TY - JOUR A1 - Zhang, Quanchao A1 - Rudolph, Tobias A1 - Benitez, Alejandro J. A1 - Gould, Oliver E. C. A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Temperature-controlled reversible pore size change of electrospun fibrous shape-memory polymer actuator based meshes JF - Smart materials and structures N2 - Fibrous membranes capable of dynamically responding to external stimuli are highly desirable in textiles and biomedical materials, where adaptive behavior is required to accommodate complex environmental changes. For example, the creation of fabrics with temperature-dependent moisture permeability or self-regulating membranes for air filtration is dependent on the development of materials that exhibit a reversible stimuli-responsive pore size change. Here, by imbuing covalently crosslinked poly(ε-caprolactone) (cPCL) fibrous meshes with a reversible bidirectional shape-memory polymer actuation (rbSMPA) we create a material capable of temperature-controlled changes in porosity. Cyclic thermomechanical testing was used to characterize the mechanical properties of the meshes, which were composed of randomly arranged microfibers with diameters of 2.3 ± 0.6 μm giving an average pore size of approx. 10 μm. When subjected to programming strains of εm = 300% and 100% reversible strain changes of εʹrev = 22% ± 1% and 6% ± 1% were measured, with switching temperature ranges of 10 °C–30 °C and 45 °C–60 °C for heating and cooling, respectively. The rbSMPA of cPCL fibrous meshes generated a microscale reversible pore size change of 11% ± 3% (an average of 1.5 ± 0.6 μm), as measured by scanning electron microscopy. The incorporation of a two-way shape-memory actuation capability into fibrous meshes is anticipated to advance the development and application of smart membrane materials, creating commercially viable textiles and devices with enhanced performance and novel functionality. KW - reversible shape-memory effect KW - fiber meshes KW - electrospinning Y1 - 2019 U6 - https://doi.org/10.1088/1361-665X/ab10a1 SN - 0964-1726 SN - 1361-665X VL - 28 IS - 5 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Zhang, Pengfei A1 - Behl, Marc A1 - Peng, Xingzhou A1 - Balk, Maria A1 - Lendlein, Andreas T1 - Chemoresponsive Shape-Memory Effect of Rhodium-Phosphine Coordination Polymer Networks JF - Chemistry of materials : a publication of the American Chemical Society N2 - Chemoresponsive polymers are of technological significance for smart sensors or systems capable of molecular recognition. An important key requirement for these applications is the material’s structural integrity after stimulation. We explored whether covalently cross-linked metal ion–phosphine coordination polymers (MPN) can be shaped into any temporary shape and are capable of recovering from this upon chemoresponsive exposure to triphenylphosphine (Ph3P) ligands, whereas the MPN provide structural integrity. Depending on the metal-ion concentration used during synthesis of the MPN, the degree of swelling of the coordination polymer networks could be adjusted. Once the MPN was immersed into Ph3P solution, the reversible ligand-exchange reaction between the metal ions and the free Ph3P in solution causes a decrease of the coordination cross-link density in MPN again. The Ph3P-treated MPN was able to maintain its original shape, indicating a certain stability of shape even after stimulation. In this way, chemoresponsive control of the elastic properties (increase in volume and decrease of mechanical strength) of the MPN was demonstrated. This remarkable behavior motivated us to explore whether the MPN are capable of a chemoresponsive shape-memory effect. In initial experiments, shape fixity of around 60% and shape recovery of almost 90% were achieved when the MPN was exposed to Ph3P in case of rhodium. Potential applications for chemoresponsive shape-memory systems could be shapable semiconductors, e.g., for lighting or catalysts, which provide catalytic activity on demand. Y1 - 2019 U6 - https://doi.org/10.1021/acs.chemmater.9b00363 SN - 0897-4756 SN - 1520-5002 VL - 31 IS - 15 SP - 5402 EP - 5407 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Yuan, Jinkai A1 - Neri, Wilfrid A1 - Zakri, Cecile A1 - Merzeau, Pascal A1 - Kratz, Karl A1 - Lendlein, Andreas A1 - Poulin, Philippe T1 - Shape memory nanocomposite fibers for untethered high-energy microengines JF - Science N2 - Classic rotating engines are powerful and broadly used but are of complex design and difficult to miniaturize. It has long remained challenging to make large-stroke, high-speed, high-energy microengines that are simple and robust. We show that torsionally stiffened shape memory nanocomposite fibers can be transformed upon insertion of twist to store and provide fast and high-energy rotations. The twisted shape memory nanocomposite fibers combine high torque with large angles of rotation, delivering a gravimetric work capacity that is 60 times higher than that of natural skeletal muscles. The temperature that triggers fiber rotation can be tuned. This temperature memory effect provides an additional advantage over conventional engines by allowing for the tunability of the operation temperature and a stepwise release of stored energy. Y1 - 2019 U6 - https://doi.org/10.1126/science.aaw3722 SN - 0036-8075 SN - 1095-9203 VL - 365 IS - 6449 SP - 155 EP - 158 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Wang, Weiwei A1 - Xu, Xun A1 - Li, Zhengdong A1 - Kratz, Karl A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Modulating human mesenchymal stem cells using poly(n-butyl acrylate) networks in vitro with elasticity matching human arteries JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Non-swelling hydrophobic poly(n-butyl acrylate) network (cPnBA) is a candidate material for synthetic vascular grafts owing to its low toxicity and tailorable mechanical properties. Mesenchymal stem cells (MSCs) are an attractive cell type for accelerating endothelialization because of their superior anti-thrombosis and immune modulatory function. Further, they can differentiate into smooth muscle cells or endothelial-like cells and secret pro-angiogenic factors such as vascular endothelial growth factor (VEGF). MSCs are sensitive to the substrate mechanical properties, with the alteration of their major cellular behavior and functions as a response to substrate elasticity. Here, we cultured human adipose-derived mesenchymal stem cells (hADSCs) on cPnBAs with different mechanical properties (cPnBA250, Young’s modulus (E) = 250 kPa; cPnBA1100, E = 1100 kPa) matching the elasticity of native arteries, and investigated their cellular response to the materials including cell attachment, proliferation, viability, apoptosis, senescence and secretion. The cPnBA allowed high cell attachment and showed negligible cytotoxicity. F-actin assembly of hADSCs decreased on cPnBA films compared to classical tissue culture plate. The difference of cPnBA elasticity did not show dramatic effects on cell attachment, morphology, cytoskeleton assembly, apoptosis and senescence. Cells on cPnBA250, with lower proliferation rate, had significantly higher VEGF secretion activity. These results demonstrated that tuning polymer elasticity to regulate human stem cells might be a potential strategy for constructing stem cell-based artificial blood vessels. KW - Poly(n-butyl acrylate) KW - mechanical property KW - vascular graft KW - mesenchymal stem cells KW - VEGF Y1 - 2019 U6 - https://doi.org/10.3233/CH-189418 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 2 SP - 277 EP - 289 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Tarazona, Natalia A. A1 - Machatschek, Rainhard Gabriel A1 - Schulz, Burkhard A1 - Auxiliadora Prieto Jiménez, M. A1 - Lendlein, Andreas T1 - Molecular Insights into the Physical Adsorption of Amphiphilic Protein PhaF onto Copolyester Surfaces JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Phasins are amphiphilic proteins located at the polymer-cytoplasm interface of bacterial polyhydroxyalkanoates (PHA). The immobilization of phasins on biomaterial surfaces is a promising way to enhance the hydrophilicity and supply cell- directing elements in bioinstructing processes. Optimizing the physical adsorption of phasins requires deep insights into molecular processes during polymer-protein interactions to preserve their structural conformation while optimizing surface coverage. Here, the assembly, organization, and stability of phasin PhaF from Pseudomonas putida at interfaces is disclosed. The Langmuir technique, combined with in situ microscopy and spectroscopic methods, revealed that PhaF forms stable and robust monolayers at different temperatures, with an almost flat orientation of its alpha-helix at the air-water interface. PhaF adsorption onto preformed monolayers of poly[(3-R-hydroxyoctanoate)-co-(3-R-hydroxyhexanoate)] (PHOHHx), yields stable mixed layers below pi = similar to 15.7 mN/m. Further insertion induces a molecular reorganization. PHOHHx with strong surface hydrophobicity is a more adequate substrate for PhaF adsorption than the less hydrophobic poly[(rac-lactide)-co-glycolide] (PLGA). The observed orientation of the main axis of the protein in relation to copolyester interfaces ensures the best exposure of the hydrophobic residues, providing a suitable coating strategy for polymer functionalization. Y1 - 2019 U6 - https://doi.org/10.1021/acs.biomac.9b00069 SN - 1525-7797 SN - 1526-4602 VL - 20 IS - 9 SP - 3242 EP - 3252 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Tarazona, Natalia A. A1 - Machatschek, Rainhard Gabriel A1 - Lendlein, Andreas T1 - Unraveling the interplay between abiotic hydrolytic degradation and crystallization of bacterial polyesters comprising short and medium side-chain-length Polyhydroxyalkanoates JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Polyhydroxyalkanoates (PHAs) have attracted attention as degradable (co)polyesters which can be produced by microorganisms with variations in the side chain. This structural variation influences not only the thermomechanical properties of the material but also its degradation behavior. Here, we used Langmuir monolayers at the air-water (A-W) interface as suitable models for evaluating the abiotic degradation of two PHAs with different side-chain lengths and crystallinity. By controlling the polymer state (semi crystalline, amorphous), the packing density, the pH, and the degradation mechanism, we could draw several significant conclusions. (i) The maximum degree of crystallinity for a PHA film to be efficiently degraded up to pH = 12.3 is 40%. (ii) PHA made of repeating units with shorter side-chain length are more easily hydrolyzed under alkaline conditions. The efficiency of alkaline hydrolysis decreased by about 65% when the polymer was 40% crystalline. (iii) In PHA films with a relatively high initial crystallinity, abiotic degradation initiated a chemicrystallization phenomenon, detected as an increase in the storage modulus (E'). This could translate into an increase in brittleness and reduction in the material degradability. Finally, we demonstrate the stability of the measurement system for long-term experiments, which allows degradation conditions for polymers that could closely simulate real-time degradation. Y1 - 2019 U6 - https://doi.org/10.1021/acs.biomac.9b01458 SN - 1525-7797 SN - 1526-4602 VL - 21 IS - 2 SP - 761 EP - 771 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Saretia, Shivam A1 - Machatschek, Rainhard Gabriel A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Reversible 2D networks of oligo(epsilon-caprolactone) at the air-water interface JF - Biomedical Materials N2 - Hydroxyl terminated oligo(epsilon-caprolactone) (OCL) monolayers were reversibly cross-linked forming two dimensional networks (2D) at the air-water interface. The equilibrium reaction with glyoxal as the cross-linker is pH-sensitive. Pronounced contraction in the area of the prepared 2DOCL films in dependence of surface pressure and time revealed the process of the reaction. Cross-linking inhibited crystallization and retarded enzymatic degradation of the OCLfilm. Altering the subphase pH led to a cleavage of the covalent acetal cross-links. The reversibility of the covalent acetal cross-links was proved by observing an identical isotherm as non-cross-linked sample. Besides as model systems, these customizable reversible OCL2D networks are intended for use as pHresponsive drug delivery systems or functionalized cell culture substrates. KW - poly(epsilon-caprolactone) KW - langmuir monolayer KW - two dimensional network KW - crystallization KW - cross-linking Y1 - 2019 U6 - https://doi.org/10.1088/1748-605X/ab0cef SN - 1748-6041 SN - 1748-605X VL - 14 IS - 3 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Reinthaler, Markus A1 - Johansson, Johan Backemo A1 - Braune, Steffen A1 - Al-Hindwan, Haitham Saleh Ali A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Shear-induced platelet adherence and activation in an in-vitro dynamic multiwell-plate system JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Circulating blood cells are prone to varying flow conditions when contacting cardiovascular devices. For a profound understanding of the complex interplay between the blood components/cells and cardiovascular implant surfaces, testing under varying shear conditions is required. Here, we study the influence of arterial and venous shear conditions on the in vitro evaluation of the thrombogenicity of polymer-based implant materials. Medical grade poly(dimethyl siloxane) (PDMS), polyethylene terephthalate (PET) and polytetrafluoroethylene (PTFE) films were included as reference materials. The polymers were exposed to whole blood from healthy humans. Blood was agitated orbitally at low (venous shear stress: 2.8 dyne. cm(-2)) and high (arterial shear stress: 22.2 dyne .cm(-2)) agitation speeds in a well-plate based test system. Numbers of non-adherent platelets, platelet activation (P-Selectin positive platelets), platelet function (PFA100 closure times) and platelet adhesion (laser scanning microscopy (LSM)) were determined. Microscopic data and counting of the circulating cells revealed increasing numbers of material-surface adherent platelets with increasing agitation speed. Also, activation of the platelets was substantially increased when tested under the high shear conditions (P-Selectin levels, PFA-100 closure times). At low agitation speed, the platelet densities did not differ between the three materials. Tested at the high agitation speed, lowest platelet densities were observed on PDMS, intermediate levels on PET and highest on PTFE. While activation of the circulating platelets was affected by the implant surfaces in a similar manner, PFA closure times did not reflect this trend. Differences in the thrombogenicity of the studied polymers were more pronounced when tested at high agitation speed due to the induced shear stresses. Testing under varying shear stresses, thus, led to a different evaluation of the implant thrombogenicity, which emphasizes the need for testing under various flow conditions. Our data further confirmed earlier findings where the same reference implants were tested under static (and not dynamic) conditions and with fresh human platelet rich plasma instead of whole blood. This supports that the application of common reference materials may improve inter-study comparisons, even under varying test conditions. Y1 - 2019 U6 - https://doi.org/10.3233/CH-189410 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 2 SP - 183 EP - 191 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Razzaq, Muhammad Yasar A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities JF - MRS Advances N2 - Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magnetomechanical actuators which are based on a single crystalline domain of oligo(omega-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to other composites containing other magnetic nanoparticles, e.g. with a high magnetic susceptibility. Y1 - 2019 U6 - https://doi.org/10.1557/adv.2019.123 SN - 2059-8521 VL - 4 IS - 19 SP - 1057 EP - 1065 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Razzaq, Muhammad Yasar A1 - Behl, Marc A1 - Heuchel, Matthias A1 - Lendlein, Andreas T1 - Matching magnetic heating and thermal actuation for sequential coupling in hybrid composites by design JF - Macromolecular rapid communications N2 - Sequentially coupling two material functions requires matching the output from the first with the input of the second function. Here, magnetic heating controls thermal actuation of a hybrid composite in a challenging system environment causing an elevated level of heat loss. The concept is a hierarchical design consisting of an inner actuator of nanocomposite material, which can be remotely heated by exposure to an alternating magnetic field (AMF) and outer layers of a porous composite system with a closed pore morphology. These porous layers act as heat insulators and as barriers to the surrounding water. By exposure to the AMF, a local bulk temperature of 71 degrees C enables the magnetic actuation of the device, while the temperature of the surrounding water is kept below 50 degrees C. Interestingly, the heat loss during magnetic heating leads to an increase of the water phase (small volume) temperature. The temperature increase is able to sequentially trigger an adjacent thermal actuator attached to the actuator composite. In this way it could be demonstrated how the AMF is able to initiate two kinds of independent actuations, which might be interesting for robotics operating in aqueous environments. KW - artificial muscles KW - magnetosensitivity KW - nanocomposites KW - soft actuators Y1 - 2019 U6 - https://doi.org/10.1002/marc.201900440 SN - 1022-1336 SN - 1521-3927 VL - 41 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Nie, Yan A1 - Wang, Weiwei A1 - Xu, Xun A1 - Zou, Jie A1 - Bhuvanesh, Thanga A1 - Schulz, Burkhard A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Enhancement of human induced pluripotent stem cells adhesion through multilayer laminin coating JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Bioengineered cell substrates are a highly promising tool to govern the differentiation of stem cells in vitro and to modulate the cellular behavior in vivo. While this technology works fine for adult stem cells, the cultivation of human induced pluripotent stem cells (hiPSCs) is challenging as these cells typically show poor attachment on the bioengineered substrates, which among other effects causes substantial cell death. Thus, very limited types of surfaces have been demonstrated suitable for hiPSC cultures. The multilayer coating approach that renders the surface with diverse chemical compositions, architectures, and functions can be used to improve the adhesion of hiPSCs on the bioengineered substrates. We hypothesized that a multilayer formation based on the attraction of molecules with opposite charges could functionalize the polystyrene (PS) substrates to improve the adhesion of hiPSCs. Polymeric substrates were stepwise coated, first with dopamine to form a polydopamine (PDA) layer, second with polylysine and last with Laminin-521. The multilayer formation resulted in the variation of hydrophilicity and chemical functionality of the surfaces. Hydrophilicity was detected using captive bubble method and the amount of primary and secondary amines on the surface was quantified by fluorescent staining. The PDA layer effectively immobilized the upper layers and thereby improved the attachment of hiPSCs. Cell adhesion was enhanced on the surfaces coated with multilayers, as compared to those without PDA and/or polylysine. Moreover, hiPSCs spread well over this multilayer laminin substrate. These cells maintained their proliferation capacity and differentiation potential. The multilayer coating strategy is a promising attempt for engineering polymer-based substrates for the cultivation of hiPSCs and of interest for expanding the application scope of hiPSCs. KW - Polymeric substrate KW - surface coating KW - induced pluripotent stem cells KW - cell adhesion Y1 - 2019 U6 - https://doi.org/10.3233/CH-189318 SN - 1386-0291 SN - 1875-8622 VL - 70 IS - 4 SP - 531 EP - 542 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Naolou, Toufik A1 - Lendlein, Andreas A1 - Neffe, Axel T. T1 - Amides as non-polymerizable catalytic adjuncts enable the ring-opening polymerization of lactide with ferrous acetate under mild conditions JF - Frontiers in Chemistry N2 - Sn-based catalysts are effective in the ring-opening polymerization (ROP) but are toxic. Fe(OAc)(2) used as an alternative catalyst is suitable for the ROP of lactide only at higher temperatures (>170 degrees C), associated with racemization. In the ROP of ester and amide group containing morpholinediones with Fe(OAc)(2) to polydepsipeptides at 135 degrees C, ester bonds were selectively opened. Here, it was hypothesized that ROP of lactones is possible with Fe(OAc)(2) when amides are present in the reactions mixture as Fe-ligands could increase the solubility and activity of the metal catalytic center. The ROP of lactide in the melt with Fe(OAc)(2) is possible at temperatures as low as 105 degrees C, in the presence of N-ethylacetamide or N-rnethylbenzamide as non-polymerizable catalytic adjuncts (NPCA), with high conversion (up to 99 mol%) and yield (up to 88 mol%). Polydispersities of polylactide decreased with decreasing reaction temperature to <= 1.1. NMR as well as polarimetric studies showed that no racemization occurred at reaction temperatures <= 145 degrees C. A kinetic study demonstrated a living chain-growth mechanism. MALDI analysis revealed that no side reactions (e.g., cyclization) occurred, though transesterification took place. KW - ring-opening polymerization KW - polyester KW - catalyst KW - iron KW - amide ligand Y1 - 2019 U6 - https://doi.org/10.3389/fchem.2019.00346 SN - 2296-2646 VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Mazurek-Budzyńska, Magdalena A1 - Behl, Marc A1 - Razzaq, Muhammad Yasar A1 - Nöchel, Ulrich A1 - Rokicki, Gabriel A1 - Lendlein, Andreas T1 - Hydrolytic stability of aliphatic poly(carbonate-urea-urethane)s: Influence of hydrocarbon chain length in soft segment JF - Polymer Degradation and Stability N2 - Poly(carbonate-urethane)s (PCUs) exhibit improved resistance to hydrolytic degradation and in vivo stress cracking compared to poly(ester-urethane)s and their degradation leads to lower inflammation of the surrounding tissues. Therefore, PCUs are promising implant materials and are considered for devices such as artificial heart or spine implants. In this work, the hydrolytic stability of different poly(carbonate-urethane-urea)s (PCUUs) was studied under variation of the length of hydrocarbon chain (6, 9, 10, and 12 methylene units) between the carbonate linkages in the precursors. PCUUs were synthesized from isophorone diisocyanate and oligo(alkylene carbonate) diols using the moisture-cure method. The changes of sample weight, thermal and mechanical properties, morphology, as well as the degradation products after immersion in a buffer solution (PBS, pH = 7.4) for up to 10 weeks at 37 degrees C were monitored and analyzed. In addition, mechanical properties after 20 weeks (in PBS, 37 degrees C) were investigated. The gel content was determined based on swelling experiments in chloroform. Based on the DSC analysis, slight increases of melting transitions of PCUUs were observed, which were attributed to structure reorganization related to annealing at 37 degrees C rather than to the degradation of the PCUU. Tensile strength after 20 weeks of all investigated samples remained in the range of 29-39 MPa, whereas the elongation at break e(m) decreased only slightly and remained in the range between 670 and 800%. Based on the characterization of degradation products after up to 10 weeks of immersion it was assessed that oligomers are mainly consisting of hard segments containing urea linkages, which could be assigned to hindered-urea dissociation mechanism. The investigations confirmed good resistance of PCUUs to hydrolysis. Only minor changes in the crystallinity, as well as thermal and mechanical properties were observed and depended on hydrocarbon chain length in soft segment of PCUUs. (C) 2019 Published by Elsevier Ltd. KW - Poly(carbonate-urea-urethane)s KW - Hydrolytic stability KW - Degradation Y1 - 2019 SN - 0141-3910 SN - 1873-2321 VL - 161 SP - 283 EP - 297 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Mazurek-Budzynska, Magdalena A1 - Razzaq, Muhammad Yasar A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Shape-Memory Polymers JF - Functional Polymers N2 - Shape-memory polymers (SMPs) are stimuli-sensitive materials capable of changing their shape on demand. A shape-memory function is a result of the polymer architecture together with the application of a specific programming procedure. Various possible mechanisms to induce the shape-memory effect (SME) can be realized, which can be based on thermal transitions of switching domains or on reversible molecular switches (e.g., supramolecular interactions, reversible covalent bonds). Netpoints, which connect the switching domains and determine the permanent shape, can be either provided by covalent bonds or by physical intermolecular interactions, such as hydrogen bonds or crystallites. This chapter reviews different ways of implementing the phenomenon of programmable changes in the polymer shape, including the one-way shape-memory effect (1-W SME), triple-and multi-shape effects (TSE/ MSE), the temperature-memory effect (TME), and reversible shape-memory effects, which can be realized in constant stress conditions (rSME), or in stress-free conditions (reversible bidirectional shape-memory effect (rbSME)). Furthermore, magnetically actuated SMPs and shape-memory hydrogels (SMHs) are described to show the potential of the SMP technology in biomedical applications and multifunctional approaches. Y1 - 2019 SN - 978-3-319-95987-0 SN - 978-3-319-95986-3 U6 - https://doi.org/10.1007/978-3-319-95987-0_18 SN - 2510-3458 SN - 2510-3466 SP - 605 EP - 663 PB - Springer CY - Cham ER - TY - JOUR A1 - Machatschek, Rainhard Gabriel A1 - Schöne, Anne-Christin A1 - Raschdorf, Elisa A1 - Ihlenburg, Ramona A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Interfacial properties of morpholine-2,5-dione-based oligodepsipeptides and multiblock copolymers JF - MRS Communications N2 - Oligodepsipeptides (ODPs) with alternating amide and ester bonds prepared by ring-opening polymerization of morpholine-2,5-dione derivatives are promising matrices for drug delivery systems and building blocks for multifunctional biomaterials. Here, we elucidate the behavior of three telechelic ODPs and one multiblock copolymer containing ODP blocks at the air-water interface. Surprisingly, whereas the oligomers and multiblock copolymers crystallize in bulk, no crystallization is observed at the air-water interface. Furthermore, polarization modulation infrared reflection absorption spectroscopy is used to elucidate hydrogen bonding and secondary structures in ODP monolayers. The results will direct the development of the next ODP-based biomaterial generation with tailored properties for highly sophisticated applications. Y1 - 2019 U6 - https://doi.org/10.1557/mrc.2019.21 SN - 2159-6859 SN - 2159-6867 VL - 9 IS - 1 SP - 170 EP - 180 PB - Cambridge Univ. Press CY - New York ER - TY - GEN A1 - Machatschek, Rainhard Gabriel A1 - Schöne, Anne-Christin A1 - Raschdorf, Elisa A1 - Ihlenburg, Ramona A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Interfacial properties of morpholine-2,5-dione-based oligodepsipeptides and multiblock copolymers T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Oligodepsipeptides (ODPs) with alternating amide and ester bonds prepared by ring-opening polymerization of morpholine-2,5-dione derivatives are promising matrices for drug delivery systems and building blocks for multifunctional biomaterials. Here, we elucidate the behavior of three telechelic ODPs and one multiblock copolymer containing ODP blocks at the air-water interface. Surprisingly, whereas the oligomers and multiblock copolymers crystallize in bulk, no crystallization is observed at the air-water interface. Furthermore, polarization modulation infrared reflection absorption spectroscopy is used to elucidate hydrogen bonding and secondary structures in ODP monolayers. The results will direct the development of the next ODP-based biomaterial generation with tailored properties for highly sophisticated applications. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1106 KW - block-copolymer KW - enzymatic degradation KW - poly(ester amide)s KW - controlled-release KW - films KW - nanocarriers Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-469755 SN - 1866-8372 IS - 1106 SP - 170 EP - 180 ER - TY - JOUR A1 - Machatschek, Rainhard Gabriel A1 - Lendlein, Andreas T1 - Fundamental insights in PLGA degradation from thin film studies JF - Journal of controlled release : official journal of the Controlled Release Society and of the Japanese Society of Drug Delivery Systems N2 - Poly(lactide-co-glycolide)s are commercially available degradable implant materials, which are typically selected based on specifications given by the manufacturer, one of which is their molecular weight. Here, we address the question whether variations in the chain length and their distribution affect the degradation behavior of Poly[(rac-lactide)-co-glycolide]s (PDLLGA). The hydrolysis was studied in ultrathin films at the air-water interface in order to rule out any morphological effects. We found that both for purely hydrolytic degradation as well as under enzymatic catalysis, the molecular weight has very little effect on the overall degradation kinetics of PDLLGAs. The quantitative analysis suggested a random scission mechanism. The monolayer experiments showed that an acidic micro-pH does not accelerate the degradation of PDLLGAs, in contrast to alkaline conditions. The degradation experiments were combined with interfacial rheology measurements, which showed a drastic decrease of the viscosity at little mass loss. The extrapolated molecular weight behaved similar to the viscosity, dropping to a value near to the solubility limit of PDLLGA oligomers before mass loss set in. This observation suggests a solubility controlled degradation of PDLLGA. Conclusively, the molecular weight affects the degradation of PDLLGA devices mostly in indirect ways, e.g. by determining their morphology and porosity during fabrication. Our study demonstrates the relevance of the presented Langmuir degradation method for the design of controlled release systems. KW - PDLLGA KW - Degradation KW - Langmuir monolayer Y1 - 2019 U6 - https://doi.org/10.1016/j.jconrel.2019.12.044 SN - 0168-3659 SN - 1873-4995 VL - 319 SP - 276 EP - 284 PB - Elsevier CY - New York ER - TY - JOUR A1 - Lendlein, Andreas A1 - Gould, Oliver E. C. T1 - Reprogrammable recovery and actuation behaviour of shape-memory polymers JF - Nature reviews. Materials N2 - Shape memory is the capability of a material to be deformed and fixed into a temporary shape. Recovery of the original shape can then be triggered only by an external stimulus. Shape-memory polymers are highly deformable materials that can be programmed to recover a memorized shape in response to a variety of environmental and spatially localized stimuli as a one-way effect. The shape-memory function can also be generated as a reversible effect enabling actuation behaviour through macroscale deformation and processing, specifically by dictating the macromolecular orientation of actuation units and of the skeleton structure of geometry-determining units in the polymers. Shape-memory polymers can be programmed and reprogrammed into arbitrary shapes. Both recovery and actuation behaviour are reprogrammable. In this Review, we outline the common basis and key differences between the two shape-memory behaviours of polymers in terms of mechanism, fabrication schemes and characterization methods. We discuss which combination of macromolecular architecture and macroscale processing is necessary for coordinated, decentralized and responsive physical behaviour. The extraction of relevant thermomechanical information is described, and design criteria are shown for microscale and macroscale morphologies to gain high levels of recovered or actuation strains as well as on-demand 2D-to-3D shape transformations. Finally, real-world applications and key future challenges are highlighted. Y1 - 2019 U6 - https://doi.org/10.1038/s41578-018-0078-8 SN - 2058-8437 VL - 4 IS - 2 SP - 116 EP - 133 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Lendlein, Andreas A1 - Balk, Maria A1 - Tarazona, Natalia A. A1 - Gould, Oliver E. C. T1 - Bioperspectives for Shape-Memory Polymers as Shape Programmable, Active Materials JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Within the natural world, organisms use information stored in their material structure to generate a physical response to a wide variety of environmental changes. The ability to program synthetic materials to intrinsically respond to environmental changes in a similar manner has the potential to revolutionize material science. By designing polymeric devices capable of responsively changing shape or behavior based on information encoded into their structure, we can create functional physical behavior, including a shape memory and an actuation capability. Here we highlight the stimuli-responsiveness and shape-changing ability of biological materials and biopolymer-based materials, plus their potential biomedical application, providing a bioperspective on shape-memory materials. We address strategies to incorporate a shape memory (actuation) function in polymeric materials, conceptualized in terms of its relationship with inputs (environmental stimuli) and outputs (shape change). Challenges and opportunities associated with the integration of several functions in a single material body to achieve multifunctionality are discussed. Finally, we describe how elements that sense, convert, and transmit stimuli have been used to create multisensitive materials. Y1 - 2019 U6 - https://doi.org/10.1021/acs.biomac.9b01074 SN - 1525-7797 SN - 1526-4602 VL - 20 IS - 10 SP - 3627 EP - 3640 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kuhnla, A. A1 - Reinthaler, Markus A1 - Braune, Steffen A1 - Maier, A. A1 - Pindur, Gerhard A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Spontaneous and induced platelet aggregation in apparently healthy subjects in relation to age JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Thrombotic disorders remain the leading cause of mortality and morbidity, despite the fact that anti-platelet therapies and vascular implants are successfully used today. As life expectancy is increasing in western societies, the specific knowledge about processes leading to thrombosis in elderly is essential for an adequate therapeutic management of platelet dysfunction and for tailoring blood contacting implants. This study addresses the limited available data on platelet function in apparently healthy subjects in relation to age, particularly in view of subjects of old age (80-98 years). Apparently healthy subjects between 20 and 98 years were included in this study. Platelet function was assessed by light transmission aggregometry and comprised experiments on spontaneous as well as ristocetin-, ADP- and collagen-induced platelet aggregation. The data of this study revealed a non-linear increase in the maximum spontaneous platelet aggregation (from 3.3% +/- 3.3% to 10.9% +/- 5.9%). The maximum induced aggregation decreased with age for ristocetin (from 85.8% +/- 7.2% to 75.0% +/- 7.8%), ADP (from 88.5% +/- 4.6% to 64.8% +/- 7.3%) and collagen (from 89.5% +/- 3.0% to 64.0% +/- 4.0%) in a non-linear manner (linear regression analysis). These observations indicate that during aging, circulating platelets become increasingly activated but lose their full aggregatory potential, a phenomenon that was earlier termed "platelet exhaustion". In this study we extended the limited existing data for spontaneous and induced platelet aggregation of apparently healthy donors above the age of 75 years. The presented data indicate that the extrapolation of data from a middle age group does not necessarily predict platelet function in apparently healthy subjects of old age. It emphasizes the need for respective studies to improve our understanding of thrombotic processes in elderly humans. Y1 - 2019 U6 - https://doi.org/10.3233/CH-199006 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 4 SP - 425 EP - 435 PB - IOS Press CY - Amsterdam ER -