TY - GEN A1 - Xiong, Chao A1 - Stolle, Claudia A1 - Lühr, Hermann A1 - Park, Jaeheung A1 - Fejer, Bela G. A1 - Kervalishvili, Guram N. T1 - Scale analysis of equatorial plasma irregularities derived from Swarm constellation T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In this study, we investigated the scale sizes of equatorial plasma irregularities (EPIs) using measurements from the Swarm satellites during its early mission and final constellation phases. We found that with longitudinal separation between Swarm satellites larger than 0.4°, no significant correlation was found any more. This result suggests that EPI structures include plasma density scale sizes less than 44 km in the zonal direction. During the Swarm earlier mission phase, clearly better EPI correlations are obtained in the northern hemisphere, implying more fragmented irregularities in the southern hemisphere where the ambient magnetic field is low. The previously reported inverted-C shell structure of EPIs is generally confirmed by the Swarm observations in the northern hemisphere, but with various tilt angles. From the Swarm spacecrafts with zonal separations of about 150 km, we conclude that larger zonal scale sizes of irregularities exist during the early evening hours (around 1900 LT). T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1112 KW - Equatorial plasma irregularities KW - ionospheric scale lengths KW - Swarm constellation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431842 SN - 1866-8372 IS - 1112 ER - TY - JOUR A1 - Xiong, Chao A1 - Stolle, Claudia A1 - Luehr, Hermann A1 - Park, Jaeheung A1 - Fejer, Bela G. A1 - Kervalishvili, Guram N. T1 - Scale analysis of equatorial plasma irregularities derived from Swarm constellation JF - Earth, planets and space N2 - In this study, we investigated the scale sizes of equatorial plasma irregularities (EPIs) using measurements from the Swarm satellites during its early mission and final constellation phases. We found that with longitudinal separation between Swarm satellites larger than 0.4 degrees, no significant correlation was found any more. This result suggests that EPI structures include plasma density scale sizes less than 44 km in the zonal direction. During the Swarm earlier mission phase, clearly better EPI correlations are obtained in the northern hemisphere, implying more fragmented irregularities in the southern hemisphere where the ambient magnetic field is low. The previously reported inverted-C shell structure of EPIs is generally confirmed by the Swarm observations in the northern hemisphere, but with various tilt angles. From the Swarm spacecrafts with zonal separations of about 150 km, we conclude that larger zonal scale sizes of irregularities exist during the early evening hours (around 1900 LT). KW - Equatorial plasma irregularities KW - Ionospheric scale lengths KW - Swarm constellation Y1 - 2016 U6 - https://doi.org/10.1186/s40623-016-0502-5 SN - 1880-5981 VL - 68 SP - 189 EP - 202 PB - Springer CY - Heidelberg ER -