - proteasome KW - gene regulatory network Y1 - 2013 U6 - https://doi.org/10.1111/tpj.12097 SN - 0960-7412 VL - 74 IS - 1 SP - 25 EP - 36 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Gomez-Merino, Fernando Carlos A1 - Arana-Ceballos, Fernando Alberto A1 - Trejo-Tellez, L. I. A1 - Skirycz, Aleksandra A1 - Brearley, C. A. A1 - Dormann, P. A1 - Müller-Röber, Bernd T1 - Arabidopsis AtDGK7, the smallest member of plant diacylglycerol kinases (DGKs), displays unique biochemical features and saturates at low substrate concentration : the DGK inhibitor R59022 differentially affects AtDGK2 and AtDGK7 activity in vitro and alters plant growth and development N2 - Diacylglycerol kinase (DGK) regulates the level of the second messenger diacylglycerol and produces phosphatidic acid (PA), another signaling molecule. The Arabidopsis thaliana genome encodes seven putative diacylglycerol kinase isozymes (named AtDGK1 to -7), structurally falling into three major clusters. So far, enzymatic activity has not been reported for any plant Cluster II DGK. Here, we demonstrate that a representative of this cluster, AtDGK7, is biochemically active when expressed as a recombinant protein in Escherichia coli. AtDGK7, encoded by gene locus At4g30340, contains 374 amino acids with an apparent molecular mass of 41.2 kDa. AtDGK7 harbors an N-terminal catalytic domain, but in contrast to various characterized DGKs (including AtDGK2), it lacks a cysteine-rich domain at its N terminus, and, importantly, its C-terminal DGK accessory domain is incomplete. Recombinant AtDGK7 expressed in E. coli exhibits Michaelis-Menten type kinetics with 1,2-dioleoyl-sn-glycerol as substrate. AtDGK7 activity was affected by pH, detergents, and the DGK inhibitor R59022. We demonstrate that both AtDGK2 and AtDGK7 phosphorylate diacylglycerol molecular species that are typically found in plants, indicating that both enzymes convert physiologically relevant substrates. AtDGK7 is expressed throughout the Arabidopsis plant, but expression is strongest in flowers and young seedlings. Expression of AtDGK2 is transiently induced by wounding. R59022 at similar to 80 mu M inhibits root elongation and lateral root formation and reduces plant growth, indicating that DGKs play an important role in plant development Y1 - 2005 SN - 0021-9258 ER - TY - JOUR A1 - Maitrejean, Marie A1 - Wudick, Michael M. A1 - Völker, Camilla A1 - Prinsi, Bhakti A1 - Müller-Röber, Bernd A1 - Czempinski, Katrin A1 - Pedrazzini, Emanuela A1 - Vitale, Alessandro T1 - Assembly and sorting of the tonoplast potassium channel AtTPK1 and its turnover by internalization into the Vacuole JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - The assembly, sorting signals, and turnover of the tonoplast potassium channel AtTPK1 of Arabidopsis (Arabidopsis thaliana) were studied. We used transgenic Arabidopsis expressing a TPK1-green fluorescent protein (GFP) fusion or protoplasts transiently transformed with chimeric constructs based on domain exchange between TPK1 and TPK4, the only TPK family member not located at the tonoplast. The results show that TPK1-GFP is a dimer and that the newly synthesized polypeptides transiently interact with a thus-far unidentified 20-kD polypeptide. A subset of the TPK1-TPK4 chimeras were unable to assemble correctly and these remained located in the endoplasmic reticulum where they interacted with the binding protein chaperone. Therefore, TPK1 must assemble correctly to pass endoplasmic reticulum quality control. Substitution of the cytosolic C terminus of TPK4 with the corresponding domain of TPK1 was sufficient to allow tonoplast delivery, indicating that this domain contains tonoplast sorting information. Pulse-chase labeling indicated that TPK1-GFP has a half-life of at least 24 h. Turnover of the fusion protein involves internalization into the vacuole where the GFP domain is released. This indicates a possible mechanism for the turnover of tonoplast proteins. Y1 - 2011 U6 - https://doi.org/10.1104/pp.111.177816 SN - 0032-0889 VL - 156 IS - 4 SP - 1783 EP - 1796 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Dreyer, Ingo A1 - Poree, Fabien A1 - Schneider, A. A1 - Mittelstadt, J. A1 - Bertl, Adam A1 - Sentenac, H. A1 - Thibaud, Jean-Baptiste A1 - Müller-Röber, Bernd T1 - Assembly of plant Shaker-like K-out channels requires two distinct sites of the channel alpha-subunit N2 - SKOR and GORK are outward-rectifying plant potassium channels from Arabidopsis thaliana. They belong to the Shaker superfamily of voltage-dependent K+ channels. Channels of this class are composed of four alpha-subunits and subunit assembly is a prerequisite for channel function. In this study the assembly mechanism of SKOR was investigated using the yeast two-hybrid system and functional assays in Xenopus oocytes and in yeast. We demonstrate that SKOR and GORK physically interact and assemble into heteromeric K-out channels. Deletion mutants and chimeric proteins generated from SKOR and the K-in channel alpha-subunit KAT1 revealed that the cytoplasmic C-terminus of SKOR determines channel assembly. Two domains thatchannel a-subunit KAT1 revealed that the cytoplasmic C-terminus of SKOR determines channel assembly. Two domains that are crucial for channel assembly were identified: i), a proximal interacting region comprising a putative cyclic nucleotide-binding domain together with 33 amino acids just upstream of this domain, and ii), a distal interacting region showing some resemblance to the K-T domain of KAT1. Both regions contributed differently to channel assembly. Whereas the proximal interacting region was found to be active on its own, the distal interacting region required an intact proximal interacting region to be active. K-out alpha-subunits did not assemble with K-in alpha-subunits because of the absence of interaction between their assembly sites Y1 - 2004 SN - 0006-3495 ER - TY - JOUR A1 - Lin, W. H. A1 - Wang, Y. A1 - Müller-Röber, Bernd A1 - Brearley, C. A. A1 - Xu, Z. H. A1 - Xue, H. W. T1 - At5PTase13 modulates cotyledon vein development through regulating auxin homeostasis N2 - Phosphatidylinositol signaling pathway and the relevant metabolites are known to be critical to the modulation of different aspects of plant growth, development, and stress responses. Inositol polyphosphate 5-phosphatase is a key enzyme involved in phosphatidylinositol metabolism and is encoded by an At5PTase gene family in Arabidopsis thaliana. A previous study shows that At5PTase11 mediates cotyledon vascular development probably through the regulation of intracellular calcium levels. In this study, we provide evidence that At5PTase13 modulates the development of cotyledon veins through its regulation of auxin homeostasis. A T-DNA insertional knockout mutant, At5pt13-1, showed a defect in development of the cotyledon vein, which was rescued completely by exogenous auxin and in part by brassinolide, a steroid hormone. Furthermore, the mutant had reduced auxin content and altered auxin accumulation in seedlings revealed by the DR5:beta-glucuronidase fusion construct in seedlings. In addition, microarray analysis shows that the transcription of key genes responsible for auxin biosynthesis and transport was altered in At5pt13-1. The At5pt13-1 mutant was also less sensitive to auxin inhibition of root elongation. These results suggest that At5PTase13 regulates the homeostasis of auxin, a key hormone controlling vascular development in plants Y1 - 2005 SN - 0032-0889 ER - TY - JOUR A1 - Gomez-Merino, Fernando Carlos A1 - Brearley, C. A. A1 - Ornatowska, Magdalena A1 - Abdel-Haliem, Mahmoud E. F. A1 - Zanor, Maria Ines A1 - Müller-Röber, Bernd T1 - AtDGK2, a novel diacylglycerol kinase from Arabidopsis thaliana, phosphorylates 1-stearoyl-2-arachidonoyl-sn- glycerol and 1,2-dioleoyl-sn-glycerol and exhibits cold-inducible gene expression N2 - Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA). Both DAG and PA are implicated in signal transduction pathways. DGKs have been widely studied in animals, but their analysis in plants is fragmentary. Here, we report the cloning and biochemical characterization of AtDGK2, encoding DGK from Arabidopsis thaliana. AtDGK2 has a predicted molecular mass of 79.4 kDa and, like AtDGK1 previously reported, harbors two copies of a phorbol ester/DAG-binding domain in its N-terminal region. AtDGK2 belongs to a family of seven DGK genes in A. thaliana. AtDGK3 to AtDGK7 encode similar to55-kDa DGKs that lack a typical phorbol ester/DAG-binding domain. Phylogenetically, plant DGKs fall into three clusters. Members of all three clusters are widely expressed in vascular plants. Recombinant AtDGK2 was expressed in Escherichia coli and biochemically characterized. The enzyme phosphorylated 1,2-dioleoyl-sn-glycerol to yield PA, exhibiting Michaelis-Menten type kinetics. Estimated K-m and V-max values were 125 muM for DAG and 0.25 pmol of PA min(-1) mug(-1), respectively. The enzyme was maximally active at pH 7.2. Its activity was Mg2+-dependent and affected by the presence of detergents, salts, and the DGK inhibitor R59022, but not by Ca2+. AtDGK2 exhibited substrate preference for unsaturated DAG analogues (i.e. 1-stearoyl-2-arachidonoyl-sn-glycerol and 1,2- dioleoyl-sn-glycerol). The AtDGK2 gene is expressed in various tissues of the Arabidopsis plant, including leaves, roots, and flowers, as shown by Northern blot analysis and promoter-reporter gene fusions. We found that AtDGK2 is induced by exposure to low temperature (4degreesC), pointing to a role in cold signal transduction Y1 - 2004 SN - 0021-9258 ER - TY - JOUR A1 - Becker, Dirk A1 - Geiger, D. A1 - Dunkel, M. A1 - Roller, A. A1 - Bertl, Adam A1 - Latz, A. A1 - Carpaneto, Armando A1 - Dietrich, Peter A1 - Roelfsema, M. R. G. A1 - Voelker, C. A1 - Schmidt, D. A1 - Müller-Röber, Bernd A1 - Czempinski, Katrin A1 - Hedrich, R. T1 - AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+- dependent manner N2 - The Arabidopsis tandem-pore K+ (TPK) channels displaying four transmembrane domains and two pore regions share structural homologies with their animal counterparts of the KCNK family. In contrast to the Shaker-like Arabidopsis channels (six transmembrane domains/one pore region), the functional properties and the biological role of plant TPK channels have not been elucidated yet. Here, we show that AtTPK4 (KCO4) localizes to the plasma membrane and is predominantly expressed in pollen. AtTPK4 (KCO4) resembles the electrical properties of a voltage-independent K+ channel after expression in Xenopus oocytes and yeast. Hyperpolarizing as well as depolarizing membrane voltages elicited instantaneous K+ currents, which were blocked by extracellular calcium and cytoplasmic protons. Functional complementation assays using a K+ transport-deficient yeast confirmed the biophysical and pharmacological properties of the AtTPK4 channel. The features of AtTPK4 point toward a role in potassium homeostasis and membrane voltage control of the growing pollen tube. Thus, AtTPK4 represents a member of plant tandem-pore-K+ channels, resembling the characteristics of its animal counterparts as well as plant-specific features with respect to modulation of channel activity by acidosis and calcium Y1 - 2004 SN - 0027-8424 ER - TY - JOUR A1 - Sedaghatmehr, Mastoureh A1 - Thirumalaikumar, Venkatesh P. A1 - Kamranfar, Iman A1 - Schulz, Karina A1 - Müller-Röber, Bernd A1 - Sampathkumar, Arun A1 - Balazadeh, Salma T1 - Autophagy complements metalloprotease FtsH6 in degrading plastid heat shock protein HSP21 during heat stress recovery JF - The journal of experimental botany : an official publication of the Society for Experimental Biology and of the Federation of European Societies of Plant Physiology N2 - Moderate and temporary heat stresses prime plants to tolerate, and survive, a subsequent severe heat stress. Such acquired thermotolerance can be maintained for several days under normal growth conditions, and can create a heat stress memory. We recently demonstrated that plastid-localized small heat shock protein 21 ( HSP21) is a key component of heat stress memory in Arabidopsis thaliana. A sustained high abundance of HSP21 during the heat stress recovery phase extends heat stress memory. The level of HSP21 is negatively controlled by plastid-localized metalloprotease FtsH6 during heat stress recovery. Here, we demonstrate that autophagy, a cellular recycling mechanism, exerts additional control over HSP21 degradation. Genetic and chemical disruption of both metalloprotease activity and autophagy trigger superior HSP21 accumulation, thereby improving memory. Furthermore, we provide evidence that autophagy cargo receptor ATG8-INTERACTING PROTEIN1 (ATI1) is associated with heat stress memory. ATI1 bodies co-localize with both autophagosomes and HSP21, and their abundance and transport to the vacuole increase during heat stress recovery. Together, our results provide new insights into the module for control of the regulation of heat stress memory, in which two distinct protein degradation pathways act in concert to degrade HSP21, thereby enabling cells to recover from the heat stress effect at the cost of reducing the heat stress memory. KW - Arabidopsis thaliana KW - ATI1 KW - FtsH6 KW - heat stress KW - HSP21 KW - plastid KW - selective autophagy KW - stress memory KW - stress recovery Y1 - 2021 U6 - https://doi.org/10.1093/jxb/erab304 SN - 0022-0957 SN - 1460-2431 VL - 72 IS - 21 SP - 7498 EP - 7513 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Müller-Röber, Bernd A1 - Balazadeh, Salma T1 - Auxin and its role in plant senescence JF - Journal of plant growth regulation N2 - Leaf senescence represents a key developmental process through which resources trapped in the photosynthetic organ are degraded in an organized manner and transported away to sustain the growth of other organs including newly forming leaves, roots, seeds, and fruits. The optimal timing of the initiation and progression of senescence are thus prerequisites for controlled plant growth, biomass accumulation, and evolutionary success through seed dispersal. Recent research has uncovered a multitude of regulatory factors including transcription factors, micro-RNAs, protein kinases, and others that constitute the molecular networks that regulate senescence in plants. The timing of senescence is affected by environmental conditions and abiotic or biotic stresses typically trigger a faster senescence. Various phytohormones, including for example ethylene, abscisic acid, and salicylic acid, promote senescence, whereas cytokinins delay it. Recently, several reports have indicated an involvement of auxin in the control of senescence, however, its mode of action and point of interference with senescence control mechanisms remain vaguely defined at present and contrasting observations regarding the effect of auxin on senescence have so far hindered the establishment of a coherent model. Here, we summarize recent studies on auxin-related genes that affect senescence in plants and highlight how these findings might be integrated into current molecular-regulatory models of senescence. KW - ARF KW - Auxin KW - Chloroplast KW - Development KW - Leaf KW - SAUR KW - Senescence KW - Signaling KW - Transcription factor KW - YUCCA Y1 - 2014 U6 - https://doi.org/10.1007/s00344-013-9398-5 SN - 0721-7595 SN - 1435-8107 VL - 33 IS - 1 SP - 21 EP - 33 PB - Springer CY - New York ER - TY - JOUR A1 - Feng, Xiao-Li A1 - Ni, Wei-Min A1 - Elge, Stephan A1 - Müller-Röber, Bernd A1 - Xu, Zhi-Hong A1 - Xue, Hong-Wei T1 - Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis N2 - It was well known that auxin is critical for anther/pollen grain development, however, the clear distribution and detailed effects of auxin during floral development are still unclear. We have shown here that, through analyzing GUS activities of Arabidopsis lines harboring auxin response elements DR5-GUS, auxin was mainly accumulated in the anther during flower stages 10-12. Further studies employing the indoleacetic acid-lysine synthetase (iaaL) coding gene from Pseudomonas syringae subsp. savastanoi under control of the promoter region of Arabidopsis phosphatidylinositol monophosphate 5-kinase 1 gene, which conducts the anther filament-specific expression, showed that block of auxin flow of filaments resulted in shortened filaments and significantly defective pollen grains. Similar phenotype was observed in tobacco plants transformed with the same construct, confirming the effects of auxin flow in filaments on anther development. Detailed studies further revealed that the meiosis process of pollen grain was normal while the mitosis at later stage was significantly defected, indicating the effects of auxin flow in filaments on pollen grain mitosis process. Analysis employing [C-14]IAA, as well as the observation on the expression of AtPIN1, coding for auxin efflux carrier, demonstrated the presence of polar auxin transport in anther filaments and pollen grains Y1 - 2006 UR - http://www.springerlink.com/content/100330 U6 - https://doi.org/10.1007/s11103-006-0005-z SN - 0167-4412 ER - TY - JOUR A1 - Lai, Alvina Grace A1 - Doherty, Colleen J. A1 - Müller-Röber, Bernd A1 - Kay, Steve A. A1 - Schippers, Jos H. M. A1 - Dijkwel, Paul P. T1 - CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Organisms have evolved endogenous biological clocks as internal timekeepers to coordinate metabolic processes with the external environment. Here, we seek to understand the mechanism of synchrony between the oscillator and products of metabolism known as Reactive Oxygen Species (ROS) in Arabidopsis thaliana. ROS-responsive genes exhibit a time-of-day-specific phase of expression under diurnal and circadian conditions, implying a role of the circadian clock in transcriptional regulation of these genes. Hydrogen peroxide production and scavenging also display time-of-day phases. Mutations in the core-clock regulator, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), affect the transcriptional regulation of ROS-responsive genes, ROS homeostasis, and tolerance to oxidative stress. Mis-expression of EARLY FLOWERING 3, LUX ARRHYTHMO, and TIMING OF CAB EXPRESSION 1 affect ROS production and transcription, indicating a global effect of the clock on the ROS network. We propose CCA1 as a master regulator of ROS homeostasis through association with the Evening Element in promoters of ROS genes in vivo to coordinate time-dependent responses to oxidative stress. We also find that ROS functions as an input signal that affects the transcriptional output of the clock, revealing an important link between ROS signaling and circadian output. Temporal coordination of ROS signaling by CCA1 and the reciprocal control of circadian output by ROS reveal a mechanistic link that allows plants to master oxidative stress responses. KW - redox homeostasis KW - transcriptional coordination Y1 - 2012 U6 - https://doi.org/10.1073/pnas.1209148109 SN - 0027-8424 VL - 109 IS - 42 SP - 17129 EP - 17134 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Rohrmann, Johannes A1 - Tohge, Takayuki A1 - Alba, Rob A1 - Osorio, Sonia A1 - Caldana, Camila A1 - McQuinn, Ryan A1 - Arvidsson, Samuel Janne A1 - van der Merwe, Margaretha J. A1 - Riano-Pachon, Diego Mauricio A1 - Müller-Röber, Bernd A1 - Fei, Zhangjun A1 - Nesi, Adriano Nunes A1 - Giovannoni, James J. A1 - Fernie, Alisdair R. T1 - Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development JF - The plant journal N2 - Maturation of fleshy fruits such as tomato (Solanum lycopersicum) is subject to tight genetic control. Here we describe the development of a quantitative real-time PCR platform that allows accurate quantification of the expression level of approximately 1000 tomato transcription factors. In addition to utilizing this novel approach, we performed cDNA microarray analysis and metabolite profiling of primary and secondary metabolites using GC-MS and LC-MS, respectively. We applied these platforms to pericarp material harvested throughout fruit development, studying both wild-type Solanum lycopersicum cv. Ailsa Craig and the hp1 mutant. This mutant is functionally deficient in the tomato homologue of the negative regulator of the light signal transduction gene DDB1 from Arabidopsis, and is furthermore characterized by dramatically increased pigment and phenolic contents. We choose this particular mutant as it had previously been shown to have dramatic alterations in the content of several important fruit metabolites but relatively little impact on other ripening phenotypes. The combined dataset was mined in order to identify metabolites that were under the control of these transcription factors, and, where possible, the respective transcriptional regulation underlying this control. The results are discussed in terms of both programmed fruit ripening and development and the transcriptional and metabolic shifts that occur in parallel during these processes. KW - transcription factor KW - Solanum lycopersicum KW - quantitative RT-PCR KW - microarray KW - metabolomics KW - fleshy fruit ripening Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-313X.2011.04750.x SN - 0960-7412 VL - 68 IS - 6 SP - 999 EP - 1013 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Naseri, Gita A1 - Behrend, Jessica A1 - Rieper, Lisa A1 - Müller-Röber, Bernd T1 - COMPASS for rapid combinatorial optimization of biochemical pathways based on artificial transcription factors JF - Nature Communications N2 - Balanced expression of multiple genes is central for establishing new biosynthetic pathways or multiprotein cellular complexes. Methods for efficient combinatorial assembly of regulatory sequences (promoters) and protein coding sequences are therefore highly wanted. Here, we report a high-throughput cloning method, called COMPASS for COMbinatorial Pathway ASSembly, for the balanced expression of multiple genes in Saccharomyces cerevisiae. COMPASS employs orthogonal, plant-derived artificial transcription factors (ATFs) and homologous recombination-based cloning for the generation of thousands of individual DNA constructs in parallel. The method relies on a positive selection of correctly assembled pathway variants from both, in vivo and in vitro cloning procedures. To decrease the turnaround time in genomic engineering, COMPASS is equipped with multi-locus CRISPR/Cas9-mediated modification capacity. We demonstrate the application of COMPASS by generating cell libraries producing n-carotene and co-producing p-ionone and biosensor-responsive naringenin. COMPASS will have many applications in synthetic biology projects that require gene expression balancing. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-10224-x SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Watanabe, Mutsumi A1 - Balazadeh, Salma A1 - Tohge, Takayuki A1 - Erban, Alexander A1 - Giavalisco, Patrick A1 - Kopka, Joachim A1 - Müller-Röber, Bernd A1 - Fernie, Alisdair R. A1 - Höfgen, Rainer T1 - Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in arabidopsis JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Developmental senescence is a coordinated physiological process in plants and is critical for nutrient redistribution from senescing leaves to newly formed sink organs, including young leaves and developing seeds. Progress has been made concerning the genes involved and the regulatory networks controlling senescence. The resulting complex metabolome changes during senescence have not been investigated in detail yet. Therefore, we conducted a comprehensive profiling of metabolites, including pigments, lipids, sugars, amino acids, organic acids, nutrient ions, and secondary metabolites, and determined approximately 260 metabolites at distinct stages in leaves and siliques during senescence in Arabidopsis (Arabidopsis thaliana). This provided an extensive catalog of metabolites and their spatiotemporal cobehavior with progressing senescence. Comparison with silique data provides clues to source-sink relations. Furthermore, we analyzed the metabolite distribution within single leaves along the basipetal sink-source transition trajectory during senescence. Ceramides, lysolipids, aromatic amino acids, branched chain amino acids, and stress-induced amino acids accumulated, and an imbalance of asparagine/aspartate, glutamate/glutamine, and nutrient ions in the tip region of leaves was detected. Furthermore, the spatiotemporal distribution of tricarboxylic acid cycle intermediates was already changed in the presenescent leaves, and glucosinolates, raffinose, and galactinol accumulated in the base region of leaves with preceding senescence. These results are discussed in the context of current models of the metabolic shifts occurring during developmental and environmentally induced senescence. As senescence processes are correlated to crop yield, the metabolome data and the approach provided here can serve as a blueprint for the analysis of traits and conditions linking crop yield and senescence. Y1 - 2013 U6 - https://doi.org/10.1104/pp.113.217380 SN - 0032-0889 VL - 162 IS - 3 SP - 1290 EP - 1310 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Zhang, Gong A1 - Lukoszek, Radoslaw A1 - Müller-Röber, Bernd A1 - Ignatova, Zoya T1 - Different sequence signatures in the upstream regions of plant and animal tRNA genes shape distinct modes of regulation JF - Nucleic acids research N2 - In eukaryotes, the transcription of tRNA genes is initiated by the concerted action of transcription factors IIIC (TFIIIC) and IIIB (TFIIIB) which direct the recruitment of polymerase III. While TFIIIC recognizes highly conserved, intragenic promoter elements, TFIIIB binds to the non-coding 5'-upstream regions of the tRNA genes. Using a systematic bioinformatic analysis of 11 multicellular eukaryotic genomes we identified a highly conserved TATA motif followed by a CAA-motif in the tRNA upstream regions of all plant genomes. Strikingly, the 5'-flanking tRNA regions of the animal genomes are highly heterogeneous and lack a common conserved sequence signature. Interestingly, in the animal genomes the tRNA species that read the same codon share conserved motifs in their upstream regions. Deep-sequencing analysis of 16 human tissues revealed multiple splicing variants of two of the TFIIIB subunits, Bdp1 and Brf1, with tissue-specific expression patterns. These multiple forms most likely modulate the TFIIIB-DNA interactions and explain the lack of a uniform signature motif in the tRNA upstream regions of animal genomes. The anticodon-dependent 5'-flanking motifs provide a possible mechanism for independent regulation of the tRNA transcription in various human tissues. Y1 - 2011 U6 - https://doi.org/10.1093/nar/gkq1257 SN - 0305-1048 VL - 39 IS - 8 SP - 3331 EP - 3339 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Gajdanowicz, Pawel A1 - Garcia-Mata, Carlos A1 - Gonzalez, Wendy A1 - Morales-Navarro, Samuel Elïas A1 - Sharma, Tripti A1 - Gonzalez-Nilo, Fernando Danilo A1 - Gutowicz, Jan A1 - Müller-Röber, Bernd A1 - Blatt, Michael R. A1 - Dreyer, Ingo T1 - Distinct roles of the last transmembrane domain in controlling Arabidopsis K+ channel activity N2 - The family of voltage-gated potassium channels in plants presumably evolved from a common ancestor and includes both inward-rectifying (K-in) channels that allow plant cells to accumulate K+ and outward-rectifying (K-out) channels that mediate K+ efflux. Despite their close structural similarities, the activity of Kin channels is largely independent of K+ and depends only on the transmembrane voltage, whereas that of K-out channels responds to the membrane voltage and the prevailing extracellular K+ concentration. Gating of potassium channels is achieved by structural rearrangements within the last transmembrane domain (S6). Here we investigated the functional equivalence of the S6 helices of the Kin channel KAT1 and the K-out channel SKOR by domain-swapping and site-directed mutagenesis. Channel mutants and chimeras were analyzed after expression in Xenopus oocytes. We identified two discrete regions that influence gating differently in both channels, demonstrating a lack of functional complementarity between KAT1 and SKOR. Our findings are supported by molecular models of KAT1 and SKOR in the open and closed states. The role of the S6 segment in gating evolved differently during specialization of the two channel subclasses, posing an obstacle for the transfer of the K+-sensor from K-out to K-in channels. Y1 - 2009 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0028-646X U6 - https://doi.org/10.1111/j.1469-8137.2008.02749.x SN - 0028-646X ER - TY - JOUR A1 - Skirycz, Aleksandra A1 - Reichelt, Michael A1 - Burow, Meike A1 - Birkemeyer, Claudia Sabine A1 - Rolcik, Jacub A1 - Kopka, Joachim A1 - Zanor, Maria Ines A1 - Gershenzon, Jonathan A1 - Strnad, Miroslav A1 - Szopa, Jan A1 - Müller-Röber, Bernd A1 - Witt, Isabell T1 - DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis N2 - Glucosinolates are a group of secondary metabolites that function as defense substances against herbivores and micro-organisms in the plant order Capparales. Indole glucosinolates (IGS), derivatives of tryptophan, may also influence plant growth and development. In Arabidopsis thaliana, indole-3-acetaldoxime (IAOx) produced from tryptophan by the activity of two cytochrome P450 enzymes, CYP79B2 and CYP79B3, serves as a precursor for IGS biosynthesis but is also an intermediate in the biosynthetic pathway of indole-3-acetic acid (IAA). Another cytochrome P450 enzyme, CYP83B1, funnels IAOx into IGS. Although there is increasing information about the genes involved in this biochemical pathway, their regulation is not fully understood. OBP2 has recently been identified as a member of the DNA-binding-with-one- finger (DOF) transcription factors, but its function has not been studied in detail so far. Here we report that OBP2 is expressed in the vasculature of all Arabidopsis organs, including leaves, roots, flower stalks and petals. OBP2 expression is induced in response to a generalist herbivore, Spodoptera littoralis, and by treatment with the plant signalling molecule methyl jasmonate, both of which also trigger IGS accumulation. Constitutive and inducible over- expression of OBP2 activates expression of CYP83B1. In addition, auxin concentration is increased in leaves and seedlings of OBP2 over-expression lines relative to wild-type, and plant size is diminished due to a reduction in cell size. RNA interference-mediated OBP2 blockade leads to reduced expression of CYP83B1. Collectively, these data provide evidence that OBP2 is part of a regulatory network that regulates glucosinolate biosynthesis in Arabidopsis Y1 - 2006 UR - http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2006.02767.x/full ER - TY - JOUR A1 - Mehrnia, Mohammad A1 - Balazadeh, Salma A1 - Zanor, Maria-Ines A1 - Müller-Röber, Bernd T1 - EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in arabidopsis JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - We report about ERF BUD ENHANCER (EBE; At5g61890), a transcription factor that affects cell proliferation as well as axillary bud outgrowth and shoot branching in Arabidopsis (Arabidopsis thaliana). EBE encodes a member of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor superfamily; the gene is strongly expressed in proliferating cells and is rapidly and transiently up-regulated in axillary meristems upon main stem decapitation. Overexpression of EBE promotes cell proliferation in growing calli, while the opposite is observed in EBE-RNAi lines. EBE overexpression also stimulates axillary bud formation and outgrowth, while repressing it results in inhibition of bud growth. Global transcriptome analysis of estradiol-inducible EBE overexpression lines revealed 48 EBE early-responsive genes, of which 14 were up-regulated and 34 were downregulated. EBE activates several genes involved in cell cycle regulation and dormancy breaking, including D-type cyclin CYCD3; 3, transcription regulator DPa, and BRCA1-ASSOCIATED RING DOMAIN1. Among the down-regulated genes were DORMANCY-ASSOCIATED PROTEIN1 (AtDRM1), AtDRM1 homolog, MEDIATOR OF ABA-REGULATED DORMANCY1, and ZINC FINGER HOMEODOMAIN5. Our data indicate that the effect of EBE on shoot branching likely results from an activation of genes involved in cell cycle regulation and dormancy breaking. Y1 - 2013 U6 - https://doi.org/10.1104/pp.113.214049 SN - 0032-0889 VL - 162 IS - 2 SP - 842 EP - 857 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Dortay, Hakan A1 - Schmöckel, Sandra M. A1 - Fettke, Jörg A1 - Müller-Röber, Bernd T1 - Expression of human c-reactive protein in different systems and its purification from Leishmania tarentolae JF - Protein expression and purification N2 - With its homo-pentameric structure and calcium-dependent specificity for phosphocholine (PCh), human c-reactive protein (CRP) is produced by the liver and secreted in elevated quantities in response to inflammation. CRP is widely accepted as a cardiac marker, e.g. in point-of-care diagnostics, however, its heterologous expression has proven difficult. Here, we demonstrate the expression of CRP in different Escherichia coli strains as well as by in vitro transcription/translation. Although expression in these systems was straightforward, most of the protein that accumulated was insoluble. We therefore expanded our study to include the expression of CRP in two eukaryotic hosts, namely the yeast Kluyveromyces lactis and the protozoon Leishmania tarentolae. Both expression systems are optimized for secretion of recombinant proteins and here allowed successful expression of soluble CRP. We also demonstrate the purification of recombinant CRP from Leishmania growth medium; the purification of protein expressed from K. lactis was not successful. Functional and intact CRP pentamer is known to interact with PCh in Ca(2+)-dependent manner. In this report we verify the binding specificity of recombinant CRP from L tarentolae (2 mu g/mL culture medium) for PCh. KW - C-reactive protein KW - Protein expression KW - Leishmania KW - In vitro expression KW - Protein purification Y1 - 2011 U6 - https://doi.org/10.1016/j.pep.2011.03.010 SN - 1046-5928 VL - 78 IS - 1 SP - 55 EP - 60 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Balazadeh, Salma A1 - Jaspert, Nils A1 - Arif, Muhammad A1 - Müller-Röber, Bernd A1 - Maurino, Veronica G. T1 - Expression of ROS-responsive genes and transcription factors after metabolic formation of H2O2 in chloroplasts JF - Frontiers in plant science N2 - Glycolate oxidase (GO) catalyses the oxidation of glycolate to glyoxylate, thereby consuming O-2 and producing H2O2. In this work, Arabidopsis thaliana plants expressing GO in the chloroplasts (GO plants) were used to assess the expressional behavior of reactive oxygen species (ROS)-responsive genes and transcription factors (TFs) after metabolic induction of H2O2 formation in chloroplasts. In this organelle, GO uses the glycolate derived from the oxygenase activity of RubisCO. Here, to identify genes responding to an abrupt production of H2O2 in chloroplasts we used quantitative real-time PCR (qRT-PCR) to test the expression of 187 ROS-responsive genes and 1880 TFs after transferring GO and wild-type (WT) plants grown at high CO2 levels to ambient CO2 concentration. Our data revealed coordinated expression changes of genes of specific functional networks 0.5 h after metabolic induction of H2O2 production in GO plants, including the induction of indole glucosinolate and camalexin biosynthesis genes. Comparative analysis using available microarray data suggests that signals for the induction of these genes through H2O2 may originate in the chloroplast. The TF profiling indicated an up-regulation in GO plants of a group of genes involved in the regulation of proanthocyanidin and anthocyanin biosynthesis. Moreover, the upregulation of expression of IF and IF interacting proteins affecting development (e.g., cell division, stem branching, flowering time, flower development) would impact growth and reproductive capacity, resulting in altered development under conditions that promote the formation of H2O2. KW - glycolate oxidase KW - H2O2 KW - ROS-responsive genes KW - transcription factors Y1 - 2012 U6 - https://doi.org/10.3389/fpls.2012.00234 SN - 1664-462X VL - 3 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Gliwicka, Marta A1 - Nowak, Katarzyna A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Gaj, Malgorzata D. T1 - Extensive Modulation of the Transcription Factor Transcriptome during Somatic Embryogenesis in Arabidopsis thaliana JF - PLoS one N2 - Molecular mechanisms controlling plant totipotency are largely unknown and studies on somatic embryogenesis (SE), the process through which already differentiated cells reverse their developmental program and become embryogenic, provide a unique means for deciphering molecular mechanisms controlling developmental plasticity of somatic cells. Among various factors essential for embryogenic transition of somatic cells transcription factors (TFs), crucial regulators of genetic programs, are believed to play a central role. Herein, we used quantitative real-time polymerase chain reaction (qRT-PCR) to identify TF genes affected during SE induced by in vitro culture in Arabidopsis thaliana. Expression profiles of 1,880 TFs were evaluated in the highly embryogenic Col-0 accession and the non-embryogenic tanmei/emb2757 mutant. Our study revealed 729 TFs whose expression changes during the 10-days incubation period of SE; 141 TFs displayed distinct differences in expression patterns in embryogenic versus non-embryogenic cultures. The embryo-induction stage of SE occurring during the first 5 days of culture was associated with a robust and dramatic change of the TF transcriptome characterized by the drastic up-regulation of the expression of a great majority (over 80%) of the TFs active during embryogenic culture. In contrast to SE induction, the advanced stage of embryo formation showed attenuation and stabilization of transcript levels of many TFs. In total, 519 of the SE-modulated TFs were functionally annotated and transcripts related with plant development, phytohormones and stress responses were found to be most abundant. The involvement of selected TFs in SE was verified using T-DNA insertion lines and a significantly reduced embryogenic response was found for the majority of them. This study provides comprehensive data focused on the expression of TF genes during SE and suggests directions for further research on functional genomics of SE. Y1 - 2013 U6 - https://doi.org/10.1371/journal.pone.0069261 SN - 1932-6203 VL - 8 IS - 7 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Johansson, Ingela A1 - Wulfetange, Klaas A1 - Poree, Fabien A1 - Michard, Erwan A1 - Gajdanowicz, Pawel A1 - Lacombe, Benoit A1 - Sentenac, Herve A1 - Thibaud, Jean-Baptiste A1 - Müller-Röber, Bernd A1 - Blatt, Michael R. A1 - Dreyer, Ingo T1 - External K+ modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism N2 - Plant outward-rectifying K+ channels mediate K+ efflux from guard cells during stomatal closure and from root cells into the xylem for root-shoot allocation of potassium (K). Intriguingly, the gating of these channels depends on the extracellular K+ concentration, although the ions carrying the current are derived from inside the cell. This K+ dependence confers a sensitivity to the extracellular K+ concentration ([K+]) that ensures that the channels mediate K+ efflux only, regardless of the [K+] prevailing outside. We investigated the mechanism of K+-dependent gating of the K+ channel SKOR of Arabidopsis by site-directed mutagenesis. Mutations affecting the intrinsic K+ dependence of gating were found to cluster in the pore and within the sixth transmembrane helix (S6), identifying an 'S6 gating domain' deep within the membrane. Mapping the SKOR sequence to the crystal structure of the voltage-dependent K+ channel KvAP from Aeropyrum pernix suggested interaction between the S6 gating domain and the base of the pore helix, a prediction supported by mutations at this site. These results offer a unique insight into the molecular basis for a physiologically important K+-sensory process in plants Y1 - 2006 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0960-7412 U6 - https://doi.org/10.1111/j.1365-313X.2006.02690.X SN - 0960-7412 ER - TY - JOUR A1 - Müller-Röber, Bernd A1 - Arvidsson, Samuel Janne T1 - Fertility control : the role of magnesium transporters in pollen development Y1 - 2009 UR - http://www.nature.com/cr/archive/index.html U6 - https://doi.org/10.1038/Cr.2009.82 SN - 1001-0602 ER - TY - JOUR A1 - Omranian, Nooshin A1 - Eloundou-Mbebi, Jeanne Marie Onana A1 - Müller-Röber, Bernd A1 - Nikoloski, Zoran T1 - Gene regulatory network inference using fused LASSO on multiple data sets JF - Scientific reports N2 - Devising computational methods to accurately reconstruct gene regulatory networks given gene expression data is key to systems biology applications. Here we propose a method for reconstructing gene regulatory networks by simultaneous consideration of data sets from different perturbation experiments and corresponding controls. The method imposes three biologically meaningful constraints: (1) expression levels of each gene should be explained by the expression levels of a small number of transcription factor coding genes, (2) networks inferred from different data sets should be similar with respect to the type and number of regulatory interactions, and (3) relationships between genes which exhibit similar differential behavior over the considered perturbations should be favored. We demonstrate that these constraints can be transformed in a fused LASSO formulation for the proposed method. The comparative analysis on transcriptomics time-series data from prokaryotic species, Escherichia coli and Mycobacterium tuberculosis, as well as a eukaryotic species, mouse, demonstrated that the proposed method has the advantages of the most recent approaches for regulatory network inference, while obtaining better performance and assigning higher scores to the true regulatory links. The study indicates that the combination of sparse regression techniques with other biologically meaningful constraints is a promising framework for gene regulatory network reconstructions. Y1 - 2016 U6 - https://doi.org/10.1038/srep20533 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Dong, Yanni A1 - Gupta, Saurabh A1 - Sievers, Rixta A1 - Wargent, Jason J. A1 - Wheeler, David A1 - Putterill, Joanna A1 - Macknight, Richard A1 - Gechev, Tsanko S. A1 - Müller-Röber, Bernd A1 - Dijkwel, Paul P. T1 - Genome draft of the Arabidopsis relative Pachycladon cheesemanii reveals environment JF - BMC genomics N2 - BackgroundPachycladon cheesemanii is a close relative of Arabidopsis thaliana and is an allotetraploid perennial herb which is widespread in the South Island of New Zealand. It grows at altitudes of up to 1000m where it is subject to relatively high levels of ultraviolet (UV)-B radiation. To gain first insights into how Pachycladon copes with UV-B stress, we sequenced its genome and compared the UV-B tolerance of two Pachycladon accessions with those of two A. thaliana accessions from different altitudes.ResultsA high-quality draft genome of P. cheesemanii was assembled with a high percentage of conserved single-copy plant orthologs. Synteny analysis with genomes from other species of the Brassicaceae family found a close phylogenetic relationship of P. cheesemanii with Boechera stricta from Brassicaceae lineage I. While UV-B radiation caused a greater growth reduction in the A. thaliana accessions than in the P. cheesemanii accessions, growth was not reduced in one P. cheesemanii accession. The homologues of A. thaliana UV-B radiation response genes were duplicated in P. cheesemanii, and an expression analysis of those genes indicated that the tolerance mechanism in P. cheesemanii appears to differ from that in A. thaliana.ConclusionAlthough the P. cheesemanii genome shows close similarity with that of A. thaliana, it appears to have evolved novel strategies allowing the plant to tolerate relatively high UV-B radiation. KW - Abiotic stress KW - Arabidopsis KW - Genome assembly KW - Pachycladon KW - UV-B tolerance Y1 - 2019 U6 - https://doi.org/10.1186/s12864-019-6084-4 SN - 1471-2164 VL - 20 IS - 1 PB - BMC CY - London ER - TY - JOUR A1 - Gupta, Saurabh A1 - Dong, Yanni A1 - Dijkwel, Paul P. A1 - Müller-Röber, Bernd A1 - Gechev, Tsanko S. T1 - Genome-Wide Analysis of ROS Antioxidant Genes in Resurrection Species Suggest an Involvement of Distinct ROS Detoxification Systems during Desiccation JF - International Journal of Molecular Sciences N2 - Abiotic stress is one of the major threats to plant crop yield and productivity. When plants are exposed to stress, production of reactive oxygen species (ROS) increases, which could lead to extensive cellular damage and hence crop loss. During evolution, plants have acquired antioxidant defense systems which can not only detoxify ROS but also adjust ROS levels required for proper cell signaling. Ascorbate peroxidase (APX), glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) are crucial enzymes involved in ROS detoxification. In this study, 40 putative APX, 28 GPX, 16 CAT, and 41 SOD genes were identified from genomes of the resurrection species Boea hygrometrica, Selaginella lepidophylla, Xerophyta viscosa, and Oropetium thomaeum, and the mesophile Selaginella moellendorffi. Phylogenetic analyses classified the APX, GPX, and SOD proteins into five clades each, and CAT proteins into three clades. Using co-expression network analysis, various regulatory modules were discovered, mainly involving glutathione, that likely work together to maintain ROS homeostasis upon desiccation stress in resurrection species. These regulatory modules also support the existence of species-specific ROS detoxification systems. The results suggest molecular pathways that regulate ROS in resurrection species and the role of APX, GPX, CAT and SOD genes in resurrection species during stress. KW - abiotic stress KW - desiccation KW - resurrection plants KW - ROS KW - ascorbate peroxidase KW - glutathione peroxidase KW - catalase KW - superoxide dismutase Y1 - 2019 U6 - https://doi.org/10.3390/ijms20123101 SN - 1422-0067 SN - 1661-6596 VL - 20 IS - 12 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Winck, Flavia Vischi A1 - Arvidsson, Samuel Janne A1 - Mauricio Riano-Pachon, Diego A1 - Hempel, Sabrina A1 - Koseska, Aneta A1 - Nikoloski, Zoran A1 - Urbina Gomez, David Alejandro A1 - Rupprecht, Jens A1 - Müller-Röber, Bernd T1 - Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga chlamydomonas reinhardtii under carbon deprivation JF - PLoS one N2 - The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM) is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing) to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1) gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF) and transcription regulator (TR) genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment) method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO2 response regulator 1) and Lcr2 (Low-CO2 response regulator 2), may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome. Our work can serve as a basis for future functional studies of transcriptional regulator genes and genomic regulatory elements in Chlamydomonas. Y1 - 2013 U6 - https://doi.org/10.1371/journal.pone.0079909 SN - 1932-6203 VL - 8 IS - 11 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Engqvist, Martin K. M. A1 - Schmitz, Jessica A1 - Gertzmann, Anke A1 - Florian, Alexandra A1 - Jaspert, Nils A1 - Arif, Muhammad A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Fernie, Alisdair R. A1 - Maurino, Veronica G. T1 - GLYCOLATE OXIDASE3, a Glycolate Oxidase Homolog of Yeast L-Lactate Cytochrome c Oxidoreductase, Supports L-Lactate Oxidation in Roots of Arabidopsis JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - In roots of Arabidopsis (Arabidopsis thaliana), L-lactate is generated by the reduction of pyruvate via L-lactate dehydrogenase, but this enzyme does not efficiently catalyze the reverse reaction. Here, we identify the Arabidopsis glycolate oxidase (GOX) paralogs GOX1, GOX2, and GOX3 as putative L-lactate-metabolizing enzymes based on their homology to CYB2, the L-lactate cytochrome c oxidoreductase from the yeast Saccharomyces cerevisiae. We found that GOX3 uses L-lactate with a similar efficiency to glycolate; in contrast, the photorespiratory isoforms GOX1 and GOX2, which share similar enzymatic properties, use glycolate with much higher efficiencies than L-lactate. The key factor making GOX3 more efficient with L-lactate than GOX1 and GOX2 is a 5- to 10-fold lower Km for the substrate. Consequently, only GOX3 can efficiently metabolize L-lactate at low intracellular concentrations. Isotope tracer experiments as well as substrate toxicity tests using GOX3 loss-of-function and overexpressor plants indicate that L-lactate is metabolized in vivo by GOX3. Moreover, GOX3 rescues the lethal growth phenotype of a yeast strain lacking CYB2, which cannot grow on L-lactate as a sole carbon source. GOX3 is predominantly present in roots and mature to aging leaves but is largely absent from young photosynthetic leaves, indicating that it plays a role predominantly in heterotrophic rather than autotrophic tissues, at least under standard growth conditions. In roots of plants grown under normoxic conditions, loss of function of GOX3 induces metabolic rearrangements that mirror wild-type responses under hypoxia. Thus, we identified GOX3 as the enzyme that metabolizes L-lactate to pyruvate in vivo and hypothesize that it may ensure the sustainment of low levels of L-lactate after its formation under normoxia. Y1 - 2015 U6 - https://doi.org/10.1104/pp.15.01003 SN - 0032-0889 SN - 1532-2548 VL - 169 IS - 2 SP - 1042 EP - 1061 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Omidbakhshfard, Mohammad Amin A1 - Proost, Sebastian A1 - Fujikura, Ushio A1 - Müller-Röber, Bernd T1 - Growth-Regulating Factors (GRFs): A Small Transcription Factor Family with Important Functions in Plant Biology JF - Molecular plant N2 - Growth-regulating factors (GRFs) are plant-specific transcription factors that were originally identified for their roles in stem and leaf development, but recent studies highlight them to be similarly important for other central developmental processes including flower and seed formation, root development, and the coordination of growth processes under adverse environmental conditions. The expression of several GRFs is controlled by microRNA miR396, and the GRF-miRNA396 regulatory module appears to be central to several of these processes. In addition, transcription factors upstream of GRFs and miR396 have been discovered, and gradually downstream target genes of GRFs are being unraveled. Here, we review the current knowledge of the biological functions performed by GRFs and survey available molecular data to illustrate how they exert their roles at the cellular level. KW - abiotic stress KW - chromatin remodeling KW - flower development KW - growth regulation KW - leaf development KW - miRNA Y1 - 2015 U6 - https://doi.org/10.1016/j.molp.2015.01.013 SN - 1674-2052 SN - 1752-9867 VL - 8 IS - 7 SP - 998 EP - 1010 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Dortay, Hakan A1 - Akula, Usha Madhuri A1 - Westphal, Christin A1 - Sittig, Marie A1 - Müller-Röber, Bernd T1 - High-throughput protein expression using a combination of ligation-independent cloning (LIC) and infrared fluorescent protein (IFP) detection JF - PLoS one N2 - Protein expression in heterologous hosts for functional studies is a cumbersome effort. Here, we report a superior platform for parallel protein expression in vivo and in vitro. The platform combines highly efficient ligation-independent cloning (LIC) with instantaneous detection of expressed proteins through N- or C-terminal fusions to infrared fluorescent protein (IFP). For each open reading frame, only two PCR fragments are generated (with three PCR primers) and inserted by LIC into ten expression vectors suitable for protein expression in microbial hosts, including Escherichia coli, Kluyveromyces lactis, Pichia pastoris, the protozoon Leishmania tarentolae, and an in vitro transcription/translation system. Accumulation of IFP-fusion proteins is detected by infrared imaging of living cells or crude protein extracts directly after SDS-PAGE without additional processing. We successfully employed the LIC-IFP platform for in vivo and in vitro expression of ten plant and fungal proteins, including transcription factors and enzymes. Using the IFP reporter, we additionally established facile methods for the visualisation of protein-protein interactions and the detection of DNA-transcription factor interactions in microtiter and gel-free format. We conclude that IFP represents an excellent reporter for high-throughput protein expression and analysis, which can be easily extended to numerous other expression hosts using the setup reported here. Y1 - 2011 U6 - https://doi.org/10.1371/journal.pone.0018900 SN - 1932-6203 VL - 6 IS - 4 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Alseekh, Saleh A1 - Tohge, Takayuki A1 - Wendenberg, Regina A1 - Scossa, Federico A1 - Omranian, Nooshin A1 - Li, Jie A1 - Kleessen, Sabrina A1 - Giavalisco, Patrick A1 - Pleban, Tzili A1 - Müller-Röber, Bernd A1 - Zamir, Dani A1 - Nikoloski, Zoran A1 - Fernie, Alisdair R. T1 - Identification and Mode of Inheritance of Quantitative Trait Loci for Secondary Metabolite Abundance in Tomato JF - The plant cell N2 - A large-scale metabolic quantitative trait loci (mQTL) analysis was performed on the well-characterized Solanum pennellii introgression lines to investigate the genomic regions associated with secondary metabolism in tomato fruit pericarp. In total, 679 mQTLs were detected across the 76 introgression lines. Heritability analyses revealed that mQTLs of secondary metabolism were less affected by environment than mQTLs of primary metabolism. Network analysis allowed us to assess the interconnectivity of primary and secondary metabolism as well as to compare and contrast their respective associations with morphological traits. Additionally, we applied a recently established real-time quantitative PCR platform to gain insight into transcriptional control mechanisms of a subset of the mQTLs, including those for hydroxycinnamates, acyl-sugar, naringenin chalcone, and a range of glycoalkaloids. Intriguingly, many of these compounds displayed a dominant-negative mode of inheritance, which is contrary to the conventional wisdom that secondary metabolite contents decreased on domestication. We additionally performed an exemplary evaluation of two candidate genes for glycolalkaloid mQTLs via the use of virus-induced gene silencing. The combined data of this study were compared with previous results on primary metabolism obtained from the same material and to other studies of natural variance of secondary metabolism. Y1 - 2015 U6 - https://doi.org/10.1105/tpc.114.132266 SN - 1040-4651 SN - 1532-298X VL - 27 IS - 3 SP - 485 EP - 512 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Petrov, Veselin A1 - Schippers, Jos A1 - Benina, Maria A1 - Minkov, Ivan A1 - Müller-Röber, Bernd A1 - Gechev, Tsanko S. T1 - In search for new players of the oxidative stress network by phenotyping an Arabidopsis T-DNA mutant collection on reactive oxygen species-eliciting chemicals JF - Plant omics N2 - The ability of some chemical compounds to cause oxidative stress offers a fast and convenient way to study the responses of plants to reactive oxygen species (ROS). In order to unveil potential novel genetic players of the ROS-regulatory network, a population of similar to 2,000 randomly selected Arabidopsis thaliana T-DNA insertion mutants was screened for ROS sensitivity/resistance by growing seedlings on agar medium supplemented with stress-inducing concentrations of the superoxide-eliciting herbicide methyl viologen or the catalase inhibitor 3-amino-triazole. A semi-robotic setup was used to capture and analyze images of the chemically treated seedlings which helped interpret the screening results by providing quantitative information on seedling area and healthy-to-chlorotic tissue ratios for data verification. A ROS-related phenotype was confirmed in three of the initially selected 33 mutant candidates, which carry T-DNA insertions in genes encoding a Ring/Ubox superfamily protein, ABI5 binding protein 1 (AFP1), previously reported to be involved in ABA signaling, and a protein of unknown function, respectively. In addition, we identified six mutants, most of which have not been described yet, that are related to growth or chloroplast development and show defects in a ROS-independent manner. Thus, semi-automated image capturing and phenotyping applied on publically available T-DNA insertion collections adds a simple means for discovering novel mutants in complex physiological processes and identifying the genes involved. KW - growth KW - image analysis KW - methyl viologen KW - LemnaTec KW - screening KW - superoxide Y1 - 2013 SN - 1836-0661 VL - 6 IS - 1 SP - 46 EP - 54 PB - Southern Cross Publ. CY - Lismore ER - TY - JOUR A1 - Lukoszek, Radoslaw A1 - Müller-Röber, Bernd A1 - Ignatova, Zoya T1 - Interplay between polymerase II- and polymerase III-assisted expression of overlapping genes JF - FEBS letters : the journal for rapid publication of short reports in molecular biosciences N2 - Up to 15% of the genes in different genomes overlap. This architecture, although beneficial for the genome size, represents an obstacle for simultaneous transcription of both genes. Here we analyze the interference between RNA-polymerase II (Pol II) and RNA-polymerase III (Pol III) when transcribing their target genes encoded on opposing strands within the same DNA fragment in Arabidopsis thaliana. The expression of a Pol II-dependent protein-coding gene negatively correlated with the transcription of a Pol III-dependent, tRNA-coding gene set. We suggest that the architecture of the overlapping genes introduces an additional layer of control of gene expression. (C) 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. KW - Gene expression KW - Transcription KW - tRNA KW - Nested and overlapping genes KW - Arabidopsis thaliana Y1 - 2013 U6 - https://doi.org/10.1016/j.febslet.2013.09.033 SN - 0014-5793 SN - 1873-3468 VL - 587 IS - 22 SP - 3692 EP - 3695 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wu, Anhui A1 - Allu, Annapurna Devi A1 - Garapati, Prashanth A1 - Siddiqui, Hamad A1 - Dortay, Hakan A1 - Zanor, Maria-Ines A1 - Asensi-Fabado, Maria Amparo A1 - Munne-Bosch, Sergi A1 - Antonio, Carla A1 - Tohge, Takayuki A1 - Fernie, Alisdair R. A1 - Kaufmann, Kerstin A1 - Xue, Gang-Ping A1 - Müller-Röber, Bernd A1 - Balazadeh, Salma T1 - Jungbrunnen1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in arabidopsis JF - The plant cell N2 - The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H2O2)-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1 overexpression strongly delays senescence, dampens intracellular H2O2 levels, and enhances tolerance to various abiotic stresses, whereas in jub1-1 knockdown plants, precocious senescence and lowered abiotic stress tolerance are observed. A JUB1 binding site containing a RRYGCCGT core sequence is present in the promoter of DREB2A, which plays an important role in abiotic stress responses. JUB1 transactivates DREB2A expression in mesophyll cell protoplasts and transgenic plants and binds directly to the DREB2A promoter. Transcriptome profiling of JUB1 overexpressors revealed elevated expression of several reactive oxygen species-responsive genes, including heat shock protein and glutathione S-transferase genes, whose expression is further induced by H2O2 treatment. Metabolite profiling identified elevated Pro and trehalose levels in JUB1 overexpressors, in accordance with their enhanced abiotic stress tolerance. We suggest that JUB1 constitutes a central regulator of a finely tuned control system that modulates cellular H2O2 level and primes the plants for upcoming stress through a gene regulatory network that involves DREB2A. Y1 - 2012 U6 - https://doi.org/10.1105/tpc.111.090894 SN - 1040-4651 VL - 24 IS - 2 SP - 482 EP - 506 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Hochrein, Lena A1 - Mitchell, Leslie A. A1 - Schulz, Karina A1 - Messerschmidt, Katrin A1 - Müller-Röber, Bernd T1 - L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast JF - Nature Communications N2 - The synthetic yeast genome constructed by the International Synthetic Yeast Sc2.0 consortium adds thousands of loxPsym recombination sites to all 16 redesigned chromosomes, allowing the shuffling of Sc2.0 chromosome parts by the Cre-loxP recombination system thereby enabling genome evolution experiments. Here, we present L-SCRaMbLE, a lightcontrolled Cre recombinase for use in the yeast Saccharomyces cerevisiae. L-SCRaMbLE allows tight regulation of recombinase activity with up to 179-fold induction upon exposure to red light. The extent of recombination depends on induction time and concentration of the chromophore phycocyanobilin (PCB), which can be easily adjusted. The tool presented here provides improved recombination control over the previously reported estradiol-dependent SCRaMbLE induction system, mediating a larger variety of possible recombination events in SCRaMbLE-ing a reporter plasmid. Thereby, L-SCRaMbLE boosts the potential for further customization and provides a facile application for use in the S. cerevisiae genome reengineering project Sc2.0 or in other recombination-based systems. Y1 - 2018 U6 - https://doi.org/10.1038/s41467-017-02208-6 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Yang, Lei A1 - Perrera, Valentina A1 - Saplaoura, Eleftheria A1 - Apelt, Federico A1 - Bahin, Mathieu A1 - Kramdi, Amira A1 - Olas, Justyna Jadwiga A1 - Müller-Röber, Bernd A1 - Sokolowska, Ewelina A1 - Zhang, Wenna A1 - Li, Runsheng A1 - Pitzalis, Nicolas A1 - Heinlein, Manfred A1 - Zhang, Shoudong A1 - Genovesio, Auguste A1 - Colot, Vincent A1 - Kragler, Friedrich T1 - m(5)C Methylation Guides Systemic Transport of Messenger RNA over Graft Junctions in Plants JF - Current biology N2 - In plants, transcripts move to distant body parts to potentially act as systemic signals regulating development and growth. Thousands of messenger RNAs (mRNAs) are transported across graft junctions via the phloem to distinct plant parts. Little is known regarding features, structural motifs, and potential base modifications of transported transcripts and how these may affect their mobility. We identified Arabidopsis thalianam RNAs harboring the modified base 5-methylcytosine (m(5)C) and found that these are significantly enriched in mRNAs previously described as mobile, moving over graft junctions to distinct plant parts. We confirm this finding with graft-mobile methylated mRNAs TRANSLATIONALLY CONTROLLED TUMOR PROTEIN 1 (TCTP1) and HEAT SHOCK COGNATE PROTEIN 70.1 (HSC70.1), whose mRNA transport is diminished in mutants deficient in m(5)C mRNA methylation. Together, our results point toward an essential role of cytosine methylation in systemic mRNA mobility in plants and that TCTP1 mRNA mobility is required for its signaling function. Y1 - 2019 U6 - https://doi.org/10.1016/j.cub.2019.06.042 SN - 0960-9822 SN - 1879-0445 VL - 29 IS - 15 SP - 2465 EP - 2476.e5 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Gechev, Tsanko S. A1 - Benina, Maria A1 - Obata, Toshihiro A1 - Tohge, Takayuki A1 - Neerakkal, Sujeeth A1 - Minkov, Ivan A1 - Hille, Jacques A1 - Temanni, Mohamed-Ramzi A1 - Marriott, Andrew S. A1 - Bergström, Ed A1 - Thomas-Oates, Jane A1 - Antonio, Carla A1 - Müller-Röber, Bernd A1 - Schippers, Jos H. M. A1 - Fernie, Alisdair R. A1 - Toneva, Valentina T1 - Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis JF - Cellular and molecular life sciences N2 - Haberlea rhodopensis is a resurrection plant with remarkable tolerance to desiccation. Haberlea exposed to drought stress, desiccation, and subsequent rehydration showed no signs of damage or severe oxidative stress compared to untreated control plants. Transcriptome analysis by next-generation sequencing revealed a drought-induced reprogramming, which redirected resources from growth towards cell protection. Repression of photosynthetic and growth-related genes during water deficiency was concomitant with induction of transcription factors (members of the NAC, NF-YA, MADS box, HSF, GRAS, and WRKY families) presumably acting as master switches of the genetic reprogramming, as well as with an upregulation of genes related to sugar metabolism, signaling, and genes encoding early light-inducible (ELIP), late embryogenesis abundant (LEA), and heat shock (HSP) proteins. At the same time, genes encoding other LEA, HSP, and stress protective proteins were constitutively expressed at high levels even in unstressed controls. Genes normally involved in tolerance to salinity, chilling, and pathogens were also highly induced, suggesting a possible cross-tolerance against a number of abiotic and biotic stress factors. A notable percentage of the genes highly regulated in dehydration and subsequent rehydration were novel, with no sequence homology to genes from other plant genomes. Additionally, an extensive antioxidant gene network was identified with several gene families possessing a greater number of antioxidant genes than most other species with sequenced genomes. Two of the transcripts most abundant during all conditions encoded catalases and five more catalases were induced in water-deficient samples. Using the pharmacological inhibitor 3-aminotriazole (AT) to compromise catalase activity resulted in increased sensitivity to desiccation. Metabolome analysis by GC or LC-MS revealed accumulation of sucrose, verbascose, spermidine, and gamma-aminobutyric acid during drought, as well as particular secondary metabolites accumulating during rehydration. This observation, together with the complex antioxidant system and the constitutive expression of stress protective genes suggests that both constitutive and inducible mechanisms contribute to the extreme desiccation tolerance of H. rhodopensis. KW - Antioxidant genes KW - Catalase KW - Desiccation tolerance KW - Drought stress KW - Metabolome analysis KW - Resurrection plants Y1 - 2013 U6 - https://doi.org/10.1007/s00018-012-1155-6 SN - 1420-682X VL - 70 IS - 4 SP - 689 EP - 709 PB - Springer CY - Basel ER - TY - JOUR A1 - Durgud, Meriem A1 - Gupta, Saurabh A1 - Ivanov, Ivan A1 - Omidbakhshfard, Mohammad Amin A1 - Benina, Maria A1 - Alseekh, Saleh A1 - Staykov, Nikola A1 - Hauenstein, Mareike A1 - Dijkwel, Paul P. A1 - Hortensteiner, Stefan A1 - Toneva, Valentina A1 - Brotman, Yariv A1 - Fernie, Alisdair R. A1 - Müller-Röber, Bernd A1 - Gechev, Tsanko S. T1 - Molecular Mechanisms Preventing Senescence in Response to Prolonged Darkness in a Desiccation-Tolerant Plant JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - The desiccation-tolerant plant Haberlea rhodopensis can withstand months of darkness without any visible senescence. Here, we investigated the molecular mechanisms of this adaptation to prolonged (30 d) darkness and subsequent return to light. H. rhodopensis plants remained green and viable throughout the dark treatment. Transcriptomic analysis revealed that darkness regulated several transcription factor (TF) genes. Stress-and autophagy-related TFs such as ERF8, HSFA2b, RD26, TGA1, and WRKY33 were up-regulated, while chloroplast-and flowering-related TFs such as ATH1, COL2, COL4, RL1, and PTAC7 were repressed. PHYTOCHROME INTERACTING FACTOR4, a negative regulator of photomorphogenesis and promoter of senescence, also was down-regulated. In response to darkness, most of the photosynthesis-and photorespiratory-related genes were strongly down-regulated, while genes related to autophagy were up-regulated. This occurred concomitant with the induction of SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASES (SnRK1) signaling pathway genes, which regulate responses to stress-induced starvation and autophagy. Most of the genes associated with chlorophyll catabolism, which are induced by darkness in dark-senescing species, were either unregulated (PHEOPHORBIDE A OXYGENASE, PAO; RED CHLOROPHYLL CATABOLITE REDUCTASE, RCCR) or repressed (STAY GREEN-LIKE, PHEOPHYTINASE, and NON-YELLOW COLORING1). Metabolite profiling revealed increases in the levels of many amino acids in darkness, suggesting increased protein degradation. In darkness, levels of the chloroplastic lipids digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylglycerol, and sulfoquinovosyldiacylglycerol decreased, while those of storage triacylglycerols increased, suggesting degradation of chloroplast membrane lipids and their conversion to triacylglycerols for use as energy and carbon sources. Collectively, these data show a coordinated response to darkness, including repression of photosynthetic, photorespiratory, flowering, and chlorophyll catabolic genes, induction of autophagy and SnRK1 pathways, and metabolic reconfigurations that enable survival under prolonged darkness. Y1 - 2018 U6 - https://doi.org/10.1104/pp.18.00055 SN - 0032-0889 SN - 1532-2548 VL - 177 IS - 3 SP - 1319 EP - 1338 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Schmidt, Romy A1 - Schippers, Jos H. M. A1 - Mieulet, Delphine A1 - Obata, Toshihiro A1 - Fernie, Alisdair R. A1 - Guiderdoni, Emmanuel A1 - Müller-Röber, Bernd T1 - Multipass, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways JF - The plant journal N2 - Growth regulation is an important aspect of plant adaptation during environmental perturbations. Here, the role of MULTIPASS (OsMPS), an R2R3-type MYB transcription factor of rice, was explored. OsMPS is induced by salt stress and expressed in vegetative and reproductive tissues. Over-expression of OsMPS reduces growth under non-stress conditions, while knockdown plants display increased biomass. OsMPS expression is induced by abscisic acid and cytokinin, but is repressed by auxin, gibberellin and brassinolide. Growth retardation caused by OsMPS over-expression is partially restored by auxin application. Expression profiling revealed that OsMPS negatively regulates the expression of EXPANSIN (EXP) and cell-wall biosynthesis as well as phytohormone signaling genes. Furthermore, the expression of OsMPS-dependent genes is regulated by auxin, cytokinin and abscisic acid. Moreover, we show that OsMPS is a direct upstream regulator of OsEXPA4, OsEXPA8, OsEXPB2, OsEXPB3, OsEXPB6 and the endoglucanase genes OsGLU5 and OsGLU14. The multiple responses of OsMPS and its target genes to various hormones suggest an integrative function of OsMPS in the cross-talk between phytohormones and the environment to regulate adaptive growth. KW - development KW - expansin KW - transcription KW - Oryza sativa KW - hormone KW - abiotic stress Y1 - 2013 U6 - https://doi.org/10.1111/tpj.12286 SN - 0960-7412 SN - 1365-313X VL - 76 IS - 2 SP - 258 EP - 273 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Matallana-Ramirez, Lilian P. A1 - Rauf, Mamoona A1 - Farage-Barhom, Sarit A1 - Dortay, Hakan A1 - Xue, Gang-Ping A1 - Droege-Laser, Wolfgang A1 - Lers, Amnon A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd T1 - NAC Transcription Factor ORE1 and Senescence-Induced BIFUNCTIONAL NUCLEASE1 (BFN1) Constitute a Regulatory Cascade in Arabidopsis JF - Molecular plant N2 - The NAC transcription factor ORE1 is a key regulator of senescence in Arabidopsis thaliana. Here, we demonstrate that senescence-induced and cell death-associated BIFUNCTIONAL NUCLEASE1 (BFN1) is a direct downstream target of ORE1, revealing a previously unknown regulatory cascade.Senescence is a highly regulated process that involves the action of a large number of transcription factors. The NAC transcription factor ORE1 (ANAC092) has recently been shown to play a critical role in positively controlling senescence in Arabidopsis thaliana; however, no direct target gene through which it exerts its molecular function has been identified previously. Here, we report that BIFUNCTIONAL NUCLEASE1 (BFN1), a well-known senescence-enhanced gene, is directly regulated by ORE1. We detected elevated expression of BFN1 already 2 h after induction of ORE1 in estradiol-inducible ORE1 overexpression lines and 6 h after transfection of Arabidopsis mesophyll cell protoplasts with a 35S:ORE1 construct. ORE1 and BFN1 expression patterns largely overlap, as shown by promoterreporter gene (GUS) fusions, while BFN1 expression in senescent leaves and the abscission zones of maturing flower organs was virtually absent in ore1 mutant background. In vitro binding site assays revealed a bipartite ORE1 binding site, similar to that of ORS1, a paralog of ORE1. A bipartite ORE1 binding site was identified in the BFN1 promoter; mutating the cis-element within the context of the full-length BFN1 promoter drastically reduced ORE1-mediated transactivation capacity in transiently transfected Arabidopsis mesophyll cell protoplasts. Furthermore, chromatin immunoprecipitation (ChIP) demonstrates in vivo binding of ORE1 to the BFN1 promoter. We also demonstrate binding of ORE1 in vivo to the promoters of two other senescence-associated genes, namely SAG29/SWEET15 and SINA1, supporting the central role of ORE1 during senescence. KW - Arabidopsis thaliana KW - senescence KW - transcription factor KW - ORE1 KW - BFN1 KW - promoter Y1 - 2013 U6 - https://doi.org/10.1093/mp/sst012 SN - 1674-2052 VL - 6 IS - 5 SP - 1438 EP - 1452 PB - Oxford Univ. Press CY - Oxford ER -