TY - JOUR A1 - Dellinger, Agnes S. A1 - Essl, Franz A1 - Hojsgaard, Diego A1 - Kirchheimer, Bernhard A1 - Klatt, Simone A1 - Dawson, Wayne A1 - Pergl, Jan A1 - Pysek, Petr A1 - van Kleunen, Mark A1 - Weber, Ewald A1 - Winter, Marten A1 - Hoerandl, Elvira A1 - Dullinger, Stefan T1 - Niche dynamics of alien species do not differ among sexual and apomictic flowering plants JF - New phytologist : international journal of plant science N2 - We compiled global occurrence data sets of 13 congeneric sexual and apomictic species pairs, and used principal components analysis (PCA) and kernel smoothers to compare changes in climatic niche optima, breadths and unfilling/expansion between native and alien ranges. Niche change metrics were compared between sexual and apomictic species. All 26 species showed changes in niche optima and/or breadth and 14 species significantly expanded their climatic niches. However, we found no effect of the reproductive system on niche dynamics. Instead, species with narrower native niches showed higher rates of niche expansion in the alien ranges. Our results suggest that niche shifts are frequent in plant invasions but evolutionary potential may not be of major importance for such shifts. Niche dynamics rather appear to be driven by changes of the realized niche without adaptive change of the fundamental climatic niche. KW - adaptation KW - asexual reproduction KW - niche shifts KW - plant invasion KW - reproductive system KW - species distribution modelling Y1 - 2016 U6 - https://doi.org/10.1111/nph.13694 SN - 0028-646X SN - 1469-8137 VL - 209 SP - 1313 EP - 1323 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Weyrich, Alexandra A1 - Lenz, Dorina A1 - Jeschek, Marie A1 - Tzu Hung Chung, A1 - Ruebensam, Kathrin A1 - Goeritz, Frank A1 - Jewgenow, Katarina A1 - Fickel, Jörns T1 - Paternal intergenerational epigenetic response to heat exposure in male Wild guinea pigs JF - Molecular ecology N2 - Epigenetic modifications, of which DNA methylation is the best studied one, can convey environmental information through generations via parental germ lines. Past studies have focused on the maternal transmission of epigenetic information to the offspring of isogenic mice and rats in response to external changes, whereas heterogeneous wild mammals as well as paternal epigenetic effects have been widely neglected. In most wild mammal species, males are the dispersing sex and have to cope with differing habitats and thermal changes. As temperature is a major environmental factor we investigated if genetically heterogeneous Wild guinea pig (Cavia aperea) males can adapt epigenetically to an increase in temperature and if that response will be transmitted to the next generation(s). Five adult male guinea pigs (F0) were exposed to an increased ambient temperature for 2 months, i.e. the duration of spermatogenesis. We studied the liver (as the main thermoregulatory organ) of F0 fathers and F1 sons, and testes of F1 sons for paternal transmission of epigenetic modifications across generation(s). Reduced representation bisulphite sequencing revealed shared differentially methylated regions in annotated areas between F0 livers before and after heat treatment, and their sons’ livers and testes, which indicated a general response with ecological relevance. Thus, paternal exposure to a temporally limited increased ambient temperature led to an ‘immediate’ and ‘heritable’ epigenetic response that may even be transmitted to the F2 generation. In the context of globally rising temperatures epigenetic mechanisms may become increasingly relevant for the survival of species. KW - adaptation KW - Cavia aperea KW - DNA methylation KW - environmental factor KW - global change KW - plasticity KW - temperature increase Y1 - 2016 U6 - https://doi.org/10.1111/mec.13494 SN - 0962-1083 SN - 1365-294X VL - 25 SP - 1729 EP - 1740 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Zancolli, Giulia A1 - Baker, Timothy G. A1 - Barlow, Axel A1 - Bradley, Rebecca K. A1 - Calvete, Juan J. A1 - Carter, Kimberley C. A1 - de Jager, Kaylah A1 - Owens, John Benjamin A1 - Price, Jenny Forrester A1 - Sanz, Libia A1 - Scholes-Higham, Amy A1 - Shier, Liam A1 - Wood, Liam A1 - Wüster, Catharine E. A1 - Wüster, Wolfgang T1 - Is Hybridization a Source of Adaptive Venom Variation in Rattlesnakes? A Test, Using a Crotalus scutulatus x viridis Hybrid Zone in Southwestern New Mexico JF - Toxins N2 - Venomous snakes often display extensive variation in venom composition both between and within species. However, the mechanisms underlying the distribution of different toxins and venom types among populations and taxa remain insufficiently known. Rattlesnakes (Crotalus, Sistrurus) display extreme inter-and intraspecific variation in venom composition, centered particularly on the presence or absence of presynaptically neurotoxic phospholipases A2 such as Mojave toxin (MTX). Interspecific hybridization has been invoked as a mechanism to explain the distribution of these toxins across rattlesnakes, with the implicit assumption that they are adaptively advantageous. Here, we test the potential of adaptive hybridization as a mechanism for venom evolution by assessing the distribution of genes encoding the acidic and basic subunits of Mojave toxin across a hybrid zone between MTX-positive Crotalus scutulatus and MTX-negative C. viridis in southwestern New Mexico, USA. Analyses of morphology, mitochondrial and single copy-nuclear genes document extensive admixture within a narrow hybrid zone. The genes encoding the two MTX subunits are strictly linked, and found in most hybrids and backcrossed individuals, but not in C. viridis away from the hybrid zone. Presence of the genes is invariably associated with presence of the corresponding toxin in the venom. We conclude that introgression of highly lethal neurotoxins through hybridization is not necessarily favored by natural selection in rattlesnakes, and that even extensive hybridization may not lead to introgression of these genes into another species. KW - adaptation KW - Crotalus KW - evolution KW - hybridization KW - introgression KW - Mojave toxin KW - molecular evolution KW - venom Y1 - 2016 U6 - https://doi.org/10.3390/toxins8060188 SN - 2072-6651 VL - 8 PB - MDPI CY - Basel ER - TY - GEN A1 - Bubeck, Philip A1 - Aerts, Jeroen C. J. H. A1 - de Moel, Hans A1 - Kreibich, Heidi T1 - Preface BT - Flood-risk analysis and integrated management T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - kein abstract T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 609 KW - public-participation KW - damage KW - losses KW - vulnerability KW - Netherlands KW - adaptation KW - strategies KW - buildings KW - insurance KW - frequency Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412387 SN - 1866-8372 IS - 609 ER - TY - GEN A1 - Boettle, Markus A1 - Rybski, Diego A1 - Kropp, Jürgen T1 - Quantifying the effect of sea level rise and flood defence BT - a point process perspective on coastal flood damage T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In contrast to recent advances in projecting sea levels, estimations about the economic impact of sea level rise are vague. Nonetheless, they are of great importance for policy making with regard to adaptation and greenhouse-gas mitigation. Since the damage is mainly caused by extreme events, we propose a stochastic framework to estimate the monetary losses from coastal floods in a confined region. For this purpose, we follow a Peak-over-Threshold approach employing a Poisson point process and the Generalised Pareto Distribution. By considering the effect of sea level rise as well as potential adaptation scenarios on the involved parameters, we are able to study the development of the annual damage. An application to the city of Copenhagen shows that a doubling of losses can be expected from a mean sea level increase of only 11 cm. In general, we find that for varying parameters the expected losses can be well approximated by one of three analytical expressions depending on the extreme value parameters. These findings reveal the complex interplay of the involved parameters and allow conclusions of fundamental relevance. For instance, we show that the damage typically increases faster than the sea level rise itself. This in turn can be of great importance for the assessment of sea level rise impacts on the global scale. Our results are accompanied by an assessment of uncertainty, which reflects the stochastic nature of extreme events. While the absolute value of uncertainty about the flood damage increases with rising mean sea levels, we find that it decreases in relation to the expected damage. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 559 KW - climate-change KW - North-Sea KW - extremes KW - costs KW - 21st-Century KW - adaptation KW - statistics KW - impacts KW - trends KW - cities Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412405 SN - 1866-8372 IS - 559 ER - TY - GEN A1 - Zancolli, Giulia A1 - Baker, Timothy G. A1 - Barlow, Axel A1 - Bradley, Rebecca K. A1 - Calvete, Juan J. A1 - Carter, Kimberley C. A1 - de Jager, Kaylah A1 - Owens, John Benjamin A1 - Price, Jenny Forrester A1 - Sanz, Libia A1 - Scholes-Higham, Amy A1 - Shier, Liam A1 - Wood, Liam A1 - Wüster, Catharine E. A1 - Wüster, Wolfgang T1 - Is hybridization a source of adaptive venom variation in rattlesnakes? BT - a test, using a crotalus scutulatus × viridis hybrid zone in southwestern New Mexico T2 - Toxins N2 - Venomous snakes often display extensive variation in venom composition both between and within species. However, the mechanisms underlying the distribution of different toxins and venom types among populations and taxa remain insufficiently known. Rattlesnakes (Crotalus, Sistrurus) display extreme inter-and intraspecific variation in venom composition, centered particularly on the presence or absence of presynaptically neurotoxic phospholipases A2 such as Mojave toxin (MTX). Interspecific hybridization has been invoked as a mechanism to explain the distribution of these toxins across rattlesnakes, with the implicit assumption that they are adaptively advantageous. Here, we test the potential of adaptive hybridization as a mechanism for venom evolution by assessing the distribution of genes encoding the acidic and basic subunits of Mojave toxin across a hybrid zone between MTX-positive Crotalus scutulatus and MTX-negative C. viridis in southwestern New Mexico, USA. Analyses of morphology, mitochondrial and single copy-nuclear genes document extensive admixture within a narrow hybrid zone. The genes encoding the two MTX subunits are strictly linked, and found in most hybrids and backcrossed individuals, but not in C. viridis away from the hybrid zone. Presence of the genes is invariably associated with presence of the corresponding toxin in the venom. We conclude that introgression of highly lethal neurotoxins through hybridization is not necessarily favored by natural selection in rattlesnakes, and that even extensive hybridization may not lead to introgression of these genes into another species. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 443 KW - adaptation KW - Crotalus KW - evolution KW - hybridization KW - introgression KW - Mojave toxin KW - molecular evolution KW - venom Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407595 ER -