TY - JOUR A1 - Cestnik, Rok A1 - Rosenblum, Michael T1 - Inferring the phase response curve from observation of a continuously perturbed oscillator JF - Scientific reports N2 - Phase response curves are important for analysis and modeling of oscillatory dynamics in various applications, particularly in neuroscience. Standard experimental technique for determining them requires isolation of the system and application of a specifically designed input. However, isolation is not always feasible and we are compelled to observe the system in its natural environment under free-running conditions. To that end we propose an approach relying only on passive observations of the system and its input. We illustrate it with simulation results of an oscillator driven by a stochastic force. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-32069-y SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - GEN A1 - Cestnik, Rok A1 - Rosenblum, Michael T1 - Inferring the phase response curve from observation of a continuously perturbed oscillator T2 - Scientific Reports N2 - Phase response curves are important for analysis and modeling of oscillatory dynamics in various applications, particularly in neuroscience. Standard experimental technique for determining them requires isolation of the system and application of a specifically designed input. However, isolation is not always feasible and we are compelled to observe the system in its natural environment under free-running conditions. To that end we propose an approach relying only on passive observations of the system and its input. We illustrate it with simulation results of an oscillator driven by a stochastic force. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 475 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418425 ER - TY - JOUR A1 - Cestnik, Rok A1 - Rosenblum, Michael T1 - Inferring the phase response curve from observation of a continuously perturbed oscillator JF - Scientific Reports N2 - Phase response curves are important for analysis and modeling of oscillatory dynamics in various applications, particularly in neuroscience. Standard experimental technique for determining them requires isolation of the system and application of a specifically designed input. However, isolation is not always feasible and we are compelled to observe the system in its natural environment under free-running conditions. To that end we propose an approach relying only on passive observations of the system and its input. We illustrate it with simulation results of an oscillator driven by a stochastic force. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-32069-y SN - 2045-2322 VL - 8 SP - 1 EP - 10 PB - Nature Publishing Group CY - London ER -